
Lowering the Barriers to Industrial Control System Security with GRFICS

David Formby
Georgia Institute of Technology and Fortiphyd Logic

djformby@gatech.edu

Milad Rad
Georgia Institute of Technology

ghiasirad.milad@gatech.edu

Raheem Beyah
Georgia Institute of Technology and Fortiphyd Logic

rbeyah@ece.gatech.edu

Abstract
Despite the abundance of free online resources and in-
creased research into innovative educational techniques,
the shortage of cybersecurity skills in the workforce con-
tinues. The skills gap in the specific area of industrial
control system (ICS) security is even more dismal due to
the higher barriers to entry raised by the exclusive use of
expensive, proprietary hardware and software and the in-
herent dangers of manipulating real physical processes.
To help beginners in ICS security overcome these barri-
ers to entry we developed a graphical realism framework
for industrial control simulations (GRFICS). GRFICS
virtualizes entire ICS networks, from the operator inter-
face down to realistic simulations of the physical process
visualized in a 3D game engine. Using this framework,
students can practice exploiting common ICS vulnerabil-
ities and vividly see the physical impact in the visualiza-
tion of the process. After gaining a better appreciation
of the close relationship between the cyber and the phys-
ical worlds in ICS networks, students can then practice
hardening the network against such attacks. This free
and open-source framework can be used as the basis for
formal classroom instruction, ICS-specific CTF compe-
titions, or for independent study.

1 Introduction

Thanks to the power of virtualization, the barrier to en-
try for general cybersecurity is lower today than it has
ever been. Anyone with a computer and Internet connec-
tion can download the intentionally vulnerable Metas-
ploitable [8] virtual machine (VM), a Kali Linux VM
filled with offensive security tools, and begin getting
hands-on practice with common security problems all
for free. For even more realistic practice and less than
$100, multiple companies offer complete online vulnera-
ble networks for students to hone their penetration testing
skills. However, until now there has been no equivalent

for the area of industrial control system (ICS) security for
students to freely learn about the unique challenges faced
when attacking and defending ICS networks. In order to
get hands-on experience in ICS security, students typi-
cally must pay thousands of dollars for on-site training
or for purchasing their own equipment and software to
practice on. Even after those expenses it is difficult to
truly appreciate the relationship between a cyber attack
and a potential physical impact since it is too expensive
and time-consuming to repeatedly cause kinetic damage
to some physical process.

Therefore, in order to lower these barriers to entry for
ICS security, we are releasing the first free and complete
virtual ICS network [4] including every level from the
human machine interface (HMI) in the control room, to
the programmable logic controller (PLC) controlling the
plant, down to a realistic simulation of the physical pro-
cess itself visualized using the popular Unity 3D game
engine.

The significant contributions of this research include:

• Conversion of the simplified Tennessee Eastman
challenge process simulation into a more portable
and accessible format

• Novel 3D visualization of a dynamic chemical pro-
cess simulation to increase engagement and realism

• The most complex and complete virtualization of an
ICS network to date, released free and open-source

• Modular framework for easy expansion or conver-
sion to other physical processes and protocols

The remainder of this paper is organized as follows.
Related work in ICS testbeds and virtualizing ICS net-
works is reviewed in Section 2 followed by a brief
overview of ICS networks and the specific lessons in ICS
security this framework intends to help teach in Section
3.1. Section 4 details the various pieces of the frame-
work including the process simulation and visualization,

1

remote I/O modules, virtual PLC, and operator HMI.
Finally, example offensive and defensive exercises are
walked through in Section 5 followed by conclusions and
future work in Section 6.

2 Related Work

Most of the related work into ICS testbeds has been fo-
cused on building real hardware testbeds primarily for
the purpose of conducting high-fidelity research rather
than for facilitating education. The most extensive ex-
amples have been produced by the Singapore Univer-
sity of Technology and Design where researchers have
built a six-stage water treatment facility [27], water dis-
tribution network, and small scale electric power grid
network[11]. The National SCADA Testbed [9] devel-
oped by the Department of Energy is another example of
a large scale physical testbed including full scale elec-
trical substations and transmission lines. Several other
smaller physical testbeds have been built as well [23],but
as useful as these physical testbeds are for research,
they suffer from extreme scalability limitations for train-
ing new security practitioners. Therefore simulated ICS
testbeds are necessary to truly lower the barrier to entry
in a scalable manner.

