
A Tool for Teaching Reverse Engineering

Clark Taylor1 and Christian Collberg1

1Department of Computer Science, University of Arizona

Abstract

Tigress is a freely available source-to-source, C lan-
guage code obfuscator. The tool allows users to ob-
fuscate existing programs or programs randomly gen-
erated by Tigress itself. Tigress is highly flexible, pro-
viding a large number of standard obfuscating code
transformations, and many variants of each transfor-
mation. Tigress may be used in many contexts, but in
this paper we describe its use in teaching code reverse
engineering techniques. In order to make Tigress eas-
ily available and usable to educators and students, we
have integrated Tigress into a web application. In ad-
dition to directly benefiting education, this new web
application offers unique ways to advance research on
code obfuscation and reverse engineering.

1 Introduction

In computer science, and computer security in partic-
ular, students often learn skills through exercises. In-
structors generate the exercises with the goal of mim-
icking situations found in the real world. However,
generating exercises can be both time consuming and
difficult; without automation, instructors cannot eas-
ily generate individualized challenges for students,
but rather must assign and manually administer a
single problem to the entire class. Students, on the
other hand, often spend significant amounts of time
setting up an environment in which they have the
tools necessary to solve the problem.

Instruction in code reverse engineering suffers from
a lack of easy to use tools to resolve these difficulties.
Here, we confront these problems by combining Ti-

gress [1]—an automated C language, source-to-source
code obfuscator—with a web application. This ap-
plication allows the instructor to generate individu-
alized target programs for students to reverse engi-
neer. Each program consists of automatically gen-
erated random code which has been obfuscated with
a set of transformations. The complexity of the re-
sulting target program can be configured by the in-
structor. The web application then generates virtual
machines (VMs) which, in addition to the target pro-
gram, have been configured with reverse engineering
tools selected by the instructor. The students down-
load the VM, deobfuscate the code with the provided
tools, and upload the results back to the web appli-
cation. Grading the results can be both automatic
and manual.

During the process described above, the VMs may
also collect information about the tools, methods,
and processes the students used to solve the exer-
cises. The resulting data sets may reveal the most
effective reverse engineering practices, both in actual
code deobfuscation as well as in instruction.

Our paper is organized as follows: First, we review
previous work. Second, we describe our proposed sys-
tem. Third, we present our current implementation.
Finally, we discuss our experiences in employing this
implementation.

2 Related Work

The skills taught by the system we propose in-
clude basic reverse engineering methodology and use
of standard tools. As an educational tool, our
work expands on other developments in teaching

1

computer security skills, particularly drawing from
competition-based systems such as picoCTF [2] and
iCTF [3].

2.1 Reasons for Reverse Engineering

Cipresso [4] provides an overview of the applications
and goals of software reverse engineering. He iden-
tifies two legitimate reasons for reverse engineering
code: (1) to understand, patch, and maintain legacy
code; and (2) to determine the function of an un-
known piece of software for security purposes [4].
Other, less legitimate reasons for reverse engineering
include gaining access to closed-source code which
may be protected by legal or ethical standards such
as intellectual property law or national security poli-
cies. The legitimate uses inspire the goals of the
project here: we wish to educate and train future
security professionals in the art of software reverse
engineering. In particular, we focus on (2): we want
to provide training in how to reverse engineer pur-
posefully obfuscated code. Such training will provide
the students with the necessary skills to reverse en-
gineer malware.

2.2 Computer Security Competition

Computer security competitions have become very
popular [2, 3]. They take various forms and have dif-
ferent motives: while some seek to train, others em-
phasize the competitive and entertainment aspects of
breaking and entering. Competitions often include
challenges which distribute obfuscated code for vary-
ing forms of analysis. Typically, these codes have
been designed and obfuscated by hand by those man-
aging the competition. Competitors download and
deobfuscate the code and extract from it some mean-
ing or token [2]. Some competitions also require peer-
to-peer code development and reverse engineering. In
such cases, competitors must reverse engineer other
competitors’ code in order to advance towards a goal
such as gaining access to a system [3].

In addition to general computer security compe-
titions, there exist several competitions whose sole
purpose is to create [5] or reverse engineer [6] ob-
fuscated code. Often, these competitions function

as boundary-pushers, testing the latest tools and
methods of code obfuscation and reverse engineer-
ing. Some competitions offer polymorphic challenges
to add some randomization [7].

