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Abstract

Many applications (routers, traffic monitors, firewalls,

etc.) need to send and receive packets at line rate even on

very fast links. In this paper we present netmap, a novel

framework that enables commodity operating systems

to handle the millions of packets per seconds traversing

1..10 Gbit/s links, without requiring custom hardware or

changes to applications.

In building netmap, we identified and successfully re-

duced or removed three main packet processing costs:

per-packet dynamic memory allocations, removed by

preallocating resources; system call overheads, amor-

tized over large batches; and memory copies, elimi-

nated by sharing buffers and metadata between kernel

and userspace, while still protecting access to device reg-

isters and other kernel memory areas. Separately, some

of these techniques have been used in the past. The nov-

elty in our proposal is not only that we exceed the perfor-

mance of most of previous work, but also that we provide

an architecture that is tightly integrated with existing op-

erating system primitives, not tied to specific hardware,

and easy to use and maintain.

netmap has been implemented in FreeBSD and Linux

for several 1 and 10 Gbit/s network adapters. In our pro-

totype, a single core running at 900 MHz can send or

receive 14.88 Mpps (the peak packet rate on 10 Gbit/s

links). This is more than 20 times faster than conven-

tional APIs. Large speedups (5x and more) are also

achieved on user-space Click and other packet forward-

ing applications using a libpcap emulation library run-

ning on top of netmap.

1 Introduction

General purpose OSes provide a rich and flexible envi-

ronment for running, among others, many packet pro-

cessing and network monitoring and testing tasks. The
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high rate raw packet I/O required by these applica-

tions is not the intended target of general purpose OSes.

Raw sockets, the Berkeley Packet Filter [14] (BPF), the

AF SOCKET family, and equivalent APIs have been

used to build all sorts of network monitors, traffic gen-

erators, and generic routing systems. Performance, how-

ever, is inadequate for the millions of packets per sec-

ond (pps) that can be present on 1..10 Gbit/s links. In

search of better performance, some systems (see Sec-

tion 3) either run completely in the kernel, or bypass the

device driver and the entire network stack by exposing

the NIC’s data structures to user space applications. Ef-

ficient as they may be, many of these approaches depend

on specific hardware features, give unprotected access to

hardware, or are poorly integrated with the existing OS

primitives.

The netmap framework presented in this paper com-

bines and extends some of the ideas presented in the

past trying to address their shortcomings. Besides giving

huge speed improvements, netmap does not depend on

specific hardware1, has been fully integrated in FreeBSD

and Linux with minimal modifications, and supports un-

modified libpcap clients through a compatibility library.

One metric to evaluate our framework is performance:

in our implementation, moving one packet between the

wire and the userspace application has an amortized cost

of less than 70 CPU clock cycles, which is at least one

order of magnitude faster than standard APIs. In other

words, a single core running at 900 MHz can source or

sink the 14.88 Mpps achievable on a 10 Gbit/s link. The

same core running at 150 MHz is well above the capacity

of a 1 Gbit/s link.

Other, equally important, metrics are safety of op-

eration and ease of use. netmap clients cannot possi-

bly crash the system, because device registers and crit-

ical kernel memory regions are not exposed to clients,

1netmap can give isolation even without hardware mechanisms such

as IOMMU or VMDq, and is orthogonal to hardware offloading and

virtualization mechanisms (checksum, TSO, LRO, VMDc, etc.)



and they cannot inject bogus memory pointers in the

kernel (these are often vulnerabilities of other schemes

based on shared memory). At the same time, netmap

uses an extremely simple data model well suited to zero-

copy packet forwarding; supports multi-queue adapters;

and uses standard system calls (select()/poll()) for

event notification. All this makes it very easy to port ex-

isting applications to the new mechanism, and to write

new ones that make effective use of the netmap API.

In this paper we will focus on the architecture and fea-

tures of netmap, and on its core performance. In a re-

lated Infocom paper [19] we address a different prob-

lem: (how) can applications make good use of a fast I/O

subsystem such as netmap ? [19] shows that significant

performance bottlenecks may emerge in the applications

themselves, although in some cases we can remove them

and make good use of the new infrastructure.

In the rest of this paper, Section 2 gives some back-

ground on current network stack architecture and per-

formance. Section 3 presents related work, illustrating

some of the techniques that netmap integrates and ex-

tends. Section 4 describes netmap in detail. Performance

data are presented in Section 5. Finally, Section 6 dis-

cusses open issues and our plans for future work.

2 Background

There has always been interest in using general pur-

pose hardware and Operating Systems to run applica-

tions such as software switches [15], routers [6, 4, 5],

firewalls, traffic monitors, intrusion detection systems, or

traffic generators. While providing a convenient develop-

ment and runtime environment, such OSes normally do

not offer efficient mechanisms to access raw packet data

at high packet rates. This Section illustrates the organi-

zation of the network stack in general purpose OSes and

shows the processing costs of the various stages.

2.1 NIC data structures and operation

Network adapters (NICs) normally manage incoming

and outgoing packets through circular queues (rings) of

buffer descriptors, as in Figure 1. Each slot in the ring

contains the length and physical address of the buffer.

CPU-accessible registers in the NIC indicate the portion

of the ring available for transmission or reception.

On reception, incoming packets are stored in the next

available buffer (possibly split in multiple fragments),

and length/status information is written back to the slot

to indicate the availability of new data. Interrupts notify

the CPU of these events. On the transmit side, the NIC

expects the OS to fill buffers with data to be sent. The

request to send new packets is issued by writing into the

NIC ring

phy_addr
len

head

tail

NIC registers Buffers mbufs

...
v_addr

Hardware
Operating system

Figure 1: Typical NIC’s data structures and their relation

with the OS data structures.

registers of the NIC, which in turn starts sending packets

marked as available in the TX ring.

