
Revisiting Software Zero-Copy for Web-caching Applications
with Twin Memory Allocation∗

Xiang Song† ‡, Jicheng Shi† ‡, Haibo Chen†, Binyu Zang† ‡
†Institute of Parallel and Distributed Systems, Shanghai Jiao Tong University

‡Software School, Fudan University

ABSTRACT

A key concern with zero copy is that the data to be sent

out might be mutated by applications. In this paper, fo-

cusing specially on web-caching application, we observe

that in most cases the data to be sent out is not supposed

to be mutated by applications, while the metadata around

it does get mutated. Based on this observation, we pro-

pose a lightweight software zero-copy mechanism that

uses a twin memory allocator to allocate spaces for zero-

copying data, and ensures such data is unchanged before

being sent out with a lightweight data protection mech-

anism. The only change required to an application is

to allocate zero-copying data through a specific ZCopy

memory allocator. To demonstrate the effectiveness of

ZCopy, we have designed and implemented a prototype

based on Linux and ported two applications with very

little effort. Experiments with Memcached and Varnish

shows that show that ZCopy can achieve up to 41% per-

formance improvement over the vanilla Linux with less

CPU consumption.

1 INTRODUCTION

Many network-intensive applications can easily be lim-

ited by the speed of network I/O processing. Other than

the physical limitation of networking devices, the perfor-

mance of networking applications are also constrained

by the efficiency of network I/O sub-systems, in which

data copying is one of the key limiting factors. Usually,

during network protocol processing, the operating sys-

tem kernel has to copy data from user space to a kernel

buffer and then sends the kernel buffer to the network

device.

Though there has been extensive research on avoiding

the data copying, prior systems are still not easily adopt-

able for many applications on commodity operating sys-

∗We thank our shepherd Alexandra Fedorova the anonymous re-

viewers for their insightful comments. This work was funded by China

National Natural Science Foundation under grant numbered 61003002,

a grant from the Science and Technology Commission of Shanghai

Municipality numbered 10511500100. Xiang Song was also funded

by Fudan University’s outstanding doctoral research funding schemes

2011.

tems with commodity networking devices. One approach

is bypassing the operating system with Remote DMA.

However, these require special and expensive hardware

(e.g., Infiniband [2] and Myrinet [10]) and most com-

modity networking devices have not been built with such

support. Several previous software zero copy mecha-

nisms, such as fbufs [7] and IO-Lite [11] are designed

for a micro-kernel and require special data management

and accessing methods across protection domains. Con-

tainer shipping [12] supports zero-copy on UNIX plat-

forms, but requires data being aggregated in a scatter-

gather manner and additional system-call interfaces. Ap-

proaches [5, 6] using on-demand memory mapping and

copy-on-write mechanism are limited by the protection

granularity (e.g., page size) and the corresponding align-

ment requirement, thus may face the false sharing prob-

lem that protects unwanted data. This may cause notable

performance overhead for irregular (e.g., unaligned) data

chunks. Modern operating systems also have several

mechanisms to support zero copy, such as sendfile [14]

and splice [9]. However, such mechanisms require zero-

copying data to be treated as files, which is not feasible

in many applications that need to mutate the data to be

sent out.

The key issue in supporting software zero-copy is that

the zero-copying data might be mutated when being sent

out. This is because when a user application invokes a

data sending system call (e.g., sendmsg and write), it as-

sumes that the data has been sent out when the system

call returns. However, when such system calls return,

the data might have not been moved into the networking

devices. If the kernel does not copy the data from the

user buffer to a kernel buffer, any changes on the data

from applications may be sent out, which violates the se-

mantics of such system calls.

