
Ten Years of iCTF: The Good, The Bad, and The Ugly

Giovanni Vigna, Kevin Borgolte, Jacopo Corbetta, Adam Doupe,
Yanick Fratantonio, Luca Invernizzi, Dhilung Kirat, and Yan Shoshitaishvili

(vigna,kevinbo,jacopo,adoupe,yanick,invernizzi,dhilung,yans)@cs.ucsb.edu
The SecLab Group

University of California in Santa Barbara

Abstract

Security competitions have become a popular way to fos-
ter security education by creating a competitive environ-
ment in which participants go beyond the effort usually re-
quired in traditional security courses. Live security com-
petitions (also called “Capture The Flag,” or CTF com-
petitions) are particularly well-suited to support hands-
on experience, as they usually have both an attack and a
defense component. Unfortunately, because these com-
petitions put several (possibly many) teams against one
another, they are difficult to design, implement, and run.
This paper presents a framework that is based on the
lessons learned in running, for more than 10 years, the
largest educational CTF in the world, called iCTF. The
framework’s goal is to provide educational institutions
and other organizations with the ability to run customiz-
able CTF competitions. The framework is open and lever-
ages the security community for the creation of a corpus
of educational security challenges.

1 Introduction

Computer security education has become one of the top
priorities within governments and organizations of all
kinds. While the most basic requirement is that computer
users understand enough about security not to do some-
thing that will harm them or their environment (e.g., in-
stalling a “codec” that promises to display jumping kittens
videos or more questionable material, but instead creates
a backdoor in a system that handles sensitive data), there
is an increasing demand for “security experts.”

Even though security expertise is difficult to quantify
and test [4, 6], a basic set of skills that go beyond ba-
sic security education is very valuable in the current job
market (a simple query on LinkedIn for “Security Expert”
returns thousands of positions available, many in Fortune
500 companies). Therefore, it is not surprising that ed-
ucational institutions are increasing steadily the number

of courses focused on security, at both the undergraduate
and graduate levels. In addition, most courses on topics
such as web development, operating systems, network-
based applications, etc., now include a section on security
issues.

Teaching computer security is hard for a number of rea-
sons. First of all, security is a fast-moving target. New
classes of vulnerabilities are discovered every year, and
new protection mechanisms are introduced. For example,
it would be infeasible to teach how buffer overflow ex-
ploits work today, without mentioning the fact that Ad-
dress Space Layout Randomization, stack canaries, or
No-Execute bits are ubiquitous protection mechanisms,
which make this class of attacks more difficult to carry
out.

In addition, it is not easy to create environments in
which vulnerabilities and protection mechanisms can be
reliably tested: they are difficult to set up, maintain,
and evaluate, and, therefore, some of the system security
classes offered today lack a valid “hands-on” component.

Security competitions provide a way in which students
and security practitioners in general can test their skills
in a competitive, hands-on environment. Given that se-
curity competitions usually span a somewhat limited time
frame (from a few hours to a few days), these events are
not the framework in which most security skills are ac-
quired. Instead, it is the preparation period that precedes
the competition itself that has proven to be extremely valu-
able in promoting security learning. In a way similar to
the training of athletes who prepare for a running sprint,
the skills are learned in the months spent training on the
track, waiting for that brief moment at the actual com-
petition. Participants in security competitions spend the
months preceding the event strategizing about defenses,
analyzing previous competitions to understand what is to
be expected, preparing and developing tools, testing new
approaches, and so on (see for example the results of the
questionnaire described in [2], which show that half of
the respondents developed ad hoc tools in preparation for

1



the competition). This is the period in which most of the
learning is performed. The actual execution of the com-
petition adds the pressure to perform, the experience of
being under active attack by a capable opponent, and the
test of teamwork.

Because of the extra motivation provided by a compet-
itive environment, security competitions have become in-
creasingly popular and bigger in size [1]. The competi-
tions take two main forms: they can be challenge-based or
interactive. Even though both forms are often referred to
as “Capture The Flag” (CTF) competitions, they are very
different, and only an interactive competition can properly
be called a CTF competition.

