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Abstract

Modern multicore systems are based on a Non-Uniform

Memory Access (NUMA) design. Efficiently exploiting

such architectures is notoriously complex for program-

mers. One of the key concerns is to limit as much as pos-

sible the number of remote memory accesses (i.e., main

memory accesses performed from a core to a memory

bank that is not directly attached to it). However, in many

cases, existing profilers do not provide enough informa-

tion to help programmers achieve this goal.

This paper presents MemProf, a profiler that al-

lows programmers to choose and implement efficient

application-level optimizations for NUMA systems.

MemProf builds temporal flows of interactions between

threads and objects, which help programmers understand

why and which memory objects are accessed remotely.

We evaluate MemProf on Linux using four applications

(FaceRec, Streamcluster, Psearchy, and Apache) on three

different machines. In each case, we show how MemProf

helps us choose and implement efficient optimizations,

unlike existing profilers. These optimizations provide

significant performance gains (up to 161%), while re-

quiring very lightweight modifications (10 lines of code

or less).

1 Introduction

Multicore platforms are nowadays commonplace and an

increasing share of them are based on a Non Uniform

Memory Access (NUMA) architecture, i.e., with a set of

nodes interacting via interconnect links, each node host-

ing a memory bank/controller and a group of cores. It

is well-known that developing efficient code on such ar-

chitectures is very difficult since many aspects of hard-
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ware resource management (e.g., regarding I/O devices,

shared caches and main memory) can strongly impact

performance. In this paper, we focus on remote mem-

ory accesses, i.e., main memory accesses performed on

node N1 by a thread running on a core from another node

N2. Remote memory accesses are a major source of in-

efficiency because they introduce additional latencies in

the execution of instructions. These latencies are due to

the extra hops required for the communication between a

core and a remote memory controller and also possibly to

contention on the interconnect links and on the memory

controllers [3].

Several techniques have been proposed to reduce

the number of remote memory accesses performed by

applications running on a NUMA machine, such as

memory page duplication [8, 18] or contention-aware

scheduling with memory migration [3]. These tech-

niques are “generic” (i.e., application-agnostic): they

rely on heuristics and are typically implemented within

the OS. However, while useful in some contexts (e.g.,

co-scheduling), these heuristics (and the online moni-

toring logic that they require) are not always appropri-

ate since they can possibly hurt the performance of an

application, as we show in Section 5. An alternative

approach consists in introducing application-level opti-

mizations through lightweight modifications of the ap-

plication’s source code. For example, a programmer can

improve the placement of threads and objects by, among

other optimizations, modifying the choice of the alloca-

tion pool, pinning a thread on a node, or duplicating an

object on several memory nodes. Yet, application-level

optimization techniques suffer from a significant short-

coming: it is generally difficult for a programmer to de-

termine which technique(s) can be applied to a given ap-

plication/workload. Indeed, as we show in this paper,

diagnosing the issues that call for a specific application-

level technique requires a detailed view of the interac-

tions between threads an memory objects, i.e., the ability

to determine which threads access which objects at any



point in time during the run of an application, and ad-

ditional information such as the source and target nodes

of each memory access. However, existing profilers like

OProfile [13], Linux Perf [19], VTune [7] and Mem-

phis [12] do not provide this required information in the

general case. Some of them are able to provide this in-

formation in the specific case of global static memory

objects but these objects often account for a negligible

ratio of all remote memory accesses. As an example, for

the four applications that we study in this paper, global

static memory objects are involved in less than 4% of all

remote memory accesses. For the other kinds of objects,

the only data provided by the existing profilers are the

target memory address and the corresponding program

instruction that triggered the access.

In this paper, we present MemProf, the first profiler

able to determine the thread and object involved in a

given remote memory access performed by an applica-

tion. MemProf builds temporal flows of the memory ac-

cesses that occur during the run of an application. Mem-

Prof achieves this result by (i) instrumenting thread and

memory management operations with a user library and a

kernel module, and (ii) leveraging hardware support from

the processors (Instruction-Based Sampling) to monitor

the memory accesses. MemProf allows precisely iden-

tifying the objects that are involved in remote memory

accesses and the corresponding causes (e.g., inefficient

object allocation strategies, saturation of a memory node,

etc.). Besides, MemProf also provides additional infor-

mation such as the source code lines corresponding to

thread and object creations and destructions. MemProf

can thus help a programmer quickly introduce simple and

efficient optimizations within a complex and unfamiliar

code base. We illustrate the benefits of MemProf on four

case studies with real applications (FaceRec [9], Stream-

cluster [2], Psearchy [4], and Apache [1]). In each case,

MemProf allowed us to detect the causes of the remote

memory accesses and to introduce simple optimizations

(impacting less than 10 lines of code), and thus to achieve

a significant performance increase (the gains range from

6.5% to 161%). We also show that these application-

specific optimizations can outperform generic heuristics.

The rest of the paper is organized as follows. Sec-

tion 2 describes a few examples of execution patterns

that can benefit from NUMA optimizations and then ex-

plains why traditional profilers are not able to pinpoint

them. Section 3 presents the main principles of MemProf

and how it can be used. Section 4 provides implementa-

tion details. Section 5 presents an evaluation of MemProf

on four applications. Finally, Section 6 discusses related

work and Section 7 concludes the paper.

2 The case for a new profiler

In this section, we present a few examples of optimiza-

tions that can be implemented when specific memory ac-

cess patterns occur in an application. We then explain

why existing profilers fail to detect such patterns.

2.1 Application-level NUMA optimizations

We describe a set of three example patterns that

negatively impact the performance of applications

deployed on NUMA machines. These patterns are

inefficient because they increase the number of re-

mote memory accesses performed by an application

and their overhead can be significant if they impact

objects that are heavily accessed. We review each

pattern in turn and explain typical optimizations that

can be applied at the application level in order to avoid it.
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Figure 1: Three memory access patterns that can nega-

tively impact the performance of applications deployed

on NUMA machines.