At high packet rates, interrupt processing can be ex-

pensive and possibly lead to the so-called “receive live-

lock” [16], or inability to perform any useful work above

a certain load. Polling device drivers [10, 16, 18] and

the hardware interrupt mitigation implemented in recent

NICs solve this problem.

Some high speed NICs support multiple transmit and

receive rings. This helps spreading the load on multi-

ple CPU cores, eases on-NIC traffic filtering, and helps

decoupling virtual machines sharing the same hardware.

2.2 Kernel and user APIs

The OS maintains shadow copies of the NIC’s data

structures. Buffers are linked to OS-specific, device-

independent containers (mbufs [22] or equivalent struc-

tures such as sk buffs and NdisPackets). These con-

tainers include large amounts of metadata about each

packet: size, source or destination interface, and at-

tributes and flags to indicate how the buffers should be

processed by the NIC and the OS.

Driver/OS: The software interface between device

drivers and the OS usually assumes that packets, in both

directions, can be split into an arbitrary number of frag-

ments; both the device drivers and the host stack must be

prepared to handle the fragmentation. The same API also

expects that subsystems may retain packets for deferred

processing, hence buffers and metadata cannot be simply

passed by reference during function calls, but they must

be copied or reference-counted. This flexibility is paid

with a significant overhead at runtime.

These API contracts, perhaps appropriate 20-30 years

ago when they were designed, are far too expensive for

today’s systems. The cost of allocating, managing and

navigating through buffer chains often exceeds that of

linearizing their content, even when producers do indeed

generate fragmented packets (e.g. TCP when prepending

headers to data from the socket buffers).



Raw packet I/O: The standard APIs to read/write raw

packets for user programs require at least one memory

copy to move data and metadata between kernel and user

space, and one system call per packet (or, in the best

cases, per batch of packets). Typical approaches involve

opening a socket or a Berkeley Packet Filter [14] device,

and doing I/O through it using send()/recv() or spe-

cialized ioctl() functions.

2.3 Case study: FreeBSD sendto()

To evaluate how time is spent in the processing of a

packet, we have instrumented the sendto() system call

in FreeBSD2 so that we can force an early return from

the system call at different depths, and estimate the time

spent in the various layers of the network stack. Figure 2

shows the results when a test program loops around a

sendto() on a bound UDP socket. In the table, “time”

is the average time per packet when the return point is at

the beginning of the function listed on the row; “delta” is

the difference between adjacent rows, and indicates the

time spent at each stage of the processing chain. As an

example, the userspace code takes 8 ns per iteration, en-

tering the kernel consumes an extra 96 ns, and so on.

As we can see, we find several functions at all levels

in the stack consuming a significant share of the total ex-

ecution time. Any network I/O (be it through a TCP or

raw socket, or a BPF writer) has to go through several

expensive layers. Of course we cannot avoid the system

call; the initial mbuf construction/data copy is expensive,

and so are the route and header setup, and (surprisingly)

the MAC header setup. Finally, it takes a long time to

translate mbufs and metadata into the NIC format. Lo-

cal optimizations (e.g. caching routes and headers in-

stead of rebuilding them every time) can give modest im-

provements, but we need radical changes at all layers to

gain the tenfold speedup necessary to work at line rate

on 10 Gbit/s interfaces.

What we show in this paper is how fast can we become

if we take such a radical approach, while still enforcing

safety checks on user supplied data through a system call,

and providing a libpcap-compatible API.

3 Related (and unrelated) work

It is useful at this point to present some techniques pro-

posed in the literature, or used in commercial systems, to

improve packet processing speeds. This will be instru-

mental in understanding their advantages and limitations,

and to show how our framework can use them.

Socket APIs: The Berkeley Packet Filter, or BPF [14],

is one of the most popular systems for direct access to

2We expect similar numbers on Linux and Windows.

File Function/description time delta

ns ns

user program sendto 8 96

system call

uipc syscalls.c sys sendto 104

uipc syscalls.c sendit 111

uipc syscalls.c kern sendit 118

uipc socket.c sosend —

uipc socket.c sosend dgram 146 137

sockbuf locking, mbuf

allocation, copyin

udp usrreq.c udp send 273

udp usrreq.c udp output 273 57

ip output.c ip output 330 198

route lookup, ip header

setup

if ethersubr.c ether output 528 162

MAC header lookup and

copy, loopback

if ethersubr.c ether output frame 690

ixgbe.c ixgbe mq start 698

ixgbe.c ixgbe mq start locked 720

ixgbe.c ixgbe xmit 730 220

mbuf mangling, device

programming

– on wire 950

Figure 2: The path and execution times for sendto() on

a recent FreeBSD HEAD 64-bit, i7-870 at 2.93 GHz +

Turboboost, Intel 10 Gbit NIC and ixgbe driver. Mea-

surements done with a single process issuing sendto()

calls. Values have a 5% tolerance and are averaged over

multiple 5s tests.

raw packet data. BPF taps into the data path of a net-

work device driver, and dispatches a copy of each sent or

received packet to a file descriptor, from which userspace

processes can read or write. Linux has a similar mech-

anism through the AF PACKET socket family. BPF can

coexist with regular traffic from/to the system, although

usually BPF clients put the card in promiscuous mode,

causing large amounts of traffic to be delivered to the

host stack (and immediately dropped).

Packet filter hooks: Netgraph (FreeBSD), Netfil-

ter (Linux), and Ndis Miniport drivers (Windows) are

in-kernel mechanisms used when packet duplication is

not necessary, and instead the application (e.g. a fire-

wall) must be interposed in the packet processing chain.