More precisely, challenge-based competition are struc-
tured in a way that presents to the participants a number of
challenges that address different skills (e.g., reversing bi-
naries, performing forensic analysis on file systems, ma-
nipulating network traffic) at different levels of complex-
ity (which are usually associated with different amounts
of points when challenges are solved). These challenges
are a form of take-home test, and do not include any inter-
actions with other teams. Instead, interactive (or “live”)
competitions focus precisely on the interaction between
teams. Every participant is given the same system (usu-
ally a server with a number of network-accessible ser-
vices) and their task is to identify flaws in their own copy
of the server, patch (if possible) their own services with-
out breaking the service’s functionality, and use the same
knowledge to attack the other participants. As proof of
having been able to exploit an opponent’s service, an at-
tack involves grabbing a file or other data on the oppo-
nent’s machine; this piece of data is referred to as a “flag”
(and this is where the “Capture The Flag” label comes
from). This type of exercise provide opportunities for ex-
ercising both attack and defense skills, and live exercises
are therefore very different from challenge-based compe-
tition.

Unfortunately, designing and running interactive com-
petitions is much harder than running challenge-based
competition, and it is not surprising to see that, of the top
50 competitions listed on the CTFTime.org web site [1],
only 8 are interactive. The challenges in designing, im-
plementing, and running a live security competition (or
“proper” CTF) are many. First of all, it is necessary to
have the resources to support the creation of the game net-
work (hardware, software, and human resources) and the
skills necessary to monitor its usage. Then, one has to
make sure that the game does not get “out of hand” in a
number of ways: a team might perform a denial-of-service
(voluntarily or inadvertently), a flaw in the game admin-
istration infrastructure might bring the whole competition
down, and, if the competition is short-lived, it might make
months of work completely useless (as the vulnerable ser-
vices have been disclosed and a new competition will re-

Year Theme Teams
2003 Open Source Windows 7
2004 UN Voting System 15
2004 Bass Tard Corporation 9
2005 Spam Museum 22
2006 Hillbilly Bank 25
2007 Copyright Mafia 36
2008 Softerror.com Terrorist Network 39
2009 Rise of the Botnet 57
2010 Mission Awareness 73
2011 Money Laundering 89
2012 SCADA Defense 92
2013 Nuclear Cyberwar 123

Table 1: The UCSB iCTF throughout the years.

quire a completely new setup to be fair to all participants).
Finally, scaling these competitions can be a daunting task.
Small competitions with a dozen of teams might be rela-
tively easy to manage, but if a competition has more than a
hundred teams and thousands of participants, it becomes
very difficult to provide a seamless experience.

At UCSB, we have been the first institution to run dis-
tributed educational CTF competitions, which we called
iCTF (from “International CTF”) [10]. We started in 2003
and have since designed, implemented, and run 11 secu-
rity competitions (see Table 1), and, to this day, the iCTF
has been consistently the world’s largest interactive CTF
focused on computer security education. In more than ten
years of competitions, we have experimented with differ-
ent designs, scoring systems, combinations of challenge-
based and interactive competitions, and ways to collect
interesting datasets that might support research into secu-
rity education in particular, and system security in gen-
eral [5, 7, 3, 2, 9, 8].

The success and the overwhelming enthusiasm with
which iCTF participants responded to the event prompted
many requests from education institutions and other orga-
nizations for a way to reproduce the iCTF concept on a
smaller scale, maybe within a class or at a company train-
ing. We released a first version of a simplified form of
iCTF software in 2010, but the capability of the software
were very limited and required substantial skills to be con-
figured and run.

However, our latest design for the iCTF, made us real-
ize that there was an opportunity to create a framework
(described in detail in the rest of this paper) that could be
leveraged to easily create custom live security competi-
tions, solving some of the challenges associated with the
creation and execution of this kind of exercises automati-
cally.

One key aspect of the framework is to allow third-
parties to provide services and scoring components, so

2



Figure 1: System architecture overview.

that the community can contribute to a repository of in-
stances of vulnerable software. As a result, competitions
can be tailored to specific skill-set levels or types of vul-
nerabilities.

In the rest of this paper, we describe our iCTF frame-
work and how it supports the creation of customizable live
security competitions, hoping that, with the help of the se-
curity community, it will be possible to make this type of
exercise available in a large set of educational settings.

2 The Platform

Although every year we introduce a novel theme and new
game mechanics for the iCTF, the underlying platform
that lets us run a CTF game remains the same. In our
game, every team is assigned a virtual machine (VM),
which is usually hosted by the teams themselves1. These
VMs run vulnerable programs that are accessible over the
network. The players’ task is to keep these programs on-
line and functional at all times and, if possible, patch them
so that other teams cannot take advantage of the incorpo-
rated vulnerabilities. Shutting these services down is not
an option, as their activity is vital for the players to par-
ticipate in the game. The status of these services is con-
stantly tested by a scorebot, which exercises the programs
on a regular basis to ensure that the players are keeping the
services up, and that their core functionality has not been
crippled by an incautious patch.