Unfortunately, most of the research into simulated ICS
testbeds has been severely limited in scale and fidelity.
Several works [22] [29] [28] have simply used Omnet++
to examine basic attacks such as denial of service (DoS)
on relatively simple physical processes. Others have im-
plemented more detailed physical simulations [20] [25]
and larger scale simulations of the power grid [19] but
still suffer from scalability due to the requirements of
proprietary software such as Simulink or cluster comput-
ing resource requirements.

One of the most significant barriers to high fidelity
large scale virtualization of ICS networks was the lack of
free virtualized alternatives to hardware programmable
logic controllers (PLCs). Thankfully, a project began
in 2014 to develop an open source PLC that can run
on an open source hardware design or in pure software
[17]. Expanding on this project the researchers have
also begun developing virtual ICS networks using the
OpenPLC[16]. However, the physical processes used in
these virtual networks are still relatively small and re-
quire Simulink/Matlab, which limits their usability. Fur-
thermore, the physical processes are only visualized in
2D human machine interfaces (HMIs) and line graphs
that are not immersive and convincing. In summary, the
work proposed here improves on previous work by pro-
viding a realistically complex physical simulation that is
convincingly visualized in 3D graphics, provides all the
necessary components for students to practice common
ICS attacks and defenses, and is available completely

Figure 1: High level structure of ICS network

free and open-source.

3 Background

To understand the GRFICS framework, we first must
provide a brief overview of ICS terminology and basic
structure, as well as the most important differences be-
tween ICS networks and IT networks.

3.1 Overview of ICS Networks
The term “industrial control system” is extremely broad
and includes SCADA (supervisory control and data ac-
quisition) systems used in power distribution, DCS (dis-
tributed control systems) used in oil refineries, and even
building control systems. They all vary slightly in their
architecture and specific devices, but they all share the
same high-level structure illustrated in Figure 1, where a
controller or controllers continuously read process mea-
surements from sensors, report the measurements to
some kind of human machine interface (HMI), and use
the measurements with some combination of user input
from the HMI and its own preprogrammed control logic
to update the physical actuators, such as a valve or relay.

3.2 ICS Security Lessons
One of the causes for the skills gap in ICS security and
the motivation for this work is the number of differences
between traditional IT security and ICS security. In tra-
ditional security, the order of priorities is always given
as confidentiality, integrity, and availability in that order.
However, in ICS networks the priorities are essentially
reversed. Confidentiality of the process measurements
being sent over the local network at a power generation
facility is the least of the operators’ worries. On the other
hand, ensuring that the facility remains available to keep
the lights on is their top priority. These differences in

2

priorities influence the design of both ICS devices and
network architectures that lead to unique challenges in
defending and attacking ICS networks that this frame-
work aims to teach to a broader audience.

ICS Endpoint Insecurity. In IT security, there is a
variety of tools and strategies for securing endpoints in-
cluding frequent patching, host based firewalls, antivirus
software, strong password enforcement, and support for
secure communication protocols. In ICS security, due to
the focus on availability and high uptime requirements,
devices may only be patched once a year, replaced every
10-20 years, and are typically shipped with no passwords
enabled by default and no password strength policy en-
forcement. Furthermore, due to the low powered hard-
ware, devices are incapable of running antivirus software
or even supporting authenticated network protocols. As a
result, the only defenses a typical ICS endpoint has is the
”security through obscurity” gained from running pro-
prietary closed-source software and protocols. The tools
provided in this work help teach students these lessons by
having them practice exploiting data and command injec-
tion against unauthenticated protocols, exploiting buffer
overflows in control system protocols, and brute forcing
weak passwords.

Importance of Network Defense. Since the ICS end-
points themselves are essentially “insecure by design”
and incapable of being upgraded, the security of an ICS
network relies on having strong defense-in-depth built
into the network. Specifically, the NIST Guide to ICS
Security [31] stresses the importance of segmenting net-
works into enclaves, writing strong firewall rules, and us-
ing network intrusion detection systems. The framework
proposed in this paper helps students learn these lessons
by enabling them to practice writing firewall rules to seg-
ment the ICS network and writing intrusion detection
rules to detect common ICS attacks.