Remote usage after allocation. This pattern (depicted

in Figure 1 (a)) occurs when an object is allocated by

a thread T1 on a memory node N1, and later accessed

exclusively (or mostly) by a thread T2 running on a node

N2. This pattern often occurs in an application with

a producer-consumer scheme when the producer and

consumer threads are pinned on distinct cores. A simple

optimization consists in directly allocating the object on

N2, using NUMA-aware allocation functions. When the

application is such that N2 cannot be determined at the

time of the object allocation, another solution consists

in migrating the object when T2 starts to access it,

provided that the cost of the data copy can be amortized.

Such a migration can be implemented in two ways in

the application: (i) using an explicit copy to a buffer

allocated on a given node with a NUMA-aware function,

or (ii) using a system call to transparently migrate and



remap the set of virtual memory pages that contain the

object (e.g., move_pages() in Linux).

Alternate remote accesses to an object. In this pattern

(depicted in Figure 1 (b)), there are several threads

that access a given object over time, but each thread

performs its accesses during a disjoint time interval. A

first possible optimization consists in adjusting thread

placement with respect to the object. Thread placement

can be managed in two ways: (i) pinning all the corre-

sponding threads on the node that hosts the object, or (ii)

migrating threads over time according to the data they

access in a given execution phase. Note that, for some

applications, both strategies may create significant load

imbalance and thus be inefficient, e.g., when some cores

are left idle. A second possible optimization consists in

migrating the object close to the thread that currently

accesses it (using the migration techniques described in

the previous paragraph).

Concurrent remote accesses to an object. In this pat-

tern (depicted in Figure 1 (c)), the object is accessed by

several threads during long overlapping time intervals.

A first possible optimization to address this pattern con-

sists in pinning all the corresponding threads on the node

that hosts the object. Like in the previous case, this

optimization may create significant imbalance and thus

be inefficient for some applications. A second possible

optimization consists in duplicating the object on sev-

eral memory nodes. This optimization implies to syn-

chronize the multiples object copies (like in a distributed

shared memory system) and increases the memory foot-

print. Consequently, it is mostly applicable to read-only

or read-mostly objects whose replication footprint does

not exceed the available memory capacity. Finally, if the

memory controller of node N1 is saturated (which can

be detected by evaluating the average latencies of mem-

ory accesses), two possible optimizations can be consid-

ered. The first one consists in balancing the allocation

of the different “hottest” objects over multiple memory

nodes in order to spread the load. If this optimization

cannot be applied, e.g., because the saturation is caused

by a few large objects, a second possible optimization

consists in interleaving the allocation of each such object

over the different memory nodes1. Note that, in this case,

the optimizations do not necessarily decrease the number

of remote memory accesses but allow keeping the corre-

sponding latencies as low as possible by avoiding link or

controller saturation.

1An application programmer can typically introduce the latter opti-

mization at the page granularity using a kernel API (such as mbind()

with the MPOL_INTERLEAVE flag in Linux).

2.2 Limitations of existing profilers

This section studies whether existing profilers can help

detecting inefficient patterns such as the ones described

in Section 2.1. We show below that these profilers are ac-

tually not able to do so in the general case, because they

cannot precisely determine whether two threads access

the same object (in main memory) or not2.

Using existing profilers, a developer can determine,

for a given memory access performed by a thread, the

involved virtual and physical addresses, as well as the

corresponding source code line (e.g., a C/C++ state-

ment) and assembly-level instruction, and the function

call chain. In order to extract inefficient thread/memory

interaction patterns from such a raw trace, a program-

mer has to determine if two given individual memory ac-

cesses actually target the same object instance or not.

In the case of global statically allocated objects, the

answer can be found by analyzing the information em-

bedded in the program binary and the system libraries,

from which the size and precise virtual address range

of each object can be obtained. This feature is actually

implemented by tools like VTune and Memphis. Un-

fortunately, according to our experience with a number

of applications, this kind of objects only account for a

very low fraction of the remote memory accesses (e.g.,

less than 4% in all applications studied in Section 5).

In the more general case, i.e., with arbitrary kinds of

dynamically-allocated objects, the output of existing pro-

filers (addresses and code paths) is not sufficient to reach

a conclusion, as explained below.

First, existing profilers do not track and maintain

enough information to determine the enclosing object

instance corresponding to a given (virtual or physical)

memory address. Indeed, as the lifecycle of dynamic

objects is not captured (e.g., dynamic creations/destruc-

tions of memory mappings or application-level objects),

the address ranges of objects are not known. Moreover, a

given (virtual or physical) address can be reused for dif-

ferent objects over time. In addition, virtual-to-physical

mappings can also evolve over time (due to swap activity

or to page migrations) and their lifecycle is not tracked

either.

Second, the additional knowledge of the code path

(function call chain and precise instruction) that causes

a remote memory access is also insufficient to determine

if several threads access the same memory object. Some

applications are sufficiently simple to determine the ac-

cessed object using only the code path provided by ex-

isting profilers. However, in practice, we found that this

was not the case on any of the applications that we stud-

ied. In general, the code path is often helpful to deter-

2From the application-level perspective, these accesses correspond

to object allocation, destruction, as well as read or write operations.



mine the object type related to a given remote memory

access, but does not allow pinpointing the precise object

instance being accessed. Indeed, the internal structure

and workloads of many applications are such that the

same function is successively called with distinct argu-

ments (i.e., pointers to distinct instances of the same ob-

ject type), and only a subset of these invocations causes

remote memory accesses. For instance, in Section 5.2,

we show the example of an application (FaceRec) that

processes nearly 200 matrices, and where only one of

them is involved in a large number of remote memory

accesses.