These hooks intercept traffic from/to the driver and pass

it to processing modules without additional data copies.

The packet filter hooks rely on the standard mbuf/sk buff

based packet representation.

Direct buffer access: One easy way to remove the

data copies involved in the kernel-userland transition



is to run the application code directly within the ker-

nel. Kernel-mode Click [10] supports this approach [4].

Click permits an easy construction of packet process-

ing chains through the composition of modules, some of

which support fast access to the NIC (even though they

retain an sk buff-based packet representation).

The kernel environment is however very constrained

and fragile, so a better choice is to expose packet buffers

to userspace. Examples include PF RING [2] and Linux

PACKET MMAP, which export to userspace clients a

shared memory region containing multiple pre-allocated

packet buffers. The kernel is in charge of copying data

between sk buffs and the shared buffers, so that no cus-

tom device drivers are needed. This amortizes the system

call costs over batches of packets, but retains the data

copy and sk buff management overhead. Possibly (but

we do not have detailed documentation) this is also how

the “Windows Registered I/O API” (RIO) [20] works.

Better performance can be achieved by running the

full stack, down to NIC access, in userspace. This re-

quires custom device drivers, and poses some risks be-

cause the NIC’s DMA engine can write to arbitrary mem-

ory addresses (unless limited by hardware mechanisms

such as IOMMUs), so a misbehaving client can poten-

tially trash data anywhere in the system. Examples in this

category include UIO-IXGBE [11], PF RING-DNA [3],

and commercial solutions including Intel’s DPDK [8]

and SolarFlare’s OpenOnload [21].

Van Jacobson’s NetChannels [9] have some similar-

ities to our work, at least on the techniques used to

accelerate performance: remove sk bufs, avoid packet

processing in interrupt handlers, and map buffers to

userspace where suitable libraries implement the whole

protocol processing. The only documentation avail-

able [9] shows interesting speedups, though subsequent

attempts to implement the same ideas in Linux (see [13])

were considered unsatisfactory, presumably because of

additional constraints introduced trying to remain 100%

compatible with the existing kernel network architecture.

The PacketShader [5] I/O engine (PSIOE) is another

close relative to our proposal, especially in terms of per-

formance. PSIOE uses a custom device driver that re-

places the sk buff-based API with a simpler one, using

preallocated buffers. Custom ioctl()s are used to syn-

chronize the kernel with userspace applications, and mul-

tiple packets are passed up and down through a mem-

ory area shared between the kernel and the application.

The kernel is in charge of copying packet data between

the shared memory and packet buffers. Unlike netmap,

PSIOE only supports one specific NIC, and does not sup-

port select()/poll(), requiring modifications to ap-

plications in order to let them use the new API.

Hardware solutions: Some hardware has been de-

signed specifically to support high speed packet cap-

ture, or possibly generation, together with special fea-

tures such as timestamping, filtering, forwarding. Usu-

ally these cards come with custom device drivers and

user libraries to access the hardware. As an example,

DAG [1, 7] cards are FPGA-based devices for wire-rate

packet capture and precise timestamping, using fast on-

board memory for the capture buffers (at the time they

were introduced, typical I/O buses were unable to sustain

line rate at 1 and 10 Gbit/s). NetFPGA [12] is another ex-

ample of an FPGA-based card where the firmware of the

card can be programmed to implement specific functions

directly in the NIC, offloading some work from the CPU.

3.1 Unrelated work

A lot of commercial interest, in high speed network-

ing, goes to TCP acceleration and hardware virtualiza-

tion, so it is important to clarify where netmap stands

in this respect. netmap is a framework to reduce the

cost of moving traffic between the hardware and the

host stack. Popular hardware features related to TCP

acceleration, such as hardware checksumming or even

encryption, Tx Segmentation Offloading, Large Receive

Offloading, are completely orthogonal to our proposal:

they reduce some processing in the host stack but do not

address the communication with the device. Similarly or-

thogonal are the features relates to virtualization, such as

support for multiple hardware queues and the ability to

assign traffic to specific queues (VMDq) and/or queues

to specific virtual machines (VMDc, SR-IOV). We ex-

pect to run netmap within virtual machines, although it

might be worthwhile (but not the focus of this paper)

to explore how the ideas used in netmap could be used

within a hypervisor to help the virtualization of network

hardware.

4 Netmap

The previous survey shows that most related proposals

have identified, and tried to remove, the following high

cost operations in packet processing: data copying, meta-

data management, and system call overhead.

Our framework, called netmap, is a system to give user

space applications very fast access to network packets,

both on the receive and the transmit side, and including

those from/to the host stack. Efficiency does not come at

the expense of safety of operation: potentially dangerous

actions such as programming the NIC are validated by

the OS, which also enforces memory protection. Also, a

distinctive feature of netmap is the attempt to design and

implement an API that is simple to use, tightly integrated

with existing OS mechanisms, and not tied to a specific

device or hardware features.



netmap achieves its high performance through several

techniques:

• a lightweight metadata representation which is com-

pact, easy to use, and hides device-specific fea-

tures. Also, the representation supports processing

of large number of packets in each system call, thus

amortizing its cost;

• linear, fixed size packet buffers that are preallocated

when the device is opened, thus saving the cost of

per-packet allocations and deallocations;

• removal of data-copy costs by granting applications

direct, protected access to the packet buffers. The

same mechanism also supports zero-copy transfer

of packets between interfaces;

• support of useful hardware features (such as multi-

ple hardware queues).

Overall, we use each part of the system for the task it is

best suited to: the NIC to move data quickly between the

network and memory, and the OS to enforce protection

and provide support for synchronization.

host

stack

NIC rings

netmap API

Application

netmap

rings

network adapter

Figure 3: In netmap mode, the NIC rings are discon-

nected from the host network stack, and exchange pack-

ets through the netmap API. Two additional netmap rings

let the application talk to the host stack.