Intuitively it should be the case that the data will nor-

mally not be mutated. However, focusing specifically

on web-caching applications, we observe that, in most

cases, the data to be sent out is not supposed to be mu-

tated by applications. However, the data around it, es-

pecially the metadata corresponding to it, does get mu-

tated. Some metadata (e.g., the data expire time in Mem-

cached [8]) is usually co-located around the data to be

sent. Due to lacking of application semantics, operating

systems cannot simply zero-copy a page with specific

network data packets as that page holding the network

data can be modified by applications.

Based on the above observation, we revisit the soft-

ware zero-copy mechanism for web-caching applica-

tions. The basic idea is using a second (twin) memory

allocator to allocate and aggregate data that are likely

to be zero-copied, and providing a lightweight memory

protection mechanism in case such data does get modi-

fied. Hence, the zero-copying data can be isolated from

other application data, thus can be aggregated together

to allow kernel to use traditional page-level protection.

This minimizes unnecessary write protection faults due

to false sharing. To support software zero copy, an in-

kernel proxy is added into the UDP and TCP processing

paths to distinguish the zero-copy data with the others.

A write protection module is also added to handle rare

cases where the data that is supposed to be zero-copied

have really been mutated. In such a case, the data will be

copied to ensure program correctness.

We have implemented a prototype based on Linux

2.6.38. The prototype of ZCopy is very lightweight and

adds around 735 lines of code (LOCs) to Linux kernel

and adds 20 LOCs to streamflow [13]. It consists of

a specific user-level memory allocator ZC alloc based

on streamflow. A 200 LOCs user-level library is imple-

mented to support cooperation between the ZCopy ker-

nel and the ZC alloc to provide memory protection for

zero-copying data.

The porting effort required to run web-caching appli-

cations on ZCopy using zero-copy mechanism is also

quite small. Providing zero-copy support to Mem-

cached [8], a widely-used key-value based memory

caching server, requires only 10 LOCs changes. Run-

ning Varnish [4] server also only requires 3 LOCs mod-

ification. The only change required is simply replacing

the memory allocator for zero-copying data with the one

provided by the ZC alloc.

To measure the effectiveness of ZCopy, we conducted

several application performance measurements using

Memcached and Varnish web caching system. Perfor-

mance results show that ZCopy brings modest improve-

ment over vanilla Linux. ZCopy improves the through-

put of Memcached over vanilla Linux up to 41.1% and

40.8% for UDP and TCP processing when the value size

is larger than 256 bytes. The performance speedup of

Varnish ranges from 0.7% to 7.9% for data size ranging

from 2 KBytes to 8 KBytes.

2 OBSERVATION

To gain insight into how network data might be mutated,

we make a case study on Memcached. Figure 1 shows

the basic storing item structure of Memcached to store

key/value pairs. The key/value data is stored at the end of

stritem, while the metadata is stored from the beginning

of it. Each time Memcached receives a request and find

a corresponding key/value pair, the refcount of the corre-

sponding item will be increased in function do item get

(As shown in Figure 2). If we write protect the key/value

pair, we need also write protect the metadata around it.

Hence, there will be a lot of unnecessary protection faults

due to false sharing.

The example indicates that for some networking ap-

plications, the network I/O data to be sent out is not sup-

posed to be mutated. However, the data around it, espe-

cially the metadata corresponding to it does get mutated.

Hence, naively write-protecting the networking data may

also protect the metadata allocated within the same page,

resulting in false protection.

!"#$%$&'(!)*+!',(!)-!$.'/

0'''''(!)*+!',(!)-!$.'12$3!4

5''''''6

7''''*-2!8,!'''''''''''''''''29$"4'''''''':1'9$"';$2<!='1:

>''''?@-%'1'$2%AB4''''''''''''''''''''''''':1'(!)*+!'/'''!"#$

%%%&'()

%%%*+,+%%C'1:

C'-!$.4

Figure 1: Memcached storing item structure.

!"#$%&"'()*#$%&*+%$,-)./$"-012"'3%45"-)./$"/#6%*$".3%47"8

9 #$%&"'#$":"1//)-*;.(,3%45".3%47<

= >

? #@",#$"A:"BCDD7"8

E #$FG2%@-)H.$II<

J >

K"L

Figure 2: Code piece of function do item get.