3 MemProf

In this section, we present MemProf, the first NUMA

profiler allowing the capture of interactions between

threads and objects. More precisely, MemProf is able

to associate remote memory accesses with memory-

mapped files, binary sections thread stacks, and with ar-

bitrary objects that are statically or dynamically allocated

by applications. This section is organized as follows: we

first give an overview of MemProf. Second, we describe

the output provided by MemProf. Finally, we describe

how MemProf can be used to detect patterns such as the

ones presented in Section 2.1.

3.1 Overview

MemProf aims at providing sufficient information to find

and implement appropriate solutions to reduce the num-

ber of remote memory accesses. The key idea behind

MemProf is to build temporal flows of interactions be-

tween threads and in-memory objects. Intuitively, these

flows are used to “go back in an object’s history” to

find out which and when threads accessed the object re-

motely. Processing these flows allows understanding the

causes of remote memory accesses and thus designing

appropriate optimizations.

MemProf distinguishes five types of objects that

we have found important for NUMA performance

troubleshooting: global statically allocated objects,

dynamically-allocated objects, memory-mapped files,

sections of a binary mapped by the operating system (i.e.,

the main binary of an application or dynamic libraries)

and thread stacks. MemProf associates each memory ac-

cess with an object instance of one of these types.

MemProf records two types of flows. The first type of

flow represents, for each profiled thread, the timeline of

memory accesses performed by this thread. We call these

flows Thread Event Flows (TEFs). The second type of

flow represents, for each object accessed in memory, the

timeline of accesses performed on the object. We call

these flows Object Event Flows (OEFs).

These two types of flows give access to a large num-

ber of indicators that are useful to detect patterns such

as the ones presented in Section 2.1: the objects (types

and instances) that are accessed remotely, the thread that

allocates a given object and the threads that access this

object, the node(s) where an object is allocated, accessed

from and migrated to, the objects that are accessed by

multiple threads, the objects that are accessed in a read-

only or in a read-mostly fashion, etc. Note that differ-

ent views can be extracted from MemProf’s output, i.e.,

either focused on a single item (thread/object) or aggre-

gated over multiple items. In addition, the temporal in-

formation can be exploited to detect some specific phases

in an application run, e.g., read/write phases or time in-

tervals during which a memory object is accessed with a

very high latency (e.g., due to the intermittent saturation

of a memory controller).

In the remainder of this section, we first describe the

output of MemProf. We then provide details on the way

to use MemProf.

3.2 Output

MemProf builds one Thread Event Flow (TEF) per pro-

filed thread T . An example of TEF is given in Fig-

ure 2 (a). The TEF of a given thread T contains a list

of “object accesses”; each “object access” corresponds

to a main memory access performed by T . The “object

accesses” are organized in chronological order inside the

TEF. They contain: (i) the node from which the access

is performed, (ii) the memory node that is accessed, (iii)

a reference to the Object Event Flow of the accessed ob-

ject, (iv) the latency of the memory access, (v) a boolean

indicating whether the access is a read or a write opera-

tion, and (vi) a function call chain. The TEF of a given

thread T also contains some additional metadata: the PID

of T and the process binary filename. These metadata

allow computing statistics about threads of the same pro-

cess and the threads of a common application.

Object Event Flows (OEFs) provide a dual view of the

information contained in the TEFs. MemProf builds one

OEF per object O accessed in memory. An example of

OEF is given in Figure 2 (b). The OEF of an object O is

composed of “thread accesses”, ordered chronologically.

Each “thread access” corresponds to a memory access to

O. The “thread accesses” store similar information as the

one found in “object accesses”. The only difference is

that instead of containing a reference to an OEF, an “ob-

ject access” contains a reference to the TEF of the thread

accessing O. The OEF of a memory object O also con-

tains metadata about O: the type of the object (among the

5 types described in Section 3.1), the size of the object,

the line of code where the object was allocated or de-

clared. Besides, there are some additional metadata for a
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Figure 2: The two types of flows built by MemProf.

There is (a) a Thread Event Flow per profiled thread, and

(b) an Object Event Flow per object accessed during the

profiling session.

dynamically-allocated object, as depicted in Figure 2.

3.3 Using MemProf

MemProf provides a C API to process the TEFs and

OEFs. This API provides functions to process events

and metadata contained in the TEFs and OEFs. Using

this API, it is possible to compute statistics about a sin-

gle thread or object, or about a group of threads or ob-

jects. Due to lack of space, we do not provide a detailed

description of the API. Rather, we provide a simple ex-

ample of script that can be written using this API in Fig-

ure 3. This script computes the average time between

two memory accesses performed by distinct threads on

an object. Such a script can be used, for instance, to esti-

mate the relevance of implementing a memory migration

optimization.

MemProf provides a set of generic scripts whose out-

put is often sufficient for understanding the symptoms of

an application, e.g., ratio and number of remote memory

accesses, list of the most accessed object types, access

patterns corresponding to an object type or to a specific

object instance.

4 Implementation

In this section, we present the implementation of Mem-

Prof for Linux. MemProf performs two main tasks, illus-

trated in Figure 4. The first task (online) consists in col-

lecting events (thread creation, object allocation, mem-

ory accesses, etc.) that are then processed by the second

task (in an offline phase), which is in charge of construct-

ing the flows (TEFs and OEFs). We review each task in

oef o = ...;
thread_acces a;
u64 last_tid = 0, last_rdt = 0;
u64 nb_tid_switch = 0;
u64 time_per_tid = 0;
foreach_taccess(o, a) {

if(a.tid == last_tid )
continue ;

nb_tid_switch++;
time_per_tid += a.rdt - last_rdt ;
last_tid = a.tid;
last_rdt = a.rdt;

}
if (nb_tid_switches)

printf ("Avg time: %lu cycles (%lu switches )\n",
time_per_tid/nb_tid_switch , nb_tid_switch);

Figure 3: A script computing the average time between

two memory accesses by distinct threads to an object.

turn.

4.1 Event collection

The event collection task consists in tracking the life

cycle of objects and threads, as well as the memory

accesses.