At a very high level, when a program requests to put

an interface in netmap mode, the NIC is partially dis-

connected (see Figure 3) from the host protocol stack.

The program gains the ability to exchange packets with

the NIC and (separately) with the host stack, through

circular queues of buffers (netmap rings) implemented

in shared memory. Traditional OS primitives such as

select()/poll() are used for synchronization. Apart

from the disconnection in the data path, the operating

system is unaware of the change so it still continues to

use and manage the interface as during regular operation.

indexflags len
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num_rings
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pkt_buf

pkt_buf
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phy_addr
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Figure 4: User view of the shared memory area exported

by netmap.

4.1 Data structures

The key component in the netmap architecture are the

data structures shown in Figure 4. They are designed

to provide the following features: 1) reduced/amortized

per-packet overheads; 2) efficient forwarding between

interfaces; 3) efficient communication between the NIC

and the host stack; and 4) support for multi-queue

adapters and multi core systems.

netmap supports these features by associating to each

interface three types of user-visible objects, shown in

Figure 4: packet buffers, netmap rings, and netmap if

descriptors. All objects for all netmap-enabled interfaces

in the system reside in the same memory region, allo-

cated by the kernel in a non-pageable area, and shared

by all user processes. The use of a single region is con-

venient to support zero-copy forwarding between inter-

faces, but it is trivial to modify the code so that different

interfaces or groups of interfaces use separate memory

regions, gaining better isolation between clients.

Since the shared memory is mapped by processes and

kernel threads in different virtual address spaces, any

memory reference contained in that region must use rel-

ative addresses, so that pointers can be calculated in a

position-independent way. The solution to this problem

is to implement references as offsets between the parent

and child data structures.

Packet buffers have a fixed size (2 Kbytes in the cur-

rent implementation) and are shared by the NICs and

user processes. Each buffer is identified by a unique in-

dex, that can be easily translated into a virtual address by

user processes or by the kernel, and into a physical ad-

dress used by the NIC’s DMA engines. Buffers for all

netmap rings are preallocated when the interface is put

into netmap mode, so that during network I/O there is

never the need to allocate them. The metadata describ-

ing the buffer (index, data length, some flags) are stored

into slots that are part of the netmap rings described next.

Each buffer is referenced by a netmap ring and by the



corresponding hardware ring.

A netmap ring is a device-independent replica of the

circular queue implemented by the NIC, and includes:

• ring size, the number of slots in the ring;

• cur, the current read or write position in the ring;

• avail, the number of available buffers (received

packets in RX rings, empty slots in TX rings);

• buf ofs, the offset between the ring and the begin-

ning of the array of (fixed-size) packet buffers;

• slots[], an array with ring size entries. Each

slot contains the index of the corresponding packet

buffer, the length of the packet, and some flags used

to request special operations on the buffer.

Finally, a netmap if contains read-only information de-

scribing the interface, such as the number of rings and an

array with the memory offsets between the netmap if

and each netmap ring associated to the interface (once

again, offsets are used to make addressing position-

independent).

4.1.1 Data ownership and access rules

The netmap data structures are shared between the ker-

nel and userspace, but the ownership of the various data

areas is well defined, so that there are no races. In partic-

ular, the netmap ring is always owned by the userspace

application except during the execution of a system call,

when it is updated by the kernel code still in the context

of the user process. Interrupt handlers and other kernel

threads never touch a netmap ring.

Packet buffers between cur and cur+avail-1 are

owned by the userspace application, whereas the remain-

ing buffers are owned by the kernel (actually, only the

NIC accesses these buffers). The boundary between

these two regions is updated during system calls.

4.2 The netmap API

Programs put an interface in netmap mode by opening

the special device /dev/netmap and issuing an

ioctl(.., NIOCREG, arg)

on the file descriptor. The argument contains the inter-

face name, and optionally the indication of which rings

we want to control through this file descriptor (see Sec-

tion 4.2.2). On success, the function returns the size of

the shared memory region where all data structures are

located, and the offset of the netmap if within the re-

gion. A subsequent mmap() on the file descriptor makes

the memory accessible in the process’ address space.

Once the file descriptor is bound to one interface and

its ring(s), two more ioctl()s support the transmission

and reception of packets. In particular, transmissions re-

quire the program to fill up to avail buffers in the TX

ring, starting from slot cur (packet lengths are written to

the len field of the slot), and then issue an

ioctl(.., NIOCTXSYNC)

to tell the OS about the new packets to send. This system

call passes the information to the kernel, and on return

it updates the avail field in the netmap ring, reporting

slots that have become available due to the completion of

previous transmissions.

On the receive side, programs should first issue an

ioctl(.., NIOCRXSYNC)

to ask the OS how many packets are available for read-

ing; then their lengths and payloads are immediately

available through the slots (starting from cur) in the

netmap ring.

Both NIOC*SYNC ioctl()s are non blocking, in-

volve no data copying (except from the synchronization

of the slots in the netmap and hardware rings), and can

deal with multiple packets at once. These features are

essential to reduce the per-packet overhead to very small

values. The in-kernel part of these system calls does the

following:

• validates the cur/avail fields and the content of

the slots involved (lengths and buffer indexes, both

in the netmap and hardware rings);

• synchronizes the content of the slots between the

netmap and the hardware rings, and issues com-

mands to the NIC to advertise new packets to send

or newly available receive buffers;

• updates the avail field in the netmap ring.

The amount of work in the kernel is minimal, and the

checks performed make sure that the user-supplied data

in the shared data structure do not cause system crashes.