3 DESIGN AND APPROACHES

This section first presents an overview of ZCopy and then

illustrates the approaches to supporting efficient zero-

copy mechanism.

3.1 ZCopy Overview

It is quite intuitive to let applications to designate which

data should be zero-copied. When such data is being sent

out, ZCopy will zero-copy it while processing other data

through the normal path. However, it has to deal with the

following issues: 1) it should retain the existing memory

accessing manner for user applications; 2) it should con-

form to existing system calls to avoid adding any new in-

terfaces; and 3) it should provide proper protection over

the data to be sent out to conform to the semantics of

existing network sending system calls.

In ZCopy, we introduce a twin memory allocator to

separately allocate data according to application seman-

tics and aggregate several zero-copying memory blocks

into the same memory chunks. Hence, the data to be

2

Figure 3: An overview of architecture of ZCopy

protected can be separated from other application data.

Figure 3 shows the general architecture of ZCopy. The

application running on ZCopy can use the original mem-

ory allocator (e.g., glibc) to allocate memory for normal

data or use the twin memory allocator named ZC alloc

to allocate memory for zero-copying data. A ZCopy

proxy is added to the UDP and the TCP package pro-

cessing path to distinguish the network data that will be

zero-copied from others. If the data is allocated from

ZC alloc, ZCopy will bypass the data copy path. Other-

wise, ZCopy will handle the data as usual. The proxy

also cooperates with the ZCopy data protection mod-

ule to provide basic write protection on the zero-copying

data.

3.2 Supporting Zero-copy

3.2.1 Isolating Zero-copying Data with Twin
Memory Allocator

To isolating zero-copying data from other data, ZCopy

provides a twin memory allocator along with the original

one to allocate memory for network data that is guar-

anteed to be insulated from other data allocated from

a generic memory allocator (e.g., glibc). Restricted by

the minimal memory protection granularity of a page

size and the following address alignment requirement,

ZC alloc has to pay special attention to small mem-

ory blocks (e.g., block size small than 1024 bytes). A

naive way to handle this is to allocate one page for each

request. However, this may waste a lot of memory.

ZC alloc uses an aggressive way by aggregating mem-

ory blocks with similar sizes into the same basic mem-

ory unit, namely the pageblock. A pageblock is treated as

a basic protection chunk and usually consists of several

pages (16 pages by default). It is write protected only

when it is full of zero-copying data. As ZC alloc ag-

gregates zero-copying data together to provide memory

protection, it minimizes the amount of wasted memory

(e.g., by aggregating small objects smaller than 1 page

size into a default pageblock, the maximum amount of

memory wasted is less than 1 page, which is less than

6.25%).

If the allocation request is for a large data block,

ZC alloc directly allocates a memory chunk rounded

from the requesting size. A threshold (4096 bytes by

default) is set in ZC alloc to decide whether a request is

for the large data block. This threshold can be tuned by

the programmer if needed.

The twin memory allocator is especially friendly to the

reusable data. Once a data block is allocated it will be

sent out to network multiple times before it is modified

or freed. One representative usage scenario is allocating

value data for Memcached. Memcached server caches a

lot of key/value pairs in memory to serve quick key/value

queries. Every time the server receives a request con-

taining a key, it will respond with the value correspond-

ing to that key. For the perspective of long execution,

the key/value pairs are not expected to be modified or

freed. Hence, we can zero-copy the value during data

transferring without worrying about the modification to

such data in most cases.

3.2.2 Zero-copying Network I/O Data

ZCopy supports two common network protocols: UDP

and TCP. We add a proxy in UDP and TCP’s package

processing paths to distinguish the network data that will

be zero-copied and others. At the very beginning, ZCopy

will first check whether current process wants to use

zero-copy mechanism or not. If so, it will check whether

there are any memory blocks that need to be write pro-

tected. The ZCopy data protection module is invoked if

write protection is needed.