Each service contains a “flag,” a unique string that the
competing teams have to steal so that they can demon-
strate the successful exploitation of a service. This flag is
also updated from time to time by the scorebot. We try
to ensure that the players cannot tell when the scorebot
is interacting with their services, because they could use

1In the past two years, we decided to host the VMs at UCSB instead,
to lower the setup burden for the teams.

this information to fingerprint the scorebot and make their
services appear to be online just to the scorebot. This is
achieved by masking the scorebot’s network connections
so that they appear to be coming from random, constantly-
changing teams.

Upon successful exploitation, a team must submit the
stolen flag to our website within a given period of time to
receive points for it. Note that this website acts as a central
point of information: it shows the current standings on
the scoreboard, lets players chat among one another and
with the organizers, and it is used to disclose hints and
additional challenges.

The actual state of the game is kept secure in a central
database (Section 2.2), that is protected from all direct ac-
cess by the players.

2.1 Services Design

A service is a program that, from a high-level point of
view, has a stated benign purpose (e.g., it implements a
web forum) and contains some flags: secrets that are not
supposed to be revealed to unauthorized users during nor-
mal operation (e.g., private messages in the web forum).

The goal of the opponent teams is to steal a flag and sub-
mit it to the organizers. Services are written with a variety
of deliberately incorporated vulnerabilities, so that steal-
ing flags is indeed possible, unless the defending team is
able to patch all vulnerabilities successfully. Each vulner-
ability should be verified by the organizers to be actually
exploitable in practice, to prevent unnecessary frustration
for the players.

Generally speaking, a service listens on a given port,
so that external programs can interact with it and invoke
certain functions. This functionality should cover at least
the following high-level categories: a setflag functional-
ity that allows one to set the currently active flag; a get-
flag functionality that allows the benign and authorized
retrieval of a flag; some additional benign functionality
that represents the normal behavior of the service.

For instance, a service might implement a simple social
network, where it is possible to create a user (with a given
username and password) and to set a status. In this exam-
ple, the user’s status is the secret flag, and the status can
only be read if the user is logged in by providing his user-
name and password. Here, the setflag functionality would
take as input the username, the password, and a status to
be set, and it would then login and update the status of
the user; the getflag functionality would take as input the
same username and password, and retrieve the user’s sta-
tus after logging in. Note that the password is only known
to the organizer and acts as an authentication token. On
the other hand, to steal a flag, the attacker needs to dis-
cover and exploit a vulnerability in the service in order to
read the status of a user whose password is not known.

3



One key point that requires attention when implement-
ing an interactive security exercise is how such “secrets”
are being stored within the service. In our implementa-
tion, we take into account the following considerations:

• The flag should change over time, so that the scoring
system can distinguish between distinct attacks de-
pending on various circumstances (as they will sub-
mit different secrets).

• The defending team should not be able to make a ser-
vice unexploitable (in the sense that proper exploita-
tion is not observable by the organizers) by simply
changing the value of the flag. In other words, the de-
fending team should be forced to protect a service by
patching or neutralizing vulnerabilities, not by tam-
pering with the flag or scorebot.

• The defending team should not know which is the
currently active flag, so that naı̈ve detection tech-
niques, like searching for the flag value in network
traces, do not work or would lead to false positives,
and, in turn, decrease their score.

To this end, we designed a novel mechanism to store
and retrieve flags. First, a new flag is periodically set and
retrieved by our scoring infrastructure so that, at any point
in time, each service has one and only one active flag. The
scorebot does so by using the setflag and getflag function-
ality.

Second, the setflag and getflag functionality should
blend with benign service interactions and not stick out
in an obvious way. Not only the setflag and getflag
should resemble benign interactions, but benign interac-
tions should resemble setflag and getflag functionalities as
well. In fact, the setflag and getflag functionalities can be
used for benign interactions by simply setting or retriev-
ing inactive or incorrect flags.

Third, from a conceptual point of view, the service
stores not only one flag, but multiple flags. We stress that,
at any point in time, only one of these flags is actually con-
sidered active by the scorebot. The defending team does
not know which flag is active at the moment and it must
protect all of them. To achieve this goal, each service con-
ceptually stores a list of (flag id, token, flag) tuples.
In our previous social network example, flag id corre-
sponds to the username, token to his/her password, and
flag to the status. Clearly, the implementation and stor-
age details can vary depending on the service: a service
might use an in-memory data structure, another might
rely on the filesystem, and a third might use an external
database.