2.3 Reverse Engineering Tools

Several code reverse engineering tools have been
demonstrated to be effective [8]. Examples include
IDA [9], GDB [10], OllyDbg [11], Valgrind [12], and
the angr framework [13]. IDA is a debugger with
an extensive graphical user interface that visualizes
the control flow of binaries. GDB—the familiar
command line debugger—has several functions which
may be used for reverse engineering, including disas-
sembly, debugging, and direct modification of exe-
cutable images. OllyDbg is another debugger which
contains several features that track the machine state
and software interaction. Valgrind is a virtualizing
debugger framework which includes prebuilt tools for
code execution tracing. The angr tool is a new binary
analysis framework with several components that al-
low users to programmatically disassemble, simulate
the execution of, and trace data in binaries. In the
system we propose here we make these, and other,
tools available to the students.

2.4 Automated Code Obfuscation

Automated code obfuscation comes in several vari-
eties. First, some pieces of software integrate obfus-
cation into their own code. This is typical of viruses,
which self-obfuscate in order to avoid detection [14].
Second, there exist a wide variety of stand-alone tools
available to obfuscate code [15, 16]. An obfuscating
transformation changes the form of a piece of code,
while maintaining its semantics, in order to impede
analysis by human reverse engineers or by automatic
deobfuscation tools [17].

Of these tools, Tigress [1] is a freely available tool
that offers a large collection of transformations. It
operates on the C language at the source code level.
Tigress has built-in features which allow randomized
code generation as well as randomized code trans-
formations. In this project we use Tigress to create

2

new reverse engineering challenges, first by generat-
ing random code and then by obfuscating this code.

3 Proposed System

In order to teach code reverse engineering skills, in
this paper we propose a system which automatically
generates and administers reverse engineering exer-
cises for students to complete. This system con-
tains several features, outlined below, which we im-
plemented in part.

3.1 Administrative Functions

Previously, reverse engineering exercises were gener-
ated by hand or from scripts. These challenges had
to be individually handled in an ad-hoc fashion over
general tools like email. This legacy process creates a
large amount of manual overhead in administering ex-
ercises, as the instructor must create individual chal-
lenges for individual students, distribute those chal-
lenges individually, accept and aggregate the answers
individually, and grade them—individually. Script-
ing can help in some of these aspects, but an auto-
mated system promises to simplify the process fur-
ther. Thus, the goal of our system is to require only
a small amount of instructor input to create and ad-
minister a challenge set.

3.2 Randomization

Reverse engineering competitions do not typically
generate individualized targets. In fact, we could not
find an example of a system or script that generates
randomized reverse engineering problems beyond lim-
ited application of simple polymorphic algorithms to
otherwise identical code. In a competitive setting
such randomization may not be necessary. Pedagog-
ical settings, by contrast, require randomization, as
it allows instructors to effectively eliminate problems
related to students sharing work or finding previous
solutions.

3.3 Tools and Challenge Distribution

Code reverse engineering employs a variety of
methodologies and tools. Teaching effective reverse
engineering skills necessarily requires instruction in
the use of these tools. It is important to make the
tools available to the students in an effective and effi-
cient manner, allowing them to quickly begin to solve
problems. Our system includes dynamically config-
ured VMs which provide a pre-built environment to
students, with reverse engineering tools already in-
stalled. Additionally, these VMs include the actual
challenge code, eliminating the step of downloading
the obfuscated code manually. Students must only
download a single VM file from our system, load it
into a VM player, and begin to solve problems.

3.4 Data Collection

One goal of our system is to create data sets which
may be used to evaluate the methods, techniques,
and tools used in reverse engineering. Requiring stu-
dents to use pre-configured VMs allows us to add
data collection software. This software may collect
various pieces of information from students while
they solve challenges: running processes, screenshots,
network traffic, system kernel modules, and even
high-resolution data from reverse engineering tools.
Our goal is to use this data to evaluate pedagogi-
cal methodologies and instruction as well as moni-
tor progress. Additionally, these data sets could be
used to determine the most effective modes of reverse
engineering code, which in turn aids analysis of the
effectiveness of code obfuscation itself [18].

3.5 Application Functionality

We will next consider the three main steps in how our
proposed system is used: create a challenge, solve a
challenge, and grade a challenge. As shown in Fig-
ure 1, each of these steps has several parts. Typically,
a challenge is created by an instructor by combining a
VM configuration and a target program configuration.
The latter is a list of command line arguments for the
Tigress obfuscator to create a random program with
certain characteristics and then to obfuscate this pro-

3

(a) Alice uploads a Challenge package, which Bob uses to generate his Challenge.