Figure 4: The structure of normal package and ZCopy package

ZCopy handles zero-copying data at the time when the

network data is organized into a network package. Fig-

ure 4 shows the structure of normal network package and

the ZCopy package. In normal cases (shown in the top

half of Figure 4), a network package consists of several

protocol headers followed by network data. The network

data can be organized as a single data buffer or a list of

data buffers. The data is copied from user address space

into the package in order. If the package buffer is not

large enough to hold all network data, the kernel will al-

locate new empty pages to hold the rest of the data and

attaches them into the package’s page fragment list. Each

entry in the list contains the starting address of the data

3

and its length. When the package is passed to the NIC

driver, the driver will first transfer the package content

and the fragments to the NIC hardware through the DMA

engine.

Figure 5: Zero-copy in UDP package processing

ZCopy treats zero-copying data differently from nor-

mal data. Each pageblock is identified by a magic string,

thus the zero-copy data buffers can be distinguished with

others. We use the UDP package processing as an ex-

ample to illustrate the process of handling zero-copying

data. Figure 5 shows the UDP package processing path

in ZCopy and the bottom half of Figure 4 shows the

structure of a ZCopy package. ZCopy first scans the user

data buffer lists to copy all prior normal data into the

network package buffer including the protocol headers

(step 1). Then, it iteratively processes the following user

buffers by handling zero-copying data and normal data

separately (step 2-5). It will check the pageblock magic

string to discover zero-copying user buffers. For zero-

copying data (step 3), it first gets the starting address and

the length of the data buffer. It then finds all pages cov-

ered by the data buffer and finally organizes the pages in

the form of fragments and adds them into the package’s

page fragment list. For normal data (step 4), it allocates

new empty pages and copies the buffer content into them.

ZCopy finally organizes the pages in the form of frag-

ments and adds them into the package’s page fragment

list. The package will be passed into the lower level of

the network stack.

One optimization to the ZCopy proxy is to treat read-

only data buffers as zero-copying buffers, though they

are not allocated using ZC alloc. This can simply be

done by feeding the offset and length in the fragment list.

3.2.3 Protection of Zero-copying Data

ZCopy must provide a protection mechanism to the zero-

copying data in case it is mutated when the data is sent

out. To do this, ZCopy adds a simple data protection

module into the native memory management system.

Based on the page-level protection granularity in

kernel, small data blocks allocated from ZC alloc are

batched in a group and are treated as a whole for write

protection. The minimal protection unit is one page-

block. When a pageblock is full, ZC alloc will request

the kernel to protect it. To avoid the cost of context

switches between user space and kernel space and pos-

sible false protection problem caused by early write pro-

tection, ZCopy batches the requests from ZC alloc to de-

lay the protection of the pageblock until the system en-

ters the network package processing path. The protection

is done by walking the page table of the target range and

changing the protection bit of the corresponding page ta-

ble entries. When the pageblock is not full, data allocated

from ZC alloc are still sent through normal path without

being zero-copied.

ZCopy tries to protect zero-copying data blocks in an

aggressive way. ZCopy does not remove the write pro-

tection of the data block even if the data block is com-

pletely sent out by the hardware. The removal of the

write protection is triggered only when a write operation

is trapped by the kernel. At that time, the reference count

of the page corresponding to the faulting address is first

checked. If the count is larger than one, a copy-on-write

mechanism is used to protect the network data from be-

ing modified. Otherwise, the changing request should

come from the application itself and we simply remove

the write protection. Note that, the basic protection unit

is a pageblock, any write to a write protected pageblock

will cause all the data blocks belong to the pageblock

lose the write protection. However, we do not expect this

happens frequently as mutation on zero-copying data is

rare.