Object lifecycle tracking. MemProf is able to track the

allocation and destruction of different types of memory

objects, as decribed below.

MemProf tracks the lifecycle of dynamically allocated

memory objects and memory-mapped files by overload-

ing the memory allocation functions (malloc, calloc,

realloc, free, mmap and munmap) called by the threads

that it profiles. MemProf can also be adapted to overload

more specialized functions when an application does not

use the standard allocation interfaces. Function over-

loading is performed by linking the profiled applications

with a shared library provided by MemProf, through the

dynamic linker’s LD_PRELOAD and dlsym facilities3.

MemProf tracks the lifecycle of code sections and

global static variables with a kernel module that over-

loads the perf_event_mmap function. This function is

called on every process creation, when the binary and li-

braries of the process are mapped in memory. It provides

the size, virtual address and “content” (e.g., file name) of

newly mapped memory zones.

For each kind of object, MemProf stores the virtual

address of the created or destroyed object. It also stores

a timestamp, the tid of the calling thread, the CPUID

on which the function is called and a callchain. The

timestamp is required to determine the lifecycle of

memory objects. The tid is necessary to know in which

virtual address space the object is allocated. The CPUID

3MemProf can thus work on applications whose source code is not

available. However, its insight may be somewhat restricted in such a

case (e.g., given the lack of visibility over the accessed object types).
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(offline). Due to space restrictions, we only present the most important fields of the collected events.

is needed for the corresponding OEF metadata. The

callchain is required to find the line of code where the

object was allocated.

Thread lifecycle tracking. In order to detect thread

(and also stack) creations and destructions, MemProf

overloads two kernel functions: perf_event_task

and perf_event_comm, which are called upon such

events. The perf_event_task function provides the

thread id of newly created/destroyed threads, and the

perf_event_comm function provides the name of newly

created threads. MemProf records these metadata and

associates them with a timestamp and a pid.

Memory access tracking. Memory accesses are tracked

using Instruction Based Sampling (IBS) [5], a profiling

mechanism introduced by the “AMD Family 10h” line

of processors4. It works at the microarchitecture level by

periodically selecting a random instruction and record-

ing performance information about its execution. An

interrupt is generated when the selected instruction has

been fully executed. This interrupt is caught by the ker-

nel module and the IBS sample is saved in a per-CPU

buffer. For instructions that reference a memory loca-

tion, the processor collects the virtual and physical ad-

dress of the location, the number of clock cycles required

to fetch the data, the level where the data was found in

the memory hierarchy (in one of the caches, in the local

DRAM bank or in a remote DRAM bank), and the access

type (read or write). In addition to the information pro-

vided by the IBS registers, the kernel module also saves

a timestamp, the CPUID of the core, as well as the thread

id and stack boundaries of the executing thread.

4IBS is only available for AMD processors but a similar hardware-

level profiling mechanism, called PEBS [16], exists for Intel proces-

sors. MemProf’s kernel module could easily be extended to leverage

PEBS.

4.2 TEF and OEF construction

Once the events have been collected, MemProf builds

(offline) the OEF and TEF of the profiled application(s).

As illustrated in Figure 4, the events are first ordered by

timestamp. MemProf then iterates over the ordered list

of events and builds the flows as follows. MemProf cre-

ates a new TEF each time a new thread is created and

an OEF each time a new object is allocated. MemProf

stores (i) the TEFs in a hashmap indexed by the tid of

their thread and (ii) the OEFs in a per-process red-black

tree structure. This red-black tree allows finding if a vir-

tual address corresponds to a previously allocated object

(e.g., if an object O is allocated on the virtual address

range [0x5− 0x10], then a request for the address 0x7

will return the OEF of O). When an object is destroyed,

its OEF is removed from the red-black tree.

For each memory access to a given virtual address,

MemProf (i) creates a “thread access” and inserts it in

the TEF of the thread that performed the memory ac-

cess, and (ii) searches in the red-black tree for the OEF

that corresponds to the accessed virtual address; if it ex-

ists, MemProf creates an “object access" and inserts it in

the OEF. Note that in most cases, the OEF exists in the

red-black tree; the only exceptions are (i) when a mem-

ory access targets the stack of a thread, and (ii) when

the physical address is outside the valid range of phys-

ical addresses5. MemProf assigns all memory accesses

performed on stacks to a single (per-process) OEF rep-

resenting all stacks. Indeed, we observed in practice

that stacks represent only a small percentage of remote

memory accesses and it is thus sufficient to regroup all

memory accesses performed on stacks in a single OEF.

Moreover, MemProf ignores physical addresses that are

outside the valid range of physical addresses.

5The hardware creates IBS samples with such addresses when it

monitors special assembly instructions like rdtscll, which is used to

read the timestamp counter.



5 Evaluation

In this Section, we evaluate MemProf using four appli-

cations: FaceRec, Streamcluster, Apache and Psearchy.

The first three applications perform a significant number

of remote memory accesses. The last one performs fewer

remote memory accesses but is memory-intensive. For

each application, we first try to optimize the application

using the output of existing profilers, i.e., instruction-

oriented profilers like Perf and data-oriented profilers

like Memphis. We show that the latter do not give pre-

cise insights on what and how to optimize the applica-

tion. We then profile the application with MemProf and

show that it allows precisely pinpointing the causes of

remote memory accesses and designing appropriate opti-

mizations to mitigate them. These optimizations are very

simple (less than 10 lines of code) and efficient (the gains

range from 6.5% to 161%). Finally, we conclude this

section by a study of the overhead induced by MemProf.

5.1 Testbed

We perform the evaluation using three NUMA-machines

(with 16, 24 and 48 cores respectively) presented below.

They all run the Linux kernel v2.6.35 and eGlibc v2.11.