4.2.1 Blocking primitives

Blocking I/O is supported through the select() and

poll() system calls. Netmap file descriptors can be

passed to these functions, and are reported as ready (wak-

ing up the caller) when avail > 0. Before returning

from a select()/poll(), the system updates the sta-

tus of the rings, same as in the NIOC*SYNC ioctls. This

way, applications spinning on an eventloop require only

one system call per iteration.

4.2.2 Multi-queue interfaces

For cards with multiple ring pairs, file descriptors (and

the related ioctl() and poll()) can be configured in

one of two modes, chosen through the ring id field in



the argument of the NIOCREG ioctl(). In the de-

fault mode, the file descriptor controls all rings, caus-

ing the kernel to check for available buffers on any of

them. In the alternate mode, a file descriptor is asso-

ciated to a single TX/RX ring pair. This way multi-

ple threads/processes can create separate file descriptors,

bind them to different ring pairs, and operate indepen-

dently on the card without interference or need for syn-

chronization. Binding a thread to a specific core just re-

quires a standard OS system call, setaffinity(), with-

out the need of any new mechanism.

4.2.3 Example of use

The example below (the core of the packet generator

used in Section 5) shows the simplicity of use of the

netmap API. Apart from a few macros used to navigate

through the data structures in the shared memory region,

netmap clients do not need any library to use the system,

and the code is extremely compact and readable.

fds.fd = open("/dev/netmap", O_RDWR);

strcpy(nmr.nm_name, "ix0");
ioctl(fds.fd, NIOCREG, &nmr);
p = mmap(0, nmr.memsize, fds.fd);

nifp = NETMAP_IF(p, nmr.offset);
fds.events = POLLOUT;

for (;;) {
poll(fds, 1, -1);

for (r = 0; r < nmr.num_queues; r++) {
ring = NETMAP_TXRING(nifp, r);
while (ring->avail-- > 0) {

i = ring->cur;
buf = NETMAP_BUF(ring, ring->slot[i].buf_index);

... store the payload into buf ...
ring->slot[i].len = ... // set packet length
ring->cur = NETMAP_NEXT(ring, i);

}
}

}

4.3 Talking to the host stack

Even in netmap mode, the network stack in the OS is

still in charge of controlling the interface (through ifcon-

fig and other functions), and will generate (and expect)

traffic to/from the interface. This traffic is handled with

an additional pair of netmap rings, which can be bound

to a netmap file descriptor with a NIOCREG call.

An NIOCTXSYNC on one of these rings encapsulates

buffers into mbufs and then passes them to the host stack,

as if they were coming from the physical interface. Pack-

ets coming from the host stack instead are queued to

the “host stack” netmap ring, and made available to the

netmap client on subsequent NIOCRXSYNCs.

It is then a responsibility of the netmap client to

make sure that packets are properly passed between the

rings connected to the host stack and those connected

to the NIC. Implementing this feature is straightforward,

possibly even using the zero-copy technique shown in

Section 4.5. This is also an ideal opportunity to im-

plement functions such as firewalls, traffic shapers and

NAT boxes, which are normally attached to packet filter

hooks.

4.4 Safety considerations

The sharing of memory between the kernel and the mul-

tiple user processes who can open /dev/netmap poses

the question of what safety implications exist in the us-

age of the framework.

Processes using netmap, even if misbehaving, can-

not cause the kernel to crash, unlike many other high-

performance packet I/O systems (e.g. UIO-IXGBE,

PF RING-DNA, in-kernel Click). In fact, the shared

memory area does not contain critical kernel memory

regions, and buffer indexes and lengths are always val-

idated by the kernel before being used.

A misbehaving process can however corrupt some-

one else’s netmap rings or packet buffers. The easy

cure for this problem is to implement a separate mem-

ory region for each ring, so clients cannot interfere. This

is straightforward in case of hardware multiqueues, or

it can be trivially simulated in software without data

copies. These solutions will be explored in future work.

4.5 Zero-copy packet forwarding

Having all buffers for all interfaces in the same memory

region, zero-copy packet forwarding between interfaces

only requires to swap the buffers indexes between the

receive slot on the incoming interface and the transmit

slot on the outgoing interface, and update the length and

flags fields accordingly:

...

src = &src_nifp->slot[i]; /* locate src and dst slots */
dst = &dst_nifp->slot[j];
/* swap the buffers */

tmp = dst->buf_index;
dst->buf_index = src->buf_index;

src->buf_index = tmp;
/* update length and flags */

dst->len = src->len;
/* tell kernel to update addresses in the NIC rings */
dst->flags = src->flags = BUF_CHANGED;

...

The swap enqueues the packet on the output interface,

and at the same time refills the input ring with an empty

buffer without the need to involve the memory allocator.

4.6 libpcap compatibility

An API is worth little if there are no applications that use

it, and a significant obstacle to the deployment of new

APIs is the need to adapt existing code to them.

Following a common approach to address compati-

bility problems, one of the first things we wrote on top



of netmap was a small library that maps libpcap calls

into netmap calls. The task was heavily simplified by

the fact that netmap uses standard synchronization prim-

itives, so we just needed to map the read/write func-

tions (pcap dispatch()/pcap inject()) into equiv-

alent netmap calls – about 20 lines of code in total.

4.7 Implementation

In the design and development of netmap, a fair amount

of work has been put into making the system maintain-

able and performant. The current version, included in

FreeBSD, consists of about 2000 lines of code for sys-

tem call (ioctl, select/poll) and driver support. There is

no need for a userspace library: a small C header (200

lines) defines all the structures, prototypes and macros

used by netmap clients. We have recently completed a

Linux version, which uses the same code plus a small

wrapper to map certain FreeBSD kernel functions into

their Linux equivalents.