4 EXPERIMENTAL RESULTS

All experiments were conducted on an Intel machine

with 2 1.87 Ghz Six-Core Intel Xeon E7 chips running

Debian GNU/Linux 6.0 with the kernel version 2.6.38.

The NIC used is an Intel 82576 Gigabit Network Con-

troller. We use another Intel machine with the same hard-

ware and software configuration as the client machine.

To minimize the interaction between different cores of

a multi-core system (e.g., cache trashing), experiments

were conducted using only one CPU core.

We use two widely-used web-caching applications,

Memcached 1.4.5 [8] and Varnish 3.0.0 [4] to demon-

strate the performance improvements. All applications

in the experiments use the ZC alloc to allocate memory

for network data to eliminate the effect of using different

memory allocators.

4.1 Memcached

Memcached [8] caches multiple key/value pairs in mem-

ory. Each time it receives a request containing a key, it

will respond with the corresponding value. From a long

run’s perspective, the key/value pairs are not expected to

4

 0 2
00

00
 4

00
00

 6
00

00
 8

00
00 1

00
00

0 1
20

00
0 1

40
00

0 1
60

00
0 1

80
00

0

 128 256 512 768 1024

-10

 0

 10

 20

 30

 40

 50

T
h
ro

u
g
h
p
u
t
(r

e
q
u
e
s
ts

/s
e
c
)

T
h
ro

u
g
h
p
u
t
S

p
e
e
d
u
p
 (

%
)

Package Size (bytes)

Vanilla Linux
ZCopy

Speedup

Figure 6: The throughput of Memcached in ZCopy and vanilla

Linux with UDP and the speedup of ZCopy.

be modified or freed. However, the metadata (e.g., the

data expire time, the item links) along with the cached

pairs may change. We modify Memcached to allocate

memory for the values from ZC alloc. This takes only

10 lines of modification to the original Memcached.

We use the memaslap testsuite form the libmemcached

library [3] as the client of Memcached. The client first

warms up Memcached with a user-defined number of

key/value pairs and then randomly issues get and set op-

erations through several concurrent connections.

UDP: Figure 6 shows the average throughput of Mem-

cached in ZCopy and vanilla Linux. The Memcached

is warmed up with ten thousand key/value pairs. The

memaslap client is configured to issue pure get opera-

tions through 36 concurrent connections from 12 threads

using the UDP protocol. We adjust the number of worker

threads of Memcached to achieve the best performance.

The CPU usage in all cases is above 99%. Vanilla Linux

performs slightly better when the value size is smaller

than 256 bytes. However, when the value size reaches

512 bytes, ZCopy starts to outperform vanilla Linux. In

512 bytes cases, ZCopy has a 28.7% performance im-

provement. When the value size is 768 bytes, the per-

formance improvement increases to 41.1%. For the case

where the value size is 1024 bytes, ZCopy and vanilla

Linux has nearly the same throughput as the network

reaches its hardware limitation.

The performance improvement comes from two parts:

1) minimized data copying and 2) reduced cache trash-

ing. Figure 7 compares the time spent on UDP pack-

age processing in ZCopy and vanilla Linux. In ZCopy,

the package processing time is around 3000 cycles in

all cases. However, in vanilla Linux, the time increases

along with the package size and reaches 4400 cycles in

1024 bytes cases. Table 1 shows the L2 cache miss rate

of Memcached in Linux and ZCopy. ZCopy reduces

more than 10% L2 cache misses in UDP cases. The

hottest function copy user generic string in Linux disap-

pears in ZCopy. Another reason for such notable perfor-

mance improvement in the 512 and 768 cases is that the

 0

 1
00

0

 2
00

0

 3
00

0

 4
00

0

 5
00

0

256 512 768 1024 1280

E
x
e
c
u
ti
o
n
 T

im
e
 (

c
y
c
le

s
)

Package Size (bytes)

Vanilla Linux
ZCopy

Figure 7: The time spent on UDP package processing for Mem-

cached in ZCopy and vanilla Linux.

shorter package sending time in ZCopy causes the NIC

interrupt handler switch frequently to the polling mode

which is more effective than the interrupt mode in heavy

network stress. However, in vanilla Linux, the network

status triggers less frequent switches to the NIC polling

mode.