Machine A has 4 AMD Opteron 8380 processors

clocked at 2.5GHz with 4 cores in each (16 cores in to-

tal), 32GB of RAM and 20 1Gb/s Ethernet ports. It fea-

tures 4 memory nodes (i.e., 4 cores and 8GB of RAM per

node) interconnected with HyperTransport 1.0 links.

Machine B has 2 AMD Opteron 6164 HE processors

clocked at 1.7 GHz with 12 cores in each (24 cores in to-

tal) and 48 GB of RAM. It features 4 memory nodes (i.e.,

6 cores and 12 GB of RAM per node) interconnected

with HyperTransport 3.0 links.

Machine C has 4 AMD Opteron 6174 processors

clocked at 2.2 GHz with 12 cores in each (48 cores in

total) and 256 GB of RAM. It features 8 memory nodes

(i.e., 6 cores and 32 GB of RAM per node) intercon-

nected with HyperTransport 3.0 links.

5.2 FaceRec

FaceRec is a facial recognition engine of the ALPBench

benchmark suite [9]. We use the default workload

included in the suite. FaceRec performs 63% of its

memory accesses on remote memory. We first try to

optimize FaceRec using existing profilers. We obtain a

performance improvement ranging from 9% to 15%. We

then try to optimize FaceRec using MemProf. We obtain

a performance improvement ranging from 16% to 41%.

Optimization using existing profilers. Instruction-

oriented profilers allow understanding that most remote

memory accesses are performed in one function (see the

output of the Perf profiler, presented in Table 1). This

function takes two matrices as arguments and performs

a matrix multiplication. It is called on all matrices ma-

nipulated by the application (using MemProf, we learn

that 193 matrices are allocated during a run of the default

ALPBench workload). Instruction-oriented profilers do

not allow determining which matrices induce large num-

bers of remote memory accesses.

% of total remote accesses Function

98 transposeMultiplyMatrixL

0.08 malloc

Table 1: Functions performing most remote memory ac-

cesses in FaceRec.

Data-oriented profilers show that no remote memory

access is performed on global statically allocated objects.

Moreover, they allow gathering the list of virtual ad-

dresses that are accessed remotely, together with the ratio

of remote memory accesses that each virtual address ac-

counts for. Nevertheless, it is not possible to determine

if a range of accessed addresses represents one or more

matrices. Indeed, FaceRec allocates matrices of differ-

ent sizes, and each range of virtual addresses can be used

to store different matrices during different time intervals

(MemProf actually shows that FaceRec allocates sev-

eral matrices on the same virtual address ranges). Con-

sequently, existing profilers do not allow understanding

which matrices induce many remote memory accesses.

The optimizations that can be envisioned using the

output of existing profilers are: (i) duplicating all

matrices on all nodes, or (ii) interleaving the memory

allocated for all matrices on all nodes. Both opti-

mizations require the developer to retrieve all places

in the code where matrices are allocated. We did not

implement the first optimization because it requires

writing complex code to synchronize the state of

matrices whenever they are updated. Moreover, we

know (using MemProf) that this optimization will not

induce good performance. Indeed, MemProf shows

that some matrices are often updated, and thus that the

synchronization code would be frequently triggered.

We tried the second optimization, which is simple to

implement: it consists in replacing the calls to malloc

with calls to numa_alloc_interleaved. This opti-

mization induces performance improvements of 15%,

9% and 13% on respectively Machines A, B and C. Note

that this optimization increases the number of remote

memory accesses, but decreases the contention on one of

the memory nodes, hence the performance improvement.

Optimization using MemProf. MemProf points out that

most remote memory accesses are performed on a single

matrix (see Table 2). This explains why the optimiza-



tion presented in the previous paragraph induced a per-

formance improvement: it decreases the contention on

the memory node hosting this matrix. Using the OEF

of this matrix, we observe that, contrarily to some other

matrices, this matrix is written only once and then ac-

cessed in read-only mode by a set of threads6. We lever-

age this observation as follows: we optimize FaceRec by

duplicating this matrix on all nodes after its initialization.

As the matrix is never updated, we did not have to write

any synchronization code. The matrix occupies 15MB of

memory. The footprint overhead of this optimization is

thus 45MB on machines A and B (4 nodes) and 105MB

on machine C (8 nodes). The implementation of the ma-

trix duplication only required 10 lines of code. We sim-

ply had to modify the readAndProjectImages function

that initializes this matrix so that it allocates one matrix

per node. For simplicity, we stored the various pointers

to the matrices in a global array. Threads then choose the

appropriate matrix depending on the node they are cur-

rently running on. With this optimization, FaceRec only

performs 2.2% of its memory accesses on remote mem-

ory (63% before the optimization). This results in per-

formance improvements of respectively 41%, 26% and

37% on Machines A, B and C.

% of total remote accesses Object

98.8 s->basis(csuCommonSubspace.c:455)

0.2 [static objects of libc-2.11.2.so]

Table 2: Objects remotely accessed in FaceRec.

5.3 Streamcluster

Streamcluster is a parallel data-mining application in-

cluded in the popular PARSEC 2.0 benchmark suite [2].

Streamcluster performs 75% of its memory accesses on

remote memory. We first try to optimize Streamcluster

using existing profilers and obtain a performance im-

provement ranging from 33% to 136%. We then try to

optimize Streamcluster using MemProf and obtain an

improvement ranging from 37% to 161%. This means

that Streamcluster is an application for which existing

profilers provide enough information to successfully

optimize the application, but that MemProf is able to

provide details that can be exploited to implement the

optimization slightly more efficiently.

Optimization using existing profilers. Instruction-

oriented profilers allow understanding that most remote

memory accesses are performed in one function (see the

output of the Perf profiler, presented in Table 3). This

function takes two points as parameters (p1 and p2)

6As MemProf only samples a subset of the memory accesses, we

checked this fact via source code inspection.

and computes the distance between them. The remote

accesses are done by the following line of code:

result += (p1.coord[i]-p2.coord[i])*(p1.coord[i]-p2.coord[i]).