ICS Cyber Kill Chain. Another important differ-
ence between ICS and IT networks is the end goals of
the attacker and the number of steps necessary to reach
them. In IT networks, the generally accepted “Cyber Kill
Chain” involves reconnaissance, weaponization, deliv-
ery, exploitation, installation, command and control, and
finally actions on the objective [24]. However, in the ICS
world, the steps leading up to actions on the objective are
only half the battle. The ICS Cyber Kill Chain [18] in-
volves two stages, where the first stage closely resembles
the original Cyber Kill Chain. However, in Stage 2 the
attackers must develop an “exploit” of the physical sys-
tem as well, on top of the series of exploits used on com-
puting systems. In this physical exploit phase, attackers
must understand the physical process at the victim facil-
ity, research the built-in safety checks and redundancies
specific to that victim, and develop a strategy for bypass-
ing those obstacles and achieving whatever their physical

Figure 2: Network Diagram for Virtualized Network

Figure 3: Architecture of GRFICS framework

goal is. This paper helps teach this lesson by provid-
ing students with a nontrivial physical process simula-
tion that they must study in order to design an attack that
causes significant physical damage.

4 GRFICS

The Graphical Realism Framework for Industrial Con-
trol Simulations (GRFICS) was designed to be modular
to allow for easy customization and expansion. The ICS
components including the HMI, PLC, and I/O modules
are all connected using standard ICS network protocols,
allowing for the PLC or HMI to be swapped out with
high-fidelity real ICS devices. The physical process sim-
ulation is then tied to the 3D visualization and the I/O
module layer using an intuitive JSON [5] based network
API, documented in more detail in Section 4.1.2.

In this initial version of GRFICS, we are virtualiz-
ing a chemical process control network with a flat, un-
segmented network architecture illustrated in Figure 2.
Figure 3 illustrates how GRFICS virtualizes the whole
control network with three virtual machines and allows
users to practice common ICS attacks while verifying the
physical impact in the 3D visualization. The remainder
of this section describes each module in further detail.

3

Figure 4: Piping & Instrumentation Diagram (P&ID) for
the simplified Tennessee Eastman Challenge Process

4.1 Physical Process Simulation

The physical process simulation comprises the simula-
tion backend, the simulation API, the 3D visualization,
and the IO modules.

4.1.1 Simulation Backend

The simulation backend provides efficient, high-fidelity
calculation of the current state of the simulated process.
In this case, the process being simulated is a simplified
form of the process control problem proposed by the
Eastman Chemical Company in 1992 [21]. In the orig-
inal paper, the researchers provided a Fortran code sim-
ulation of an industrial chemical process involving two
exothermic reactions, two byproduct reactions, a total of
12 control valves to manipulate, and a total of 41 out-
put measurements to monitor. The chemical reactions
were nonlinear and optimal control of the process re-
quired keeping pressures and temperatures within safe
ranges in the presence of disturbances while balancing
the competing requirements to minimize costs and max-
imize efficiency.

In order to focus on a certain challenging aspect of
the process, a researcher at the University of Washing-
ton released a simplified version of the process a year
later in 1993[30]. This version simplified the process
into one two-phase chemical reactor/separator illustrated
in Figure 4 that included a total of four control valves
to manipulate and ten output measurements to monitor.
When designing a control system for this process, the
reactor pressure must be kept at a safe level while max-
imizing the efficiency of the chemical reaction and min-
imizing the components being wasted through the purge

valve. For GRFICS, we converted this simplified simu-
lation from the original Fortran and Matlab into a more
portable and standalone C++ program.

4.1.2 Simulation API

The simulation backend needed a simple and efficient
way for reporting the process measurements to the 3D
visualization and I/O modules, and receiving updates on
the control valve positions. To achieve this, GRFICS
communicates over TCP port 55555 using a simple, hu-
man readable JSON based API that can be extended for
use with other process simulations.