L2 Cache Miss Rate (1 miss/K cycles)

512 bytes 768 bytes 1024 bytes

UDP Linux 4.89 5.17 6.11

UDP ZCopy 4.17 4.57 4.73

TCP Linux 8.08 9.06 10.86

TCP ZCopy 7.73 8.22 9.46

Table 1: The L2 cache miss rate in vanilla Linux and ZCopy in

256 byte, 768 byte and 1024 byte cases.

TCP: Figure 8 shows the average throughput of Mem-

cached in ZCopy and vanilla Linux and the performance

speed of ZCopy over vanilla Linux. We use the same

evaluation method used in the UDP experiments. For

each TCP connection, we only issues a signle request

and then close it. Vanilla Linux performs better when the

value size is smaller than 256 bytes. However, when the

value size reaches 512 bytes, ZCopy starts to outperform

the vanilla Linux by 40.8%. When the value size is with

1024 bytes, ZCopy outperforms vanilla Linux by 30.8%.

The performance of Memcached reaches the hardware

limits when the value size is of 2048 bytes.

As in UDP, the performance improvement comes from

copy avoidance and reduced cache trashing. As the code

for TCP package processing and data sending is mixed

together, we measure the time spent on the tcp sendmsg

instead of TCP package processing time. Figure 9 shows

the profiling results. From the figure we can see that

ZCopy does reduce the time spent on tcp sendmsg in all

cases. Table 1 shows the L2 cache miss rate of Mem-

cached in Linux and ZCopy. ZCopy reduces 10.2% L2

cache misses in 768 byte cases and 14.8% L2 cache

misses in 1024 byte cases.

4.2 Varnish

Varnish [4] is an open-source web application accelera-

tor. It caches web content into memory objects and re-

5

 0

 3
00

00

 6
00

00

 9
00

00

 1
20

00
0

 1
50

00
0

 256 512 768 1024 2048

-10

 0

 10

 20

 30

 40

 50

T
h
ro

u
g
h
p
u
t
(r

e
q
u
e
s
ts

/s
e
c
)

T
h
ro

u
g
h
p
u
t
S

p
e
e
d
u
p
 (

%
)

Package Size (bytes)

Vanilla Linux
ZCopy

Speedup

 0
 2

00
0

 4
00

0
 6

00
0

 8
00

0 1
00

00
 1

20
00

 1
40

00
 1

60
00

 1
80

00

256 512 768 1024 2048 4096

E
x
e

c
u

ti
o

n
 T

im
e

 (
c
y
c
le

s
)

Package Size (bytes)

Vanilla Linux
ZCopy

 11000

 12000

 13000

 14000

 15000

 0 1024 2048 3072 4096 5120 6144 7168 8196

T
h

ro
u

g
h

p
u

t
(r

e
q

u
e

s
ts

/s
e

c
)

Package Size (bytes)

ZCopy
Vanilla Linux

Figure 8: The throughput of Memcached

in ZCopy and vanilla Linux with TCP and

the speedup of ZCopy.

Figure 9: The time spent on function

tcp sendmsg for Memcached in ZCopy

and vanilla Linux.

Figure 10: The throughput of varnish

server in ZCopy and vanilla Linux.

turns web objects according to the network request. We

modify Varnish to allocate object memory from ZC alloc

with 3 LOCs changes.