An analysis of the assembly code shows that remote

memory accesses are performed on the coord field of

the points. It is nevertheless not possible to know if

all points or only part of them induce remote memory

accesses. Instruction-oriented profilers also allow

understanding that one of the memory nodes is more

loaded than others (i.e., memory accesses targeting this

node have a higher latency).

% of total remote accesses Function

80 dist

18 pspeedy

1 parsec_barrier_wait

Table 3: Functions performing most remote memory ac-

cesses in Streamcluster.

Data-oriented profilers show that less than 1% of the

remote memory accesses are performed on global stat-

ically allocated data. Moreover, they show that threads

remotely access the same memory pages. This informa-

tion is not sufficient to understand if some “points” are

more frequently remotely accessed than others (as was

the case with matrices in the FaceRec application), nor

to understand if threads share data, or if they access dif-

ferent objects placed on the same page.

Several optimizations can be proposed: (i) memory

duplication, (ii) memory migration, or (iii) memory

interleaving. The first one performs poorly if objects are

frequently updated. The second one performs poorly if

objects are simultaneously accessed by various threads.

As we have no information on these two points, and

due to the fact that these two optimizations are complex

to implement, we did not try them. The third possible

optimization makes sense because one node of the

system is saturated. Interleaving the memory allows

spreading the load of memory accesses on all memory

nodes, which avoids saturating nodes. The optimization

works as follows: we interleave all the dynamically

allocated memory pages thanks to the numactl utility

available in recent Linux distributions. With this opti-

mization, Streamcluster performs 80% of its memory

accesses on remote memory (75% before optimizing),

but memory accesses are evenly distributed on all

nodes. This optimization improves performance by re-

spectively 33%, 136% and 71% on Machines A, B and C.

Optimization using MemProf. MemProf shows that

most remote memory accesses are performed on one ar-

ray (see Table 4). Note that a set of objets accounts for

14% of remote memory accesses, but they are not rep-

resented in Table 4, as each object individually accounts

for less than 0.5% of all remote memory accesses. The



analysis of the OEF of the array shows that it is simul-

taneously read and written by many threads. The reason

why MemProf allows pinpointing an array, whereas ex-

isting profilers point out the coord fields is simple: the

coord fields of the different points are pointers to offsets

within a single array (named “block" in Table 4). Mem-

Prof also outputs that the array is allocated on a single

node, and that the latency of memory accesses to this

node is very high (for instance, approximately 700 cy-

cles on Machine B). Consequently, to optimize Stream-

cluster, we chose to interleave the memory allocated for

this array on multiple nodes. This improves performance

by respectively 37%, 161% and 82% for Machines A, B

and C. As expected, this optimization does not decrease

the ratio of remote memory accesses (75%), but it dras-

tically reduces the average memory latency to the satu-

rated node (430 cycles on Machine B). Note that, using

MemProf, the optimization is more efficient: this comes

from the fact that only a subset of the memory is inter-

leaved: the memory that is effectively the target of re-

mote memory accesses.

It is important to note that MemProf also gives infor-

mation about the potential benefits of the memory du-

plication and memory migration techniques discussed

above. Indeed, MemProf shows that the array is fre-

quently updated (i.e., there is a high ratio of write ac-

cesses), which indicates that memory duplication would

probably perform poorly. Moreover, the analysis of the

OEF of the array shows that it is simultaneously accessed

by several threads, which indicates that memory migra-

tion would also probably perform poorly.

% of total remote accesses Object

80.9 float *block(streamcluster.cpp:1852)

4.1 points.p(streamcluster.cpp:1865)

1 [stack]

Table 4: Objects remotely accessed in Streamcluster.

5.4 Psearchy

Psearchy is a parallel file indexer from the Mosbench

benchmark suite [4]. Psearchy only performs 17% of its

memory accesses on remote memory but it is memory

intensive: it exhibits a high ratio of memory accesses

per instruction. We first try to optimize Psearchy using

existing profilers and do not obtain any performance

gain (the only straightforward optimization to implement

yields a 14-29% performance decrease). We then try

to optimize Psearchy using MemProf and obtain a

performance improvement ranging from 6.5% to 8.2%.

Optimization using existing profilers. Instruction-

oriented profilers allow finding the functions that per-

form most remote memory accesses (see the output of

the Perf profiler, presented in Table 5). The first function,

named pass0, aims at parsing the content of the files to

be indexed. The second function is a sort function pro-

vided by the libc library. In both cases, we are not able

to determine which objects are targeted by remote mem-

ory accesses. For instance, when looking at the assem-

bly instructions that induce remote memory accesses in

the pass0 function, we are not able to determine if the

memory accesses are performed on the file buffers, or on

the structures that hold the indexed words. Indeed, the

assembly instructions causing remote memory accesses

are indirectly addressing registers and we are not able to

infer the content of the registers by looking at the code.

% of total remote accesses Function

45 pass0

40 msort_with_tmp

7.7 strcmp

3 lookup

Table 5: Functions performing remote memory accesses

in Psearchy.

Data-oriented profilers show that less than 1% of

the remote memory accesses are performed on global

statically allocated data. As in the case of FaceRec and

Streamcluster, Data-oriented profilers show that threads

access the same memory pages. We do thus consider

the same set of optimizations: (i) memory duplication,

(ii) memory migration, or (iii) memory interleaving. For

the same reason as in Streamcluster, we do not try to

apply the first two optimizations (the analysis performed

with MemProf in the next paragraph validates this

choice). The third possible optimization does not make

sense either. Indeed, contrarily to what we observed

for Streamcluster, no memory node is saturated. As

this optimization is very simple to implement, we

nonetheless implemented it to make sure that it did not

apply. It decreases the performance by respectively

22%, 14% and 29% for Machines A, B and C.