{
‘ ‘ r e q u e s t ” : ‘ ‘ r e a d ”

}

(a) JSON API Read Measurement Request

{
‘ ‘ p r o c e s s ” : ‘ ‘ s impleTE ” ,
‘ ‘ o u t p u t s ’ ’ : {

” f 1 f l o w ” : 1 ,
” f 2 f l o w ” : 2 ,
” p u r g e f l o w ” : 3 ,
” p r o d u c t f l o w ” : 4 ,
” p r e s s u r e ” : 5 ,
” l i q u i d l e v e l ” : 6 ,
” A i n p u r g e ” : 7 ,
” B i n p u r g e ” : 8 ,
” C i n p u r g e ” : 9 ,
” c o s t ” : 1 0

} ,
” s t a t e ” : {

” f 1 v a l v e p o s ” : 1 ,
” f 2 v a l v e p o s ” : 2 ,
” p u r g e v a l v e p o s ” : 3 ,
” p r o d u c t v a l v e p o s ” : 4

}
}

(b) JSON API Read Measurement Response

Figure 5: JSON API Examples

For the 3D visualization or the I/O modules to obtain
the current state of the chemical process, they simply
send the JSON read request shown in Figure 5a. The sim-
ulation server responds with a JSON object (Figure 5b)
containing the name of the process being simulated and
the current values of all the output and state variables in
the process. When the I/O modules receive a command
to change a valve position, they send a JSON write re-
quest illustrated in Figure 6 to tell the simulation server
to update the valve setpoints. The server then responds
with another object like Figure 5b showing the new state
of the process based on the new valve positions.

4.1.3 3D Visualization

One of the primary weaknesses of all previous work on
ICS network virtualization is the lack of engaging real-
ism for the physical process. To date all other attempts
have simply used basic line graphs of critical process
measurements, or the same human machine interfaces

4

{
” r e q u e s t ” : ” w r i t e ” ,
” d a t a ” : {

” i n p u t s ” : {
” f 1 v a l v e s p ” : 1 ,
” f 2 v a l v e s p ” : 2 ,
” p u r g e v a l v e s p ” : 3 ,
” p r o d u c t v a l v e s p ” : 4 ,

}
}

}

Figure 6: JSON API Update Inputs Example

Figure 7: “Normal” Operation

(HMI) that operators already use based on simplified 2D
graphics. There was no easy and interesting way for stu-
dents to see the effects of injecting false data into the
network and blinding the operator’s HMI or for students
to appreciate the physical consequences of their attacks.

Inspired by the past successes with flight simulators
and military training simulators[2], the GRFICS frame-
work uses a 3D game engine to visualize the true state of
the physical process with more engaging realism. For the
simplified Tennessee Eastman challenge process being
simulated here, GRFICS uses the Unity 3D game engine,
which is used by more mobile game developers than any
other third party game engine software[6].

In Unity 3D, developers can easily create games by
dragging and dropping 3D objects into the current scene
and write C# or Javascript code to describe how the ob-
ject behaves and is updated each time a frame is ren-
dered. For this version of GRFICS, we purchased pre-
made 3D models of a warehouse environment, indus-
trial reactor, pipes, and valves and used them as build-
ing blocks to create a realistic chemical manufacturing
facility. The Unity application connects to the simula-
tion backend server, requesting updated measurements
for each frame, and displaying them over each compo-
nent and in a side panel summary.

As students practice attacking the virtual chemical
process control network, they can compare the true state
of the process in Figure 7 side by side with the HMI
screen that the operator at the victim facility would see,
discussed in more detail in Section 4.3. When a student

Figure 8: Pressure Limits Exceeded

who is attacking the system succeeds in forcing the pres-
sure in the reactor vessel to exceed the safety limit of
3200 kilopascals, an explosion effect plays on top of the
reactor vessel followed by fire effects, illustrated in Fig-
ure 8.

4.1.4 I/O Modules

The I/O modules are the pieces that tie the process sim-
ulation to the virtual ICS network. On the same VM as
the simulation backend and visualization, simple Mod-
bus servers are created that listen on many different IP
address aliases to appear as multiple devices on the net-
work. Each Modbus server continuously polls the simu-
lation backend for current measurements and reports dif-
ferent measurements over Modbus. For example, one
Modbus I/O server reports the position of the product
valve, the flow rate through it, and accepts Modbus write
commands to update the position of the valve.

Since Modbus, and virtually all other ICS network
protocols, are unauthenticated, students can practice in-
jecting commands directly to the I/O modules, launching
man-in-the-middle attacks to report false data, and de-
signing firewall rules and intrusion detection rules to pro-
tect the insecure-by-design I/O. Due to the low-fidelity
simplifications, more advanced attacks like buffer over-
flows and firmware reverse engineering are not supported
at this level.