We test Varnish using ab (apache benchmark) from

Apache with the web page sizes ranging from 1 KBytes

to 8 KBytes (the average individual response size ranges

from 3 KBytes to 15 KBytes [1].) Figure 10 compares

the performance of ZCopy and vanilla Linux. The var-

nish server saturates the CPU on both ZCopy and vanilla

Linux. Vanilla Linux performs slightly better with small

web page sizes (1 KBytes). However, when the web page

size increases, ZCopy starts to outperform Linux. The

performance improvement reaches 7.8% when the web

page size increases to 6 KBytes. Both configurations

reach networking limitation when the web page size in-

creases to 8 KBytes. The reason that the improvement

is much less than Memcached is that the single request

processing time in Varnish is much longer than that in

Memcached, which thus amortize the improvements of

ZCopy.

CPU cycles

getpid 1149.9

ZCopy write protection fault 2802.5

native page fault 6247.4

Table 2: The execution time of invoking getpid system call, trig-

gering ZCopy write protection fault and triggering native page

fault.

4.3 ZCopy Primitive

Overhead of Write Protection We also evaluate the cost

of triggering write protection faults for zero-copied data.

Table 2 shows the execution time of invoking the get-

pid system call, triggering ZCopy write protection fault

and triggering traditional page fault respectively. The

cost of triggering a ZCopy write protection fault is much

smaller than triggering a native page fault. This is be-

cause usually ZCopy only removes the write protection

of the faulting address from the page table, which is

much less expensive.

5 CONCLUSION AND FUTURE WORK

This paper revisited the existing software zero-copy

mechanism and presented a new zero copy system named

ZCopy, which was based on the observation that the

metadata around the network data will usually get mu-

tated. Experiments with two applications on an Intel

machine show that ZCopy outperforms vanilla Linux for

sending a relative large network data package.

In our future work, we plan to extend our work in

two directions. First, though we focus specially on web-

caching applications in this paper, ZCopy places little

constraints on applications and is applicable to other

networking applications. We plan to study and evalu-

ate the performance benefit of ZCopy on other network-

intensive applications. Second, ZCopy was evaluated us-

ing a single core. We plan to extend the ZCopy to effi-

ciently run on multicore machines.

REFERENCES

[1] Average web response size. http://www.httparchive.org/.

[2] Infiniband. http://www.infinibandta.org/.

[3] LibMemcached. http://libmemcached.org/.

[4] Varnish web cache system. https://www.varnish-cache.org/.

[5] J.C. Brustoloni and P. Steenkiste. Effects of buffering semantics

on i/o performance. In Proc. OSDI, 1996.

[6] Jerry Chu. Zero-copy tcp in solaris. In Proc. Usenix ATC, 1996.

[7] P. Druschel and L.L. Peterson. Fbufs: A high-bandwidth cross-

domain transfer facility. In Proc. SOSP, pages 189–202. ACM,

1993.

[8] R. LERNER. Memcached integration in rails. Linux Journal,

2009.

[9] L. McVoy. The splice i/o model, 1998.

[10] myricom. Myrinet. http://www.myricom.com/scs/myrinet/overview/.

[11] V.S. Pai, P. Druschel, and W. Zwaenepoel. Io-lite: a unified i/o

buffering and caching system. ACM TOCS, 18(1):37–66, 2000.

[12] J. Pasquale, E. Anderson, and P.K. Muller. Container shipping:

operating system support for i/o-intensive applications. Com-

puter, 27(3):84–93, 1994.

[13] S. Schneider, C.D. Antonopoulos, and D.S. Nikolopoulos. Scal-

able locality-conscious multithreaded memory allocation. In

Proc. ISMM, pages 84–94, 2006.

[14] D. Stancevic. Zero copy i: user-mode perspective. Linux Journal,

2003(105):3, 2003.

6

	Introduction
	Observation
	Design and Approaches
	ZCopy Overview
	Supporting Zero-copy
	Isolating Zero-copying Data with Twin Memory Allocator
	Zero-copying Network I/O Data
	Protection of Zero-copying Data

	Experimental Results
	Memcached
	Varnish
	ZCopy Primitive

	Conclusion and Future Work