To keep device drivers modifications small (a must, if

we want the API to be implemented on new hardware),

most of the functionalities are implemented in common

code, and each driver only needs to implement two func-

tions for the core of the NIOC*SYNC routines, one func-

tion to reinitialize the rings in netmap mode, and one

function to export device driver locks to the common

code. This reduces individual driver changes, mostly me-

chanical, to about 500 lines each, (a typical device driver

has 4k .. 10k lines of code). netmap support is currently

available for the Intel 10 Gbit/s adapters (ixgbe driver),

and for various 1 Gbit/s adapters (Intel, RealTek, nvidia).

In the netmap architecture, device drivers do most of

their work (which boils down to synchronizing the NIC

and netmap rings) in the context of the userspace pro-

cess, during the execution of a system call. This im-

proves cache locality, simplifies resource management

(e.g. binding processes to specific cores), and makes the

system more controllable and robust, as we do not need

to worry of executing too much code in non-interruptible

contexts. We generally modify NIC drivers so that the

interrupt service routine does no work except from wak-

ing up any sleeping process. This means that interrupt

mitigation delays are directly passed to user processes.

Some trivial optimizations also have huge returns in

terms of performance. As an example, we don’t reclaim

transmitted buffers or look for more incoming packets if

a system call is invoked with avail > 0. This helps

applications that unnecessarily invoke system calls on

every packet. Two more optimizations (pushing out any

packets queued for transmission even if POLLOUT is not

specified; and updating a timestamp within the netmap

ring before poll() returns) reduce from 3 to 1 the num-

ber of system calls in each iteration of the typical event

loop – once again a significant performance enhance-

ment for certain applications.

To date we have not tried optimizations related to the

use of prefetch instructions, or data placements to im-

prove cache behaviour.

5 Performance analysis

We discuss the performance of our framework by first

analysing its behaviour for simple I/O functions, and

then looking at more complex applications running on

top of netmap. Before presenting our results, it is impor-

tant to define the test conditions in detail.

5.1 Performance metrics

The processing of a packet involves multiple subsys-

tems: CPU pipelines, caches, memory and I/O buses. In-

teresting applications are CPU-bound, so we will focus

our measurements on the CPU costs. Specifically, we

will measure the work (system costs) performed to move

packets between the application and the network card.

This is precisely the task that netmap or other packet-I/O

APIs are in charge of. We can split these costs in two

components:

i) Per-byte costs are the CPU cycles consumed to move

data from/to the NIC’s buffers (for reading or writing a

packet). This component can be equal to zero in some

cases: as an example, netmap exports NIC buffers to the

application, so it has no per-byte system costs. Other

APIs, such as the socket API, impose a data copy to move

traffic from/to userspace, and this has a per-byte CPU

cost that, taking into account the width of memory buses

and the ratio between CPU and memory bus clocks, can

be in the range of 0.25 to 2 clock cycles per byte.

ii) Per-packet costs have multiple sources. At the very

least, the CPU must update a slot in the NIC ring for

each packet. Additionally, depending on the software

architecture, each packet might require additional work,

such as memory allocations, system calls, programming

the NIC’s registers, updating statistics and the like. In

some cases, part of the operations in the second set can

be removed or amortized over multiple packets.

Given that in most cases (and certainly this is true for

netmap) per-packet costs are the dominating component,

the most challenging situation in terms of system load is

when the link is traversed by the smallest possible pack-

ets. For this reason, we run most of our tests with 64 byte

packets (60+4 CRC).

Of course, in order to exercise the system and mea-

sure its performance we need to run some test code,

but we want it to be as simple as possible in order to

reduce the interference on the measurement. Our ini-

tial tests then use two very simple programs that make



application costs almost negligible: a packet generator

which streams pre-generated packets, and a packet re-

ceiver which just counts incoming packets.

5.2 Test equipment

We have run most of our experiments on systems

equipped with an i7-870 4-core CPU at 2.93 GHz

(3.2 GHz with turbo-boost), memory running at

1.33 GHz, and a dual port 10 Gbit/s card based on the

Intel 82599 NIC. The numbers reported in this paper

refer to the netmap version in FreeBSD HEAD/amd64

as of April 2012. Experiments have been run using di-

rectly connected cards on two similar systems. Results

are highly repeatable (within 2% or less) so we do not

report confidence intervals in the tables and graphs.

netmap is extremely efficient so it saturates a 10 Gbit/s

interface even at the maximum packet rate, and we need

to run the system at reduced clock speeds to determine

the performance limits and the effect of code changes.

Our systems can be clocked at different frequencies,

taken from a discrete set of values. Nominally, most of

them are multiples of 150 MHz, but we do not know how

precise the clock speeds are, nor the relation between

CPU and memory/bus clock speeds.

The transmit speed (in packets per second) has been

measured with a packet generator similar to the one in

Section 4.2.3. The packet size can be configured at run-

time, as well as the number of queues and threads/cores

used to send/receive traffic. Packets are prepared in ad-

vance so that we can run the tests with close to zero per-

byte costs. The test program loops around a poll(), send-

ing at most B packets (batch size) per ring at each round.

On the receive side we use a similar program, except that

this time we poll for read events and only count packets.

5.3 Transmit speed versus clock rate

As a first experiment we ran the generator with variable

clock speeds and number of cores, using a large batch

size so that the system call cost is almost negligible. By

lowering the clock frequency we can determine the point

where the system becomes CPU bound, and estimate the

(amortized) number of cycles spent for each packet.

Figure 5 show the results using 1..4 cores and

an equivalent number of rings, with 64-byte packets.

Throughput scales quite well with clock speed, reach-

ing the maximum line rate near 900 MHz with 1 core.