Optimization using MemProf. MemProf points out

that most remote memory accesses are performed on

many different objects. We also observe that these

objects are of three different types. We give in Table 6

the percentage that each type of object accounts for with

respect to the total number of remote memory accesses.

More interestingly, we observe, using the OEFs of all

objects, that each object is accessed by a single thread:

the thread that allocated it. This means that threads

in Psearchy do not share objects, contrarily to what

we observed in FaceRec and Streamcluster7. This

observation is important for several reasons. First, it

implies that memory duplication and memory migration

7As MemProf only samples a subset of the memory accesses, we

checked this fact via source code inspection.



are not suited to Psearchy. Second, it allows under-

standing why threads — although not sharing objects

— all access the same memory pages: the reason is

that all objects are allocated on the same set of memory

pages. Using this information, it is trivial to propose

a very simple optimization: forcing threads to allocate

memory on the node where they run. As threads are not

sharing objects, this should avoid most remote memory

accesses. We implemented this optimization using the

numa_alloc_local function. With this optimization,

less than 2% of memory accesses are performed on

remote objects and the performance increases by respec-

tively 8.2%, 7.2% and 6.5% on Machines A, B and C.

% of total remote accesses Type of object

42 ps.table(pedsort.C:614)

38 tmp(qsort_r+0x86)

10 ps.blocks(pedsort.C:620)

Table 6: Types of the main objects that are remotely ac-

cessed in Psearchy.

5.5 Apache/PHP

Apache/PHP [1] is a widely used Web server stack. We

benchmark it using the Specweb2005 [15] workload.

Because machines B and C have a limited number of

network interfaces, we could not use them to benchmark

the Apache/PHP stack under high load. On machine A,

we observe that the Apache/PHP stack performs 75%

of its memory accesses on remote memory. We first try

to optimize the Apache/PHP stack using the output of

existing profilers. We show that we are not able to pre-

cisely detect the cause of remote memory accesses, and

that, consequently, all our optimizations fail. We then try

to optimize the Apache/PHP stack using MemProf. We

show that MemProf allows precisely pinpointing the two

types of objects responsible for most remote memory

accesses. Using a simple optimization (less than 10 lines

of code), we improve the performance by up to 20%.

Optimization using existing profilers. Instruction-

oriented profilers allow finding the functions that per-

form most remote memory accesses (see the output of the

Perf profiler, presented in Table 7). No function stands

out. The top functions are related to memory operations

(e.g., memcpy copies memory zones) and they are called

from many different places on many different variables.

It is impossible to know what they access in memory.

Data-oriented profilers show that less than 4% of the

remote memory accesses are performed on global stati-

cally allocated data. They also show that many threads

remotely access the same set of memory pages. Finally,

they show that some pages are accessed at different time

% of total remote accesses Function

5.18 memcpy

2.80 _zend_mm_alloc_int

1.72 zend_hash_find

Table 7: Top functions performing remote memory ac-

cesses in the Apache/PHP stack.

intervals by different threads, whereas other pages are si-

multaneously accessed by multiple threads.

Several optimizations can be tried on Apache/PHP,

based on the previously described observations. The first

observation we tried to leverage is the fact that some

pages are accessed at different time intervals by different

threads. Because we did not know which objects are ac-

cessed, we designed an application-agnostic heuristic in

charge of migrating pages. We used the same heuristic as

the one recently described by Blagodurov et al. [3]: ev-

ery 10ms a daemon wakes up and migrates pages. More

precisely, the daemon sets up IBS sampling, “reads

the next sample and migrates the page containing the

memory address in the sample along with K pages in the

application address space that sequentially precede and

follow the accessed page”. In [3], the value of K is 4096.

Unfortunately, using this heuristic, we observed a slight

decrease in performance (around 5%). We tried different

values for K, but without success. This is probably due

to the fact that we use a different software configuration,

with many more threads spawned by Apache.

The second observation we tried to leverage is the

fact that some pages are simultaneously accessed by

multiple threads. As we did not expect Apache threads

to share memory pages (each thread is in charge of

one TCP connection and handles a dedicated HTTP

request stream), we thought there could be a memory

allocation problem similar to the one encountered in

Psearchy, where threads allocate data on a remote

node. We did thus try to use a NUMA-aware memory

allocator, i.e., we replaced all calls to malloc with calls

to numa_alloc_local. This did not impact the perfor-

mance. Although no memory node was overloaded, we

also tried to interleave the memory using the numactl

utility. This optimization did not impact the performance

either. Finally, we thought that the problem could be

due to threads migrating from one memory node to

another one, thus causing remote memory accesses.

Consequently, we decided to pin all Apache threads and

all PHP processes at creation time on the different avail-

able cores, using a round-robin strategy. To pin threads

and processes we used the pthread_set_affinity

function. This optimization had a negligible impact on

performance (2% improvement).

Optimization using MemProf. MemProf points out that



Apache performs most of its remote memory accesses on

two types of objects: variables named apr_pools, that

are all allocated in a single function, and the pointer re-

location table (PLT). The PLT is a special section of bi-

naries mapped in memory. It is used at runtime to store

the virtual address of the library functions used by the bi-

nary, such as the the virtual address of the memcpy func-

tion. Using the OEF of the PLT and of the apr_pools

objects, we found that each of these objects is shared be-

tween a set of threads belonging to a same process. Con-

sequently, we decided to optimize Apache/PHP by pin-

ning all threads belonging to the same Apache processes

on the same node. This modification requires less than

10 lines of code and induces a 19.7% performance im-

provement. This performance improvement is explained

by the fact that the optimization drastically reduces the

ratio of remote memory accesses. Using this optimiza-

tion, the Apache/PHP stack performs 10% of its memory

accesses on remote memory (75% before optimization).

5.6 Overhead

In this section, we briefly study the overhead and accu-

racy of MemProf. Note that our observations apply to

our three test machines.