2.1.1 Implementation Details

Some components must be developed to integrate a ser-
vice into our infrastructure.

First, a set of scripts must be developed to exercise the
various functionalities of the service. In particular, the
setflag script takes as input the flag id, a token, and a
flag, and is in charge of installing a newflag into the ser-
vice. The getflag script takes as input the flag id and its
token and should retrieve the correspondingflag, so that
the scoring infrastructure can determine whether the ser-
vice is properly functioning or not. Note that the getflag
script can retrieve the flag associated to a given flag id

because it has access to its associated token, not by ex-
ploiting a vulnerability.

Other scripts exercise other service-specific benign
functionality, so that the setflag and getflag scripts do not
stick out in any obvious way, and to ensure that the service
is fully operational and has not been tampered with (e.g.,
because of a careless patching process).

Finally, exploit scripts play an important role in the
game. These scripts should be developed by the attacker
teams (and, following best practice, by the organizers,
to test the service’s exploitability). Conceptually, an ex-
ploit script needs to steal the flag associated with a given
flag id, without knowing the associated token. Note
that the flag id specifies which of the many flags of the
service the script must retrieve. For this reason, the only
input the exploit script takes is the flag id, and it must
return the flag.

2.1.2 Integration with the Infrastructure

To ease the integration and testing of a given service, a set
of information must be provided through a JSON file. In
our current setup, this file is used to provide the following
information to the infrastructure:

• Information about the author;

• File paths of the scripts (setflag, getflag, . . . );

• TCP or UDP port used;

• Service ID;

• Service name;

• Service description;

• flag id description (i.e., what component of the
service represents the flag id, and, to some degree,
how it is being used by the service; e.g., the user-
name, in our social network example).

The last four items are also communicated to the par-
ticipating teams, so that they know how an exploit script
for a service should utilize the flag id, and what should
be returned as the flag.

4



2.1.3 Deployment of Services

The final step in designing iCTF services is deciding how
they are deployed on the teams’ VMs, both during the
game and for testing.

Service-specific installation scripts can prove problem-
atic, especially when services require certain non-default
utilities or services to be present on the VM. Therefore,
we decided to use the Debian package format, which is
well-tested, has native dependency-handling, and can au-
tomatically start the service. In this way, once the package
is successfully installed, the service can be trusted to be
running and properly configured.

As a side effect, building Debian package encourages
standardizing the compilation and deployment procedure:
this is a useful feature in case organizers need to urgently
modify and re-deploy a service due to issues discovered
while the game is in progress (like an unintended denial-
of-service vulnerability that was only discovered during
the game).

As much as possible, the packages also standardize
each service’s permissions within the VM. It is typically
undesirable to run all services with the same user and with
files accessible across services: with such a setup, a sin-
gle service would potentially allow obtaining flags for all
other services. In educational settings, it is often preferred
for each service to be independent, thus rewarding the
ability to attack a range of different services (as opposed to
leveraging a single type of exploit). Similarly, one might
prefer limiting the amount of damage a single exploit can
cause, for instance by prohibiting services from modify-
ing themselves: this makes it considerably harder (or even
impossible) for attackers to install backdoored versions.
In our default setup, each service runs as a dedicated user
and has access only to the files on which it needs to oper-
ate.

2.2 The Central Database

The central database is responsible for enforcing the rules
of the game and for keeping track of its state. Essentially,
the central database is, as the name suggests, the central
component of the entire system. Every other component
will pull information about the state of the game from the
central database, and will notify the central database as to
the changes of the state.

The central database is technically composed of two
pieces: an HTTP-based RESTful API, with which the
other components of the system interact, and the actual
database, which stores all the data associated with the
competition. We settled on this design because it allows
for the decoupling of the underling database storage en-
gine from the other components in the system. One year
we experimented with having every component access the

underlying database directly, however this approach had
many drawbacks: changes to the database schema broke
other people’s code, the database schema was designed in
an ad hoc, as-needed basis, and it was difficult to cache
or otherwise limit the number of queries each part of the
system performed. Thus, we believe that a better design
decision in this case is to decouple the underlying storage
engine and database schema from the way the other com-
ponents of the system interact with the central database.

After a number of years of experimentation with differ-
ent design approaches, we settled on the components of
the system pulling information from the central database.
We experimented with designing an iCTF where the cen-
tral database would push important game state-changes
to other components of the system, however, when there
were problems in this pushing aspect, the central database
system had to be restarted. Whereas, in a pull-oriented
architecture, each component is responsible for deciding
how often to pull from the central database and for taking
action based on changes in the state of the game.