This corresponds to 60-65 cycles/packet, a value which

is reasonably in line with our expectations. In fact, in this

particular test, the per-packet work is limited to validat-

ing the content of the slot in the netmap ring and updating

the corresponding slot in the NIC ring. The cost of cache

misses (which do exist, especially on the NIC ring) is
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Figure 5: Netmap transmit performance with 64-byte

packets, variable clock rates and number of cores, com-

pared to pktgen (a specialised, in-kernel generator avail-

able on linux, peaking at about 4 Mpps) and a netsend

(FreeBSD userspace, peaking at 1.05 Mpps).

amortized among all descriptors that fit into a cache line,

and other costs (such as reading/writing the NIC’s regis-

ters) are amortized over the entire batch.

Once the system reaches line rate, increasing the clock

speed reduces the total CPU usage because the generator

sleeps until an interrupt from the NIC reports the avail-

ability of new buffers. The phenomenon is not linear and

depends on the duration of the interrupt mitigation in-

tervals. With one core we measured 100% CPU load at

900 MHz, 80% at 1.2 GHz and 55% at full speed.

Scaling with multiple cores is reasonably good, but

the numbers are not particularly interesting because there

are no significant contention points in this type of ex-

periment, and we only had a small number of operating

points (1..4 cores, 150,300, 450 Mhz) before reaching

link saturation.

Just for reference, Figure 5 also reports the maximum

throughput of two packet generators representative of the

performance achievable using standard APIs. The line

at the bottom represents netsend, a FreeBSD userspace

application running on top of a raw socket. netsend

peaks at 1.05 Mpps at the highest clock speed. Figure 2

details how the 950 ns/pkt are spent.

The other line in the graph is pktgen, an in-kernel

packet generator available in Linux, which reaches al-

most 4 Mpps at maximum clock speed, and 2 Mpps at

1.2 GHz (the minimum speed we could set in Linux).

Here we do not have a detailed profile of how time is

spent, but the similarity of the device drivers and the ar-

chitecture of the application suggest that most of the cost

is in the device driver itself.

The speed vs. clock results for receive are similar to

the transmit ones. netmap can do line rate with 1 core at

900 MHz, at least for packet sizes multiple of 64 bytes.
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Figure 6: Actual transmit and receive speed with variable

packet sizes (excluding Ethernet CRC). The top curve is

the transmit rate, the bottom curve is the receive rate. See

Section 5.4 for explanations.

5.4 Speed versus packet size

The previous experiments used minimum-size packets,

which is the most critical situation in terms of per-packet

overhead. 64-byte packets match very well the bus

widths along the various path in the system and this helps

the performance of the system. We then checked whether

varying the packet size has an impact on the performance

of the system, both on the transmit and the receive side.

Transmit speeds with variable packet sizes exhibit the

expected 1/size behaviour, as shown by the upper curve

in Figure 6. The receive side, instead, shows some sur-

prises as indicated by the bottom curve in Figure 6. The

maximum rate, irrespective of CPU speed, is achieved

only for packet sizes multiples of 64 (or large enough,

so that the total data rate is low). At other sizes, receive

performance drops (e.g. on Intel CPUs flattens around

7.5 Mpps between 65 and 127 bytes; on AMD CPUs the

value is slightly higher). Investigation suggests that the

NIC and/or the I/O bridge are issuing read-modify-write

cycles for writes that are not a full cache line. Changing

the operating mode to remove the CRC from received

packets moves the “sweet spots” by 4 bytes (i.e. 64+4,

128+4 etc. achieve line rate, others do not).

We have found that inability to achieve line rate for

certain packet size and in transmit or receive mode is

present in several NICs, including 1 Gbit/s ones.

5.5 Transmit speed versus batch size

Operating with large batches enhances the throughput of

the system as it amortizes the cost of system calls and

other potentially expensive operations, such as access-

ing the NIC’s registers. But not all applications have

this luxury, and in some cases they are forced to operate

in regimes where a system call is issued on each/every
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Figure 7: Transmit performance with 1 core, 2.93 GHz,

64-byte packets, and different batch size.

few packets. We then ran another set of experiments us-

ing different batch sizes and minimum-size packets (64

bytes, including the Ethernet CRC), trying to determine

how throughput is affected by the batch size. In this par-

ticular test we only used one core, and variable number

of queues.

Results are shown in Figure 7: throughput starts at

about 2.45 Mpps (408 ns/pkt) with a batch size of 1,

and grows quickly with the batch size, reaching line

rate (14.88 Mpps) with a batch of 8 packets. The over-

head of a standard FreeBSD poll() without calling

the netmap-specific poll handlers (netmap poll() and

ixgbe txsync()) is about 250 ns, so the handling of

multiple packets per call is absolutely necessary if we

want to reach line rate on 10 Gbit/s and faster interfaces.

5.6 Packet forwarding performance

So far we have measured the costs of moving packets

between the wire and the application. This includes

the operating systems overhead, but excludes any sig-

nificant application cost, as well as any data touching

operation. It is then interesting to measure the benefit

of the netmap API when used by more CPU-intensive

tasks. Packet forwarding is one of the main applications

of packet processing systems, and a good test case for

our framework. In fact it involves simultaneous reception

and transmission (thus potentially causing memory and

bus contention), and may involve some packet process-

ing that consumes CPU cycles, and causes pipeline stalls

and cache conflicts. All these phenomena will likely re-

duce the benefits of using a fast packet I/O mechanism,

compared to the simple applications used so far.