4.2 Programmable Logic Controller

The programmable logic controller (PLC) component of
the framework continuously polls the Modbus IO for the
current state of the process, executes a simple control
logic program to determine necessary control actions,
and sends the updated control valve positions to the Mod-
bus IO. Additionally, the PLC accepts control commands
from the HMI and responds to read requests for process
measurements. In this initial version, we use the Open-
PLC project [17] for the PLC component to keep the en-

5

Figure 9: PLCOpen Editor

Figure 10: OpenPLC Web Interface

tire framework free and open source. Additionally, we
replace the up-to-date version of the libmodbus library
that the PLC uses with an older version vulnerable to
buffer overflow attacks. In higher fidelity virtual ICS net-
works, either hardware PLCs can be used in the loop or
proprietary software PLCs running in VMs can be used.

The PLC program itself implements the multi-loop
control strategy proposed in the original paper [30] using
a combination of PID (proportional-integral-derivative)
controllers for the different process measurements. To
program PLCs in the real world, engineers must develop
the PLC program on a separate engineering workstation
and then upload the program to the PLC. In this work, we
use the PLCOpen Editor software 9 to create the program
and then upload the program using OpenPLC’s web in-
terface, Figure 10.

4.3 Human Machine Interface
The last piece of the GRFICS framework is a combined
human machine interface (HMI) and engineering work-
station. HMIs are typically 2D graphical interfaces for
operators of the ICS facility to monitor key measure-
ments of the process and occasionally interact with the
process using Start/Stop buttons or updating setpoints.
In this version of GRFICS, we used an open-source HMI
product under active development called AdvancedHMI
[1].

Figure 11: Operator Human Machine Interface (HMI)

Using the AdvancedHMI design environment, we de-
veloped an HMI (Figure 11) for the simplified Tennessee
Eastman Chemical process being simulated. Operators
can use the Stop button to send the process into a “safe”
state, restart it with the “Run” button, and update the
product flow setpoint with the text box entry. Note that
in real world facilities startup and emergency shutdown
procedures are usually more complicated to ensure a safe
and gradual change of state.

5 Example Exercises

To encourage adoption of GRFICS for learning and
teaching ICS security, we now provide a brief overview
of suggested offensive and defensive exercises. In
these exercises, we use several VirtualBox VMs running
Ubuntu Desktop for the simulation VM and HMI VM,
and Ubuntu server for the PLC VM. We configured a
host-only networking adapter to create a virtual network
where all devices can communicate with one another,
and the host machine can capture the network traffic for
review.

5.1 Offense
For the offensive exercises, we assume the attacker has
successfully phished an employee on the corporate net-
work, compromised their machine, and is attempting to
use it to pivot into a poorly protected control network
to perform reconnaissance and ultimately cause physical
damage.

5.1.1 Password Cracking

To allow for easy maintenance on the control system by
third party contractors or for remote monitoring of the
process, many facilities have remote access enabled to
machines on the plant floor. Unfortunately, this is not

6

always securely implemented with two-factor authenti-
cation or even strong password policies. To gain the ini-
tial foothold on the control system network, students can
practice cracking weak SSH passwords on the HMI VM
using tools such as Ncrack or Hydra.

5.1.2 ICS Reconnaissance

Once they have cracked the weak SSH password and
gained access to the combined HMI and engineering
workstation, students can begin reconnaissance on the
physical process of the facility they are attacking. This
can include exploring the machine to look for process
diagrams (Figure 4), PLC program files (Figure 9), and
the HMI screen (Figure 11). Students can also perform
standard network scans with Nmap [10] to see how many
devices are on the control network, perform man-in-the-
middle (MITM) attacks with Ettercap [3] to study how
they are communicating, and examine the devices deeper
with free Modbus scanners. Note however that in the
real world some legacy devices are so fragile that a stan-
dard Nmap scan can overwhelm them with bandwidth
and concurrent TCP connections causing them to crash.