After running the iCTF competition for more than a
decade, we have converged on (a few) best practices. One
is that, for keeping track of any player point or score totals
(or any changing value over time), it is much better to have
an append-only table, where each separate action and its
effects on the score are recorded separately. It also aids in
debugging (and, possibly, rescoring) if each entry in this
table has a description of why the score was changed and
which component changed the score.

Moreover, it is critically important for every game ac-
tion to be recorded in the central database. This not
only empowers debugging, which often happens dur-
ing the competition, but also eases the burden of post-
competition analysis. In order to accomplish this prop-
erly, each component of the system must log all events
within the central database.

2.3 The Scorebot

The scorebot infrastructure is responsible for monitoring
the status of the services. It achieves this by interacting
with the services using their setflag and getflag function-
ality. The scorebot periodically (the period or the tick du-
ration is selected by the organizer) generates a new active
flag tuple (flag id, token, flag). These values are used
to invoke the setflag and getflag scripts associated with
each service, so that the respective service’s functionali-
ties are exercised and the active flag is set and retrieved.

In addition to setting up the active flags, the scorebot
is also responsible for generating benign traffic to the ser-
vices. The scorebot does this in two ways: first, it ex-
ecutes setflag and getflag scripts randomly with dummy
flag id, token, and flag values; second, it executes a
set of benign scripts that are (optionally) provided by the

5



service writer, so that all the service’s benign functional-
ity is properly exercised, and that one can be assured that
patching the vulnerabilities in a service did not affect its
intended behavior.

The values returned by these scripts (including the be-
nign scripts) are used to determine the status of the ser-
vice. A service is considered “up” if all executed scripts
return success. It is considered “down” if one (or more)
script fails to connect to the service. If a script fails be-
cause a service does not communicate properly, e.g., by
sending improper data such as an invalid flag, the service
is considered “non-functional”.

Benign scripts should be independent from each other
and should be executed in any order without affecting
the state of the game. However, the execution order of
the setflag and getflag scripts, which set and retrieve the
active flag, must be preserved. In fact, if the getflag
script would be executed before the corresponding setflag
script completes its operation, it would fail, and the ser-
vice would be incorrectly considered as “non-functional”.
While the scorebot independently executes these scripts
with random delays, it maintains the order of execution
when needed by utilizing locks. While the introduction
of these random delays make it possible to exercise the
service in benign ways between the flag updates and re-
trievals, it also prevents the scorebot from being finger-
printed through simple traffic analysis.

2.4 Putting it Together

One aspect that has become quite clear to us over the many
iCTFs that we have organized is that, in addition to hav-
ing quality components to a CTF design, these compo-
nents need to function well together. In this section, we
will describe how the different parts of the system fit to-
gether into an end-to-end CTF experience, both from the
organizers’ and the players’ perspectives.

In this context, a CTF organizer is an entity that wishes
to host a CTF competition for a certain amount of players.
Our design for the system allows organizers to host CTFs
without our involvement, going as far as drawing from our
repository of services if they do not want to develop their
own.

2.4.1 Choosing the Services

An important feature of our CTF framework is the pres-
ence of a repository of ready-to-use services. However,
using these services comes with a serious drawback: of-
ten, solutions to previously-seen services (“write-ups”)
become available on the Internet once a service is used in a
CTF. In most cases, to ensure a fair game, original services
should be developed for each CTF. These services would
have to be created to conform to our service specification

and uploaded to our system. In cases where absolute fair-
ness is not of great concern (e.g., a company educational
exercise where the instructors can rely on a “do not peek”
policy), the organizers can save a great deal of time by
pre-selecting some of the available services.

2.4.2 Generating the Infrastructure

After services are created or chosen, our system pro-
ceeds to generate the virtual machines required to host the
game. These virtual machines are distributed as Virtual-
Box Appliances, allowing us to leverage VirtualBox fea-
tures such as internal networking, which is VirtualBox’s
simple Software-Defined Networking implementation.

The organizer must decide on several options:

VM Hosting. For scalability reasons, the organizer may
leave the hosting of the teams’ VMs to the teams
themselves. When this option is chosen, our system
generates a VPN concentrator VM for the organizer
and VPN client VMs for the teams, which also act as
routers for them.

Infrastructure Distribution. Again, for scalability rea-
sons, our system can generate either a single VM
containing all the infrastructure components, or sin-
gle VMs for each piece.