(b) Bob solves and uploads his Challenge, which Alice then grades.

Figure 1: This shows the basic use cases. Alice is an instructor and Bob is a student.

(a) This use generates obfuscated code which students may reverse engineer into cleartext (un-obfuscated)
code.

(b) This use generates a binary to crack; variations include disabling parts of code or extracting a password.

Figure 2: This displays the two current types of Challenges generated thus far.

4

gram with a particular set of transformations. Once
created, a student downloads the challenge, solves the
task, and submits the answer. This creates a chal-
lenge submission, which contains the solution. The
instructor then invokes automatic grading or enters
grades manually.

4 Implementation

We implemented the system described above in part;
some features are not yet complete.

4.1 Architecture

Our implementation utilizes standard web compo-
nents: a web server connected to a database. Typi-
cal administrative data—including authentication in-
formation and data dictating instructor-challenge-
student relationships—is stored in the database, as
is challenge data such as obfuscation configurations.
The web server interacts with the native operating
system and file system in order to call Tigress, giving
it flags and files to obfuscate. The web application
stores the non-obfuscated and final files in a database
for download by students and subsequent grading.

4.2 Challenge Creation

In configuring a challenge, instructors may upload a
base file with which to start obfuscation. Alterna-
tively, Tigress may also generate a random file upon
which to perform obfuscation, ensuring that students
receive unique problems; it does this by accepting
certain arguments (specified by the instructor) with
which it creates random C code with random vari-
ables and functions structured in random ways but
which always include particular features to reverse
engineer [1]. Once the target program is defined, our
system uses Tigress to execute selected obfuscating
transforms on the target program. These steps in-
troduce further randomness by arbitrarily selecting
transform-dependent variables such as function or-
dering. Figure 2 illustrates how Tigress creates two
types of problems: source code reverse engineering
and binary cracking.

4.3 Virtual Machines

Currently, our implementation only provides a stati-
cally configured VM for students to download. The
VM provided is a Kali [19] distribution with the ad-
dition of IDA (demo version) and angr. This falls
short of the all-in-one solution presented above. How-
ever, dynamically generating unique VMs has thus
far proven to be too slow and the resulting files too
large. To resolve these difficulties in future work, we
are considering using dockers and provisioners.

4.4 Grading

The current implementation only allows manual chal-
lenge grading. Instructors may review submitted and
base files to determine whether the student solved the
problem. Grades are then be entered into the system,
stored in the database, and then made available for
students to review.

5 Use and Results

We used our current system to create and administer
two challenges for a computer security course. De-
spite a few small and typical bugs, students were able
to download challenge code, solve those challenges,
and upload answers. Two challenges were offered,
the second more difficult than the first; students were
required to answer one of the two problems.

The easier problem consists of a program that
checks the current time before printing a variable. If
the time check is not adequately met, then the pro-
gram produces a segmentation fault. Students were
to alter the binary and eliminate the time check and
thus unlock an output calculated from a myriad of
operations. The time check and variable calculation
function is shown in Figure 3. The second problem is
similar to the first but adds an additional aspect: in
addition to the time check students must also elimi-
nate a password check.

In the submission file, students are required to
state the level of difficulty they encountered and the
amount of time they spent solving the problem. We
only analyzed files submitted for the first, easier prob-
lem, as only two students submitted answers for the

5

void SECRET(unsigned long input [1] , unsigned long output [1]) {
unsigned long s t a t e [1] ; //Variab le d e c l a ra t i on
unsigned long (∗ ou tpu t r e f) [1] = output ;
unsigned int copy15 , copy16 , copy12 ;
unsigned short copy17 ; {
s t a t e [0UL] = (input [0UL] << 3UL) | (input [0UL] >> 61UL) ; // I n i t i a l expansion o f the input
copy12 = ∗ ((unsigned int ∗)(& s t a t e [0UL]) + 1) ;
∗ ((unsigned int ∗)(& s t a t e [0UL]) + 1) = ∗ ((unsigned int ∗)(& s t a t e [0UL]) + 0) ;
∗ ((unsigned int ∗)(& s t a t e [0UL]) + 0) = copy12 ;
struct t imeva l c i l tmp13 ;
int c i l tmp14 = gett imeofday(& c i l tmp13 , 0) ; // Get the time
long time = c i l tmp13 . t v s e c ;
i f ((s t a t e [0UL] >> 4UL) & 1UL) { //Second s ta t e , con t ro l s t r u c t u r e s to compute the output