5.1.3 Modbus Command Injection

After students have identified all Modbus devices, gained
a basic understanding of the physical process, and deter-
mined the mapping between addresses and physical mea-
surements, they can begin attacking the physical process.
One of the most straightforward attacks takes advan-
tage of the unauthenticated Modbus protocol and sim-
ply sends direct Modbus commands to the IO devices or
the PLC. Students can either practice writing their own
scripts to send the malicious commands, or simply use
an existing tool like QModMaster [13].

However, this simple approach has a few drawbacks.
First, injecting commands alone would likely be detected
by the operators monitoring the HMI. To be successful
the attacker would also need to be performing a MITM
attack blinding the HMI and/or the PLC. Second, de-
pending on the safety checks built in to the PLC logic, it
may be difficult or impossible to achieve significant dam-
age without also sending false data to the PLC. Finally,
these attacks could be easily detected and prevented with
basic intrusion detection systems and network segmenta-
tion.

5.1.4 PLC Program Modifications

Another approach to achieving a successful physical at-
tack on the system would be to modify the PLC pro-
gramming, as Stuxnet[26] and Triton[15] did. Unfortu-
nately, most PLCs have weak access control with pass-
word authentication disabled by default and no password

strength policies, making it trivial to log in and repro-
gram the PLC using the legitimate engineering software.
OpenPLC is no exception to this rule, so students can
practice modifying the program in the PLCOpen Edi-
tor and uploading new malicious programs to the Open-
PLC’s web interface.

5.1.5 Modbus Buffer Overflow

Finally, the abundance of legacy devices and slow patch-
ing cycle in ICS networks means there is a high chance
of protocol vulnerabilities in the end devices. Buffer
overflow vulnerabilities are one of the most common and
typically arise from accepting user input strings without
proper bounds checking. Attackers crafting an exploit
for these vulnerabilities have to ensure that their payload
does not contain any bad characters (such as whitespace)
that would terminate the string early. However, ICS pro-
tocols are primarily machine-to-machine communication
and instead of accepting human readable strings they ex-
change raw binary information, which makes generating
malicious payloads even easier.

Even in the open source community, vulnerabilities
can remain unpatched for far too long. For example,
a buffer overflow vulnerability was publicly reported in
the libmodbus library [7], a free open-source Modbus
implementation, in September 2011 and was not fixed
until two years later. The OpenPLC project uses an up-
dated and patched version of this library, but for GRFICS
we reverted the library back to a older vulnerable ver-
sion, with relevant code snippets of the vulnerability il-
lustrated in Figure 12.

The specific vulnerability stems from the library al-
locating a fixed amount of memory for every response,
and not performing the necessary bounds checking to en-
sure that it doesn’t try to respond with too much data.
This means that sending a read request for data longer
than 260 bytes would result in the library overflowing the
buffer and overwriting the return address with whatever
data had been requested. In order for attackers to con-
trol this data, and thereby control the return address, they
must use a lesser known Modbus function code that first
writes arbitrary data to a specific address range and then
immediately reads data from a specified address range.
With the right combination of write and read address
ranges, attackers can craft a reliable exploit that achieves
arbitrary code execution. This exercise provides students
with a way to practice and learn about buffer overflow
vulnerabilities in the context of ICS networks and then
use the exploit to attempt to cause physical damage to
the process.

7

d e f i n e MAX MESSAGE LENGTH 260

. . .

i n t modbus rep ly (modbus t ∗c tx , c o n s t u i n t 8 t ∗req ,
i n t r e q l e n g t h , modbus mapping t ∗mb mapping)

{
. . .

u i n t 8 t r s p [MAX MESSAGE LENGTH] ;
. . .

c a s e FC WRITE AND READ REGISTERS : {
. . .

f o r (i = a d d r e s s ; i < a d d r e s s + nb ; i ++) {
r s p [r s p l e n g t h ++] = mb mapping−>t a b r e g i s t e r s [i] >> 8 ;
r s p [r s p l e n g t h ++] = mb mapping−>t a b r e g i s t e r s [i] & 0xFF ;

}

Figure 12: Code snippets of libmodbus buffer overflow
vulnerability

5.2 Defense

In this section we provide a brief walkthrough of de-
fenses that can be deployed to prevent and mitigate the
attacks explained in the previous section. For these de-
fensive exercises, we assume that the defending facil-
ity has an extremely limited budget and can only de-
ploy a single unified threat management(UTM) appli-
ance/router on the control network to implement firewall
and intrusion detection rules. Again, to keep GRFICS
completely free and open-source we use the OpenWrt
project [12], an embedded Linux OS for routers.