We have then explored how a few packet forwarding

applications behave when using the new API, either di-

rectly or through the libpcap compatibility library de-

scribed in Section 4.6. The test cases are the following:



• netmap-fwd, a simple application that forwards

packets between interfaces using the zero-copy

technique shown in Section 4.5;

• netmap-fwd + pcap, as above but using the libp-

cap emulation instead of the zero-copy code;

• click-fwd, a simple Click [10] configuration that

passes packets between interfaces:

FromDevice(ix0) -> Queue -> ToDevice(ix1)

FromDevice(ix1) -> Queue -> ToDevice(ix0)

The experiment has been run using Click userspace

with the system’s libpcap, and on top of netmap

with the libpcap emulation library;

• click-etherswitch, as above but replacing the

two queues with an EtherSwitch element;

• openvswitch, the OpenvSwitch software with

userspace forwarding, both with the system’s libp-

cap and on top of netmap;

• bsd-bridge, in-kernel FreeBSD bridging, using

the mbuf-based device driver.

Figure 8 reports the measured performance. All exper-

iments have been run on a single core with two 10 Gbit/s

interfaces, and maximum clock rate except for the first

case where we saturated the link at just 1.733 GHz.

From the experiment we can draw a number of inter-

esting observations:

• native netmap forwarding with no data touching op-

eration easily reaches line rate. This is interesting

because it means that full rate bidirectional opera-

tion is within reach even for a single core;

• the libpcap emulation library adds a significant

overhead to the previous case (7.5 Mpps at full

clock vs. 14.88 Mpps at 1.733 GHz means a differ-

ence of about 80-100 ns per packet). We have not

yet investigated whether/how this can be improved

(e.g. by using prefetching);

• replacing the system’s libpcap with the netmap-

based libpcap emulation gives a speedup between

4 and 8 times for OpenvSwitch and Click, despite

the fact that pcap inject() does use data copies.

This is also an important result because it means

that real-life applications can actually benefit from

our API.

5.7 Discussion

In presence of huge performance improvements such as

those presented in Figure 5 and Figure 8, which show that

Configuration Mpps

netmap-fwd (1.733 GHz) 14.88

netmap-fwd + pcap 7.50

click-fwd + netmap 3.95

click-etherswitch + netmap 3.10

click-fwd + native pcap 0.49

openvswitch + netmap 3.00

openvswitch + native pcap 0.78

bsd-bridge 0.75

Figure 8: Forwarding performance of our test hardware

with various software configurations.

netmap is 4 to 40 times faster than similar applications

using the standard APIs, one might wonder i) how fair

is the comparison, and ii) what is the contribution of the

various mechanisms to the performance improvement.

The answer to the first question is that the comparison

is indeed fair. All traffic generators in Figure 5 do exactly

the same thing and each one tries to do it in the most

efficient way, constrained only by the underlying APIs

they use. The answer is even more obvious for Figure 8,

where in many cases we just use the same unmodified

binary on top of two different libpcap implementations.

The results measured in different configurations also

let us answer the second question – evaluate the impact

of different optimizations on the netmap’s performance.

Data copies, as shown in Section 5.6, are moderately

expensive, but they do not prevent significant speedups

(such as the 7.5 Mpps achieved forwarding packets on

top of libpcap+netmap).

Per-packet system calls certainly play a major role, as

witnessed by the difference between netsend and pktgen

(albeit on different platforms), or by the low performance

of the packet generator when using small batch sizes.

Finally, an interesting observation on the cost of the

skbuf/mbuf-based API comes from the comparison of

pktgen (taking about 250 ns/pkt) and the netmap-based

packet generator, which only takes 20-30 ns per packet

which are spent in programming the NIC. These two ap-

plication essentially differ only on the way packet buffers

are managed, because the amortized cost of system calls

and memory copies is negligible in both cases.

5.8 Application porting

We conclude with a brief discussion of the issues encoun-

tered in adapting existing applications to netmap. Our

libpcap emulation library is a drop-in replacement for

the standard one, but other performance bottlenecks in

the applications may prevent the exploitation of the faster

I/O subsystem that we provide. This is exactly the case



we encountered with two applications, OpenvSwitch and

Click (full details are described in [19]).

In the case of OpenvSwitch, the original code (with

the userspace/libpcap forwarding module) had a very ex-

pensive event loop, and could only do less than 70 Kpps.

Replacing the native libpcap with the netmap-based ver-

sion gave almost no measurable improvement. After re-

structuring the event loop and splitting the system in two

processes, the native performance went up to 780 Kpps,

and the netmap based libpcap further raised the forward-

ing performance to almost 3 Mpps.

In the case of Click, the culprit was the C++ alloca-

tor, significantly more expensive than managing a private

pool of fixed-size packet buffers. Replacing the mem-

ory allocator brought the forwarding performance from

1.3 Mpps to 3.95 Mpps when run over netmap, and from

0.40 to 0.495 Mpps when run on the standard libpcap.

Click userspace is now actually faster than the in-kernel

version, and the reason is the expensive device driver and

sk buff management overhead discussed in Section 2.3.

6 Conclusions and future work

We have presented netmap, a framework that gives

userspace applications a very fast channel to exchange

raw packets with the network adapter. netmap is not

dependent on special hardware features, and its design

makes very reasonable assumptions on the capabilities

of the NICs. Our measurements show that netmap can

give huge performance improvements to a wide range of

applications using low/level packet I/O (packet capture

and generation tools, software routers, firewalls). The

existence of FreeBSD and Linux versions, the limited

OS dependencies, and the availability of a libpcap em-

ulation library makes us confident that netmap can be-

come a useful and popular tool for the development of

low level, high performance network software.

An interesting couple of open problems, and the sub-

ject of future work, are how the features of the netmap ar-

chitecture can be exploited by the host transport/network

stack, and how can they help in building efficient net-

work support in virtualized platforms.

Further information on this work, including source

code and updates on future developments, can be found

on the project’s page [17].
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