s t a t e [0UL] |= (s t a t e [0UL] & 63UL) << 4UL;
copy15 = ∗ ((unsigned int ∗)(& s t a t e [0UL]) + 0) ;
∗ ((unsigned int ∗)(& s t a t e [0UL]) + 0) = ∗ ((unsigned int ∗)(& s t a t e [0UL]) + 1) ; }

int f a i l e d |= time > 1398629497UL; //This i s the time check
copy17 = ∗ ((unsigned short ∗)(& s t a t e [0UL]) + 1) ; //Expansion phase to compute output
∗ ((unsigned short ∗)(& s t a t e [0UL]) + 1) = ∗ ((unsigned short ∗)(& s t a t e [0UL]) + 2) ;
∗ ((unsigned short ∗)(& s t a t e [0UL]) + 2) = copy17
i f (f a i l e d) {

ou tpu t r e f = 0UL; // Set po in t e r to NULL to fo r ce crash }
(∗ ou tpu t r e f) [0UL] = s t a t e [0UL] >> 1UL; }

Figure 3: Example generated code.

Easy Medium Hard

5

10

15

20

N
u
m

b
er

of
st

u
d
en

ts

Figure 4: This graph displays students’ self reported
difficulty in solving Challenge 1.

0-3 3-6 6-9 9-12 12+

2

4

6

8

10

12

Figure 5: This graph displays students’ self reported
time spent solving Challenge 1, in hours.

6

second, harder problem. Figure 4 displays a sum-
mary of students’ reported level of difficulty; most
found the problem either easy or hard. This likely
corresponds to students’ prior experience. Some of
the difficulty students encountered derived from mi-
nor issues with the new system implementation and
process; examples of such issues include difficulty of
downloading the VM as well as general problems with
VM players. We see that students spent an average
of about 5.5 hours solving the problem; the distribu-
tion of student time spent solving problems is shown
in Figure 51. Most students were able to complete
the assignment, which indicates that our system pro-
vided an effective means of generating and adminis-
tering reverse engineering challenges. Additionally,
students’ general ability to complete the assigned
challenge in a reasonable amount of time indicates
that the assignment was likely successful in teaching
reverse engineering skills to the students here.

6 Future Work

Our current focus is to improve the current system
implementation to bring it closer to the proposed sys-
tem. The current system lacks dynamic VM creation;
the problems we encountered when implementing this
must be resolved in the future. We will furthermore
incorporate data collection facilities in order to gen-
erate usage data for analysis. Finally, we will add
facilities to support semi-automatic grading. The lat-
ter poses significant problems. Some generated chal-
lenges require finding some type of hidden token and
may be easily graded. Determining whether a sub-
mission has successfully reverse engineered a more
general obfuscated target program, however, is less
straightforward. In such cases, there exist two crite-
ria a grader must consider. First, the grader must
determine identical functionality between the target
program and the supposedly deobfuscated submis-
sion. This may be accomplished by comparing in-
put and output of the target and submitted pro-
grams. Second, the grader must be able to deter-
mine whether the submitted program has successfully

1The data presented here has been ruled IRB exempt by
the University of Arizona.

deobfuscated the target program—that is, whether
the submitted program is the equivalent of the non-
obfuscated version of the target program. Control
flow graphs comparisons may aid in determining that
equivalence [20].

In addition to these concrete improvements on the
current implementation, future work encompasses
work on creating novel challenge generation scripts
as well as additional work on Tigress. As more chal-
lenges are developed by instructors, they may be eas-
ily shared with instructors everywhere. Due to ran-
domization, challenge reuse does not pose a problem;
students will not be able find or share answers to
randomized exercises.

7 Conclusion

Reverse engineering code is a vital skill in several
fields within Computer Science. Teaching reverse en-
gineering and, in particular, contemporary methods
and tools used in reverse engineering is not an easy
task. Without automation, instructors have to manu-
ally obfuscate uniform code they themselves develop.
This paper proposes an application which automates
the process and describes our initial implementation
of that system. Using the Tigress C source code ob-
fuscator, our application allows instructors to auto-
matically create randomized obfuscated code for indi-
vidual students; instances of challenges that students
download share only general objectives but not com-
mon code. Providing a virtual environment precon-
figured with common reverse engineering tools fur-
ther simplifies the learning process.