The main source of overhead introduced by MemProf

is IBS sampling, whose rate is configurable. In order to

obtain precise results, we adjust the rate to collect at least

10k samples of instructions accessing DRAM. For most

of the applications that we have observed, this translates

into generating one IBS instruction every 20k clock cy-

cles, which causes a 5% slowdown. For applications that

run for a short period of time or make few DRAM ac-

cesses, it may be necessary to increase the sampling rate.

In all the applications that we studied, we found it unnec-

essary to go beyond a sampling rate of one IBS interrupt

every 8k cycles, which induces a 20% slowdown.

The costs of IBS processing can be detailed as follows.

Discarding a sample (for instructions that do not access

DRAM) takes 200 cycles while storing a relevant sample

in a per-CPU buffer requires 2k cycles. The storage of

samples is currently not heavily optimized. A batch of

10k samples requires 2MB and we preallocate up to 5%

of the machine RAM for the buffers, which haven proven

acceptable constraints in practice.

The second source of overhead in MemProf is the

tracking of the lifecycles of memory objects and threads

performed by the user library and the kernel module. The

interception of a lifecycle event and its online process-

ing by the user library requires 400 cycles. This track-

ing introduces a negligible slowdown on the applications

that we have studied. The storage of 10k events requires

5.9MB in user buffers, for which we preallocate 20MB

of the machine RAM. The processing and storage over-

heads induced by the kernel-level tracking are signifi-

cantly lower.

Finally, the offline processing (required to build OEFs

and TEFs) for a MemProf trace corresponding to a 1-

minute application run takes approximately 5 seconds.

6 Related work

Several projects have focused on profiling for multicore

machines. Memphis [12] is a profiler for NUMA-related

performance problems. It relies on IBS [5] to find global

statically allocated objects that are accessed remotely.

VTune [7] uses PEBS (an IBS-like mechanism) to find

virtual addresses that are accessed remotely in memory.

MemProf extends these works by also identifying the re-

mote memory accesses to dynamically allocated objects,

files and code sections and by providing detailed tem-

poral information about these accesses. DProf [14] has

been designed to locate kernel structures which induce

poor cache behaviors. DProf offers “views" that help de-

velopers determine the cause of cache misses. MemProf

transposes this work in the context of NUMA-related is-

sues and extends it to application-level profiling. Unlike

DProf, MemProf is able to identify object instances, not

only object types, a useful feature for many applications.

Traditional profilers, such as Oprofile [13] and Perf [19]

are able to leverage the performance counters available

in recent processors to pinpoint the functions and assem-

bly instructions that perform distant accesses. As seen in

Section 5, this information is generally not sufficient to

make an accurate NUMA performance diagnosis.

Several research projects have focused on improving

NUMA APIs. The Linux kernel [11] offers cpusets fa-

cilities that can be used to enforce global memory poli-

cies on an application (e.g., forcing an application to

allocate memory on a limited set of nodes). Goglin et

al. [6] have developed a fast move_pages() system call

in Linux. These works can be leveraged to implement

efficient NUMA optimizations, when they are found to

be relevant for an application.

Several research projects have used heuristics for au-

tomatic mitigation of remote memory accesses. Marathe

et al. [10] proposed an automatic page placement tool,

which deduces a good placement from a partial run of

an application. The tool records memory accesses per-

formed during this partial run and computes the node N

from which each allocated memory page P is accessed

the most. The application is then re-launched with each

page P being allocated from its corresponding node N.

This tool is not adapted to applications with multiple ex-

ecution phases, unlike MemProf. Blagodurov et al. [3]

have developed a NUMA-aware scheduler that tries to in-

crease locality and limit contention on critical hardware

resources (e.g., memory links and caches). They noticed



that, when a thread is migrated to another node, it is best

to also migrate its working set. The number of mem-

ory pages to be migrated was determined experimen-

tally. Several works [8, 18] presented automatic page

duplication and migration policies. The aggressiveness

of a policy can be manually adjusted and has to be care-

fully chosen to avoid excessive page bouncing between

nodes. Thread Clustering [17] is a scheduling technique

that tries to improve cache locality by placing threads

sharing data on cores sharing a cache. It is not NUMA-

aware but, according to its authors, could be easily trans-

formed to improve locality on NUMA machines. Thread

Clustering measures the “similarity” of memory accesses

performed by distinct threads and clusters threads with

high pairwise similarity values. All these works focus

on automatically improving the performance of applica-

tions and rely on carefully tuned heuristics to increase

the locality of data processing. MemProf adopts a com-

plementary approach by offering developers the oppor-

tunity to determine why their applications perform re-

mote memory accesses, in order to implement optimiza-

tions inside their applications. Besides, MemProf could

be used to determine why a given heuristic does not pro-

vide the expected performance improvement with a given

workload or machine, thus helping the design of heuris-

tics that work on a broader range of situations.

7 Conclusion

Remote memory accesses are a major source or ineffi-

ciency on NUMA machines but existing profilers pro-

vide little insight on the execution patterns that induce

them. We have designed and implemented MemProf, a

profiler that outputs precise and configurable views of in-

teractions between threads and memory objects. Our ex-

perience with MemProf on four applications shows that

it provides programmers with powerful features with re-

spect to the existing tools for performance diagnostics on

NUMA multicore machines. We find that MemProf is

particularly helpful for applications that exhibit a behav-

ior with at least one of the following characteristics: (i)

many object types and/or instances with arbitrary lifes-

pans (and possibly diverse popularities or access pat-

terns), (ii) changing access patterns over time, and (iii)

custom memory management routines.

MemProf has two main limitations that we plan to ad-

dress in our future work. First, it relies on programmers

to establish a diagnosis and devise a solution. Second,

MemProf is mostly useful for applications that are not

cache efficient and that perform a high number of mem-

ory accesses. We believe that a more comprehensive pro-

filer should jointly consider the impact of both cache and

main memory access patterns, in order to determine the

right balance between possibly conflicting optimizations

for theses two aspects.
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