Network Topology. By default, our system uses Virtual-
Box’s internal networking feature, which automat-
ically creates several LANs, depending on the first
two chosen settings. However, VirtualBox’s internal
network requires all VMs to be on the same physi-
cal host, which once again brings up scalability con-
cerns. To address this issue, our system can be con-
figured to generate VMs with bridged networks, so
that they can be hosted on different physical hosts.

The easiest way to host a CTF using our system is for
an organizer to use internal networking, run a single in-
frastructure VM, and host all of the teams’ VMs. This
setup, spun up on a single physical host, is the most turn-
key solution: once booted, no configuration is necessary,
and the game is ready to be started from the infrastruc-
ture’s administrative interface. The obvious downside to
this setup is scalability. Once a game grows to include
more than a dozen teams, hosting all of the virtual ma-
chines on one physical host becomes impractical and can
be a source of rather unpleasant problems for organizers
and players.

2.4.3 Game On!

If the teams must host their own VMs, the organizer must
distribute them before the game. In most cases, the orga-
nizer will want to encrypt these VM, and release decryp-
tion keys at the start of the CTF, so that it is not possible

6



to extract and analyze the services before the actual com-
petition has started. The CTF can be started (and, later,
stopped) using the administrative web interface.

3 Conclusions

The iCTF competition has demonstrated that it is possible
to create interesting security exercises that involve more
than a hundred teams and thousands of students. This
paper presents a framework whose goal is to make the
basic concepts behind the iCTF available, on a smaller
scale, to educators across the world. The framework al-
lows for the creation of custom competitions that are tai-
lored to the skill-set of the participants, and, in addition,
supports contributions from the security community, and,
in the future, can be leveraged to create datasets to sup-
port security research. Parts of the framework have been
used as the basis for running various editions of the iCTF.
The iCTF framework will be made available for download
at http://ictf.cs.ucsb.edu. This release includes a
number of vulnerable services that can be immediately
used to create live security exercises.

Acknowledgments

This work was supported by the National Science Foun-
dation, through grants CNS-0820907, CNS-0716753, and
CNS-0939188, and by the ARO through MURI grant
W911NF-09-1-0553. We want to especially thank Carl
Landwehr, Jeremy Epstein, and Karl Levitt at the Na-
tional Science Foundation for their support to cyber-
competitions.

References

[1] CTF Time. https://ctftime.org, 2014.

[2] CHILDERS, N., BOE, B., CAVALLARO, L., CAVEDON, L.,
COVA, M., EGELE, M., AND VIGNA, G. Organizing Large Scale
Hacking Competitions. In Proceedings of the Conference on De-
tection of Intrusions and Malware and Vulnerability Assessment
(DIMVA) (Bonn, Germany, July 2010).

[3] DOUPE, A., EGELE, M., CAILLAT, B., STRINGHINI, G.,
YAKIN, G., ZAND, A., CAVEDON, L., AND VIGNA, G. Hit ’em
Where it Hurts: A Live Security Exercise on Cyber Situational
Awareness. In Proceedings of the Annual Computer Security Ap-
plications Conference (ACSAC) (Orlando, FL, December 2011).

[4] (ISC)2. Cissp. https://www.isc2.org/CISSP, 2014.

[5] SHOSHITAISHVILI, Y., INVERNIZZI, L., DOUPE, A., AND VI-
GNA, G. Do You Feel Lucky? A Large-Scale Analysis of Risk-
Rewards Trade-Offs in Cyber Security. ACM Symposium on Ap-
plied Computing (March 2014).

[6] TIMMAY. Why You Should Not Get a CISSP. DEFCON 20, July
2012.

[7] VAMVOUDAKIS, K., HESPANHA, J., KEMMERER, R., AND VI-
GNA, G. Formulating Cyber-Security as Convex Optimization
Problems. In Control of Cyber-Physical Systems, vol. 449 of Lec-
ture Notes in Control and Information Sciences. Springer, July
2013, pp. 85–100.

[8] VIGNA, G. Teaching Hands-On Network Security: Testbeds and
Live Exercises. Journal of Information Warfare 3, 2 (February
2003), 8–25.

[9] VIGNA, G. Teaching Network Security Through Live Exercises.
In Proceedings of the Third Annual World Conference on Infor-
mation Security Education (WISE) (Monterey, CA, June 2003),
C. Irvine and H. Armstrong, Eds., Kluwer Academic Publishers,
pp. 3–18.

[10] VIGNA, G. The UCSB iCTF. http://ictf.cs.ucsb.edu, 2014.

7