5.2.1 Network Segmentation

Network segmentation is one of the first recommenda-
tions for increasing ICS network security and involves
segregating network nodes into zones based on func-
tionality and trust level, only allowing communication
between zones or nodes that absolutely need it. This
makes it significantly harder for attackers to expand their
foothold throughout the network and to make direct at-
tacks on the physical process. For these exercises, stu-
dents can practice separating the nodes in the GRFICS
framework into subnets based on the hierarchies de-
scribed in the ISA-95 standard and illustrated in Figure
13. Firewall rules can be applied using raw iptables rules
or OpenWrt’s graphical interface to whitelist nodes and
protocols.

5.2.2 Intrusion Detection and Prevention

Network segmentation makes it significantly harder for
an attacker to breach the control network, but not impos-
sible. To prevent the attacker from causing any physical
harm, defenders need to be able to quickly detect the in-
trusion and can even implement automated defenses to
prevent some of the damage.

While there are a variety of companies selling ICS-
specific intrusion detection (IDS) and prevention systems

Figure 13: Segmented network architecture according to
Purdue Reference Model

(IPS), Snort [14] is a popular free and open-source solu-
tion for students to practice learning what such systems
are capable of. Using Snort, students can write rules to
detect the various attacks they practiced in Section 5.1.
For example, Snort rules can be written to alert opera-
tors of attackers performing reconnaissance by detecting
suspected SSH password guessing, network scanning,
and Modbus scanning. With a little reverse engineer-
ing work, students can also write rules to detect when
new programs are uploaded to the PLC and when the
PLC is started and stopped. Finally, Snort provides in-
trusion prevention functionality to actively block certain
packets if it matches certain rules. Using Snort’s intru-
sion prevention functionality, students can write rules to
block the vulnerable Modbus function code entirely or
only block it if an exploitation attempt is detected.

6 Conclusions and Future Work

The shortage of skills in ICS security lags even further
behind traditional cybersecurity due to much higher bar-
riers to entry. While there are plenty of options for hands-
on practice with network penetration testing and defense,
none of them help teach ICS-specific skills. To address
this need, we developed the GRFICS framework for vir-
tualizing entire ICS networks including realistic physi-
cal processes simulations, which is visualized using the
Unity 3D game engine to increase realism and engage-
ment. We then outlined example exercises students can
use to get hands-on experience both attacking and de-
fending ICS networks and physical processes. In future
work we will continue developing ICS simulations and
visualizations for a broader range of applications, such
as water treatment facilities and discrete manufacturing,
and expand the virtual network with other common com-
ponents, including process historians.

8

References
[1] Advancedhmi. https://www.advancedhmi.com/.

[2] America’s army. https://www.americasarmy.com/press.

[3] Ettercap home page.

[4] A graphical realism framework for industrial control simulations.
https://github.com/djformby/GRFICS.

[5] Introducing json. https://www.json.org/.

[6] The leading global game industry software. https://unity3d.
com/public-relations.

[7] libmodbus.org. http://libmodbus.org/.

[8] Metasploitable 2 exploitability guide. https:

//metasploit.help.rapid7.com/docs/

metasploitable-2-exploitability-guide.

[9] National scada testbed. https://www.energy.gov/sites/

prod/files/oeprod/DocumentsandMedia/NSTB_Fact_

Sheet_FINAL_09-16-09.pdf.

[10] Nmap: the network mapper. https://nmap.org/.

[11] A one-of-a-kind garden of testbeds. https://itrust.sutd.

edu.sg/testbeds/overview/.

[12] Openwrt project: About the openwrt/lede project. https://

openwrt.org/about.

[13] Qmodmaster. https://sourceforge.net/projects/

qmodmaster/.

[14] What is snort? https://www.snort.org/faq/

what-is-snort.

[15] Mar-17-352-01 hatmansafety system targeted malware.
https://ics-cert.us-cert.gov/sites/default/

files/documents/MAR-17-352-01\%20HatMan\\\%E2\

%80\%94Safety\%20System\%20Targeted\%20Malware\

_S508C.pdf, 2017.