Initial results demonstrate the efficacy of the cur-
rent implementation of the system. Further develop-
ment of this system holds additional promise by en-
abling the generation of data sets useful for research
in reverse engineering.

Acknowledgments

We thank David Christy for creating, administering,
and grading the challenges. This project was funded
in part by NSF grant CNS-1145913.

7

References

[1] C. Collberg. The Tigress C Di-
versifier/Obfuscator. [Online]. Available:
http://tigress.cs.arizona.edu/index.html

[2] P. Chapman, J. Burket, and D. Brumley, “Pic-
oCTF: A Game-Based Computer Security Com-
petition for High School Students,” in 2014
USENIX Summit on Gaming, Games, and
Gamification in Security Education (3GSE 14).
USENIX Association, 2014.

[3] G. Vigna, K. Borgolte, J. Corbetta, A. Doupé,
Y. Fratantonio, L. Invernizzi, D. Kirat, and
Y. Shoshitaishvili, “Ten Years of iCTF: The
Good, The Bad, and The Ugly,” in 2014
USENIX Summit on Gaming, Games, and
Gamification in Security Education (3GSE 14).
USENIX Association, Aug. 2014.

[4] T. Cipresso, “Software Reverse Engineering Ed-
ucation,” 2009.

[5] L. Broukhis, S. Cooper, and L. C. Noll.
The International Obfuscated C Code Contest.
[Online]. Available: http://www.ioccc.org/

[6] LayerOne 2016 - (De)Obfuscation Contest.
[Online]. Available: https://obf.afm.la/

[7] W. chang Feng, “A Scaffolded, Metamorphic
CTF for Reverse Engineering,” in 2015
USENIX Summit on Gaming, Games,
and Gamification in Security Education
(3GSE 15). Washington, D.C.: USENIX
Association, Aug. 2015. [Online]. Available:
http://blogs.usenix.org/conference/3gse15/summit-
program/presentation/feng

[8] S. K. Udupa, S. K. Debray, and M. Madou, “De-
obfuscation: Reverse Engineering Obfuscated
Code,” in 12th Working Conference on Reverse
Engineering (WCRE’05), 11 2005, pp. 10 pp.–.

[9] IDA: About. [Online]. Available:
https://www.hex-rays.com/products/ida/

[10] GDB: The GNU Project Debugger. [Online].
Available: https://www.gnu.org/software/gdb/

[11] OllyDbg 2.01. [Online]. Available:
http://www.ollydbg.de/version2.html

[12] Valgrind. [Online]. Available:
http://valgrind.org/

[13] angr. [Online]. Available: http://angr.io/

[14] J.-M. Borello and L. Mé, “Code obfuscation
techniques for metamorphic viruses,” Springer
Journal in Computer Virology, vol. 3, no. 3, pp.
211–220, 8 2008.

[15] P. Junod, J. Rinaldini, J. Wehrli, and
J. Michielin, “Obfuscator-LLVM – Software
Protection for the Masses,” in Proceedings of
the IEEE/ACM 1st International Workshop on
Software Protection, SPRO’15, Firenze, Italy,
May 19th, 2015, B. Wyseur, Ed., 2015, pp. 3–9.

[16] B. Bertholon, S. Varrette, and P. Bouvry,
JShadObf: A JavaScript Obfuscator Based
on Multi-Objective Optimization Algorithms.
Springer Berlin Heidelberg, 2013, pp. 336–349.

[17] C. Collberg and J. Nagra, Surreptitious Soft-
ware: Obfuscation, Watermarking, and Tam-
perproofing for Software Protection, 1st ed.
Addison-Wesley Professional, 2009.

[18] S. Banescu, M. Ochoa, and A. Pretschner, “A
Framework for Measuring Software Obfuscation
Resilience against Automated Attacks,” in Soft-
ware Protection (SPRO), 2015 IEEE/ACM 1st
International Workshop on, 2015, pp. 45–51.

[19] T. Heriyanto, L. Allen, and S. Ali, Kali
Linux: Assuring Security By Penetration Test-
ing. Packt Publishing, 2014.

[20] P. P. Chan and C. Collberg, “A Method to Eval-
uate CFG Comparison Algorithms.” [Online].
Available: http://cfgsim.cs.arizona.edu/qsic14-
slides.pdf

8