[16] ALVES, T., DAS, R., AND MORRIS, T. Virtualization of indus-
trial control system testbeds for cybersecurity. In Proceedings
of the 2Nd Annual Industrial Control System Security Workshop
(New York, NY, USA, 2016), ICSS ’16, ACM, pp. 10–14.

[17] ALVES, T. R., BURATTO, M., DE SOUZA, F. M., AND RO-
DRIGUES, T. V. Openplc: An open source alternative to au-
tomation. In IEEE Global Humanitarian Technology Conference
(GHTC 2014) (Oct 2014), pp. 585–589.

[18] ASSANTE, M. J., AND LEE, R. M. The in-
dustrial control system cyber kill chain. https:

//www.sans.org/reading-room/whitepapers/ICS/

industrial-control-system-cyber-kill-chain-36297.

[19] BERGMAN, D. C., JIN, D., NICOL, D. M., AND YARDLEY,
T. The virtual power system testbed and inter-testbed integra-
tion. In Proceedings of the 2Nd Conference on Cyber Security
Experimentation and Test (Berkeley, CA, USA, 2009), CSET’09,
USENIX Association, pp. 5–5.

[20] CHABUKSWAR, R., SINPOLI, B., KARSAI, G., GIANI, A.,
NEEMA, H., AND DAVIS, A. Simulation of network attacks
on scada systems. In First Workshop on Secure Control Systems
(2010).

[21] DOWNS, J., AND VOGEL, E. A plant-wide industrial process
control problem. Computers & Chemical Engineering 17, 3
(1993), 245 – 255. Industrial challenge problems in process con-
trol.

[22] GHALEB, A., ZHIOUA, S., AND ALMULHEM, A. Scada-sst:
a scada security testbed. In 2016 World Congress on Industrial
Control Systems Security (WCICSS) (Dec 2016), pp. 1–6.

[23] GREEN, B., LEE, A., ANTROBUS, R., ROEDIG, U., HUTCHI-
SON, D., AND RASHID, A. Pains, gains and plcs: Ten lessons
from building an industrial control systems testbed for security
research. In 10th USENIX Workshop on Cyber Security Experi-
mentation and Test (CSET 17) (Vancouver, BC, 2017), USENIX
Association.

[24] HUTCHINS, E. M., CLOPPER, M. J., AND AMIN,
R. M. Intelligence-driven computer network defense in-
formed by analysis of adversary campaigns and intrusion
kill chains. https://www.lockheedmartin.com/\\

content/dam/lockheed/data/corporate/documents/

LM-White-Paper-Intel-Driven-Defense.pdf.

[25] KROTOFIL, M. Rocking the pocket book: Hacking chemical
plants for competition and extortion. https://www.energy.

gov/sites/prod/files/oeprod/DocumentsandMedia/

NSTB_Fact_Sheet_FINAL_09-16-09.pdf, 2015.

[26] LANGNER, R. To kill a centrifuge. http://www.

langner.com/en/wp-content/uploads/2013/11/

To-kill-a-centrifuge.pdf, November 2013.

[27] MATHUR, A. P., AND TIPPENHAUER, N. O. Swat: a water treat-
ment testbed for research and training on ics security. In 2016 In-
ternational Workshop on Cyber-physical Systems for Smart Water
Networks (CySWater) (April 2016), pp. 31–36.

[28] QUEIROZ, C., MAHMOOD, A., HU, J., TARI, Z., AND YU,
X. Building a scada security testbed. In 2009 Third International
Conference on Network and System Security (Oct 2009), pp. 357–
364.

[29] QUEIROZ, C., MAHMOOD, A., AND TARI, Z. Scadasim:a
framework for building scada simulations. IEEE Transactions
on Smart Grid 2, 4 (Dec 2011), 589–597.

[30] RICKER, N. L. Model predictive control of a continuous, non-
linear, two-phase reactor. Journal of Process Control 3, 2 (1993),
109 – 123.

[31] STOUFFER, K., PILLITTERI, V., LIGHTMAN, S., ABRAMS,
M., AND HAHN, A. Guide to industrial control sys-
tems (ics) security. https://nvlpubs.nist.gov/nistpubs/
specialpublications/nist.sp.800-82r2.pdf.

9

