
CyberCIEGE Scenario Design and Implementation

Michael F. Thompson and Cynthia E. Irvine1

Naval Postgraduate School
{thompson, irvine}@nps.edu

Abstract

In 2005, the initial version of CyberCIEGE, a network
security simulation packaged as a video game, was re-
leased. Since then, we have developed a suite of game
scenarios and have enhanced and extended the underly-
ing game engine to cover a broad set of cybersecurity
concepts. CyberCIEGE includes a Scenario Develop-
ment Kit to customize existing game scenarios and cre-
ate new ones. A Scenario Development Language lets
instructors express security policies of interest and the
circumstances in which these policies must be enforced.
This language programs and augments the underlying
CyberCIEGE simulation, enabling context-rich interac-
tion with students, while relying on the simulation to as-
sess network security and enterprise productivity.

Scenario creation requires both story telling and high-
level programming techniques. Scenario designers use a
forms-based integrated development environment to ex-
press a scenario in terms of its initial conditions, security
policies, economic constraints, and student feedback.

1 Introduction

CyberCIEGE [10] is a construction and management re-
source simulation somewhat like the Tycoon series of
video games [16]. Students play the role of a decision
maker for some enterprise such as a small business or
military command. The game includes a variety of sce-
narios that force students to make a series of choices that
potentially affect the security of enterprise assets.

The game is well covered by published papers, in-
cluding: its educational goals [7]; its application from
the perspective of educators [18]; its support for express-
ing rich information security policies [8]; its utility as a

1Approved for public release; distribution is unlimited. The views
expressed in this document are those of the author and do not reflect
the official policy or position of the Department of Defense or the U.S.
Government.

training and awareness tool [5]; and its representation of
public key infrastructure [9]. Less has been said about
the techniques and mechanisms employed to create new
game scenarios. The game is distributed with a Scenario
Development Kit (SDK) and a corresponding 150-page
users’ guide [14]. This paper aims to describe scenario
development from the perspective of an educator wishing
to design or customize a scenario.

We provide an overview of the game in the next sec-
tion, followed by a discussion of how to create Cyber-
CIEGE scenarios. We then describe the various elements
of scenario construction and methods for interacting with
students through the scenario. Then we discuss manag-
ing the attack engine, followed by a summary of the cur-
rent state of CyberCIEGE and potential future work.

2 Game overview

In a typical CyberCIEGE scenario, the player is the in-
formation assurance decision-maker for some enterprise.
An enterprise may range from a large military facility, to
a home office. The primary elements within the Cyber-
CIEGE game engine are assets, users and attackers. As-
sets are information resources maintained within a sys-
tem, which may range from a single host to a large en-
terprise network. Users are typically enterprise employ-
ees who have goals that require computerized access to
assets. Students succeed by facilitating user access to as-
sets. Some assets have substantial value to the enterprise
based on their secrecy or integrity; some assets may have
value based on their availability. Assets also have value
to attackers, and this creates a motive that determines the
effort and means the attacker will expend in attempts to
compromise an asset. The motive determines the threat.
Student choices modify the system’s vulnerabilities and
thus affect the opportunity (or lack thereof) for the at-
tacker to compromise the assets. The enterprise (and by
extension the student) is penalized the value of an asset
should it be compromised or made unavailable.



Table 1: Example mapping of learning objectives to scenario story line.
Learning objectives Story line

Malicious software or devices can record passwords entered
into computers.

A user must access sensitive corporate server from a hotels busi-
ness center.

One-time password generators prevent reuse of captured
passwords
Email encryption protects email content when stored on
email servers.

Internal developers have convinced management that they re-
quire root access to corporate servers, including the email server

Management mandates may limit the policies and mecha-
nisms available for protecting information.
Email attachments are a common cause of malicious soft-
ware entering systems

A new employee must sort out the difference between malicious
attachments and those that must be processed if the employee is
to remain employed.Prohibiting all email attachments may be impractical.

Within any given scenario the users, assets, and attack-
ers are, for the most part, fixed by the designer. Design-
ers also specify the initial state of the scenario (e.g., an
initial set of computers) and dynamic changes to the sce-
nario (e.g., the introduction of new user goals.) Scenarios
can be organized to gradually reveal various predefined
users, assets, and attackers as game-play progresses.

Students see the enterprise as an animated three-
dimensional representation of an office building or mili-
tary headquarters. Each scenario has one main office and
optional small offsite offices. Users inhabit these build-
ings and are represented as animated characters who
wander about or productively sit at desks in front of com-
puters. If computers are available, or purchased by the
player, users will create and access assets using the com-
puters and systems. This user behavior is driven by the
user goals specified by the designer. If computers are
networked, users may access assets over the network.
Network devices such as routers enable users to access
the Internet, and allow attackers on the Internet to po-
tentially access enterprise resources. Suitably motivated
attackers can enter buildings to physically compromise
assets. They may compromise computer-based protec-
tion mechanisms, and may access network links to either
monitor or insert traffic. Attackers may also bribe un-
trustworthy enterprise users to compromise assets. And
users themselves may have motive to compromise assets.

The underlying network security simulation deter-
mines whether user goals are met or assets are compro-
mised based on the parameters of the scenario and suc-
cessive player choices. The designer can specify a vari-
ety of different game triggers whose execution is predi-
cated on a rich set of measurable game conditions. These
triggers include actions such as scrolling message tick-
ers; characters “speaking” via bubble text; popup mes-
sages; multiple choice questions; video clips and 3D ob-
jects bursting into flames. Measurable conditions include
game state such as whether a particular asset has been

compromised, achievement (or failure) of user goals, and
answers to multiple choice questions.

Players may hire guards to physically protect buildings
or offices within buildings. Furthermore, players may
purchase physical protection mechanisms and determine
which users are permitted to access different physical ar-
eas (i.e., zones) within the virtual buildings. Procedural
security choices affect user behavior (e.g., leaving com-
puters logged in). Students can purchase user training to
improve user adherence to procedural policies.

3 Scenario construction

Constructing non-trivial playable scenarios requires a
combination of story-telling and high level program-
ming. The scenario designer begins with a clear idea of
the topics to be covered and how students will be mo-
tivated to care about the scenario outcomes. Scenarios
generally benefit from a story line that encompasses the
desired learning objectives, e.g., a need to communicate
securely at a distance. The designer should also identify
the audience, (e.g., high school students or graduate stu-
dents; awareness training or education), and select the se-
curity policies to be covered. The designer then develops
a story that includes circumstances that illustrate policy
enforcement implications and consequences. Table 1 il-
lustrates a few learning objective mapped to a story-line.

3.1 Understand the underlying engine

Typically, scenarios are built upon the underlying net-
work security simulation, and the designer relies on the
simulation to determine if assets are vulnerable to com-
promise and if users are achieving their goals. However,
CyberCIEGE also includes a rich and flexible set of func-
tions for constructing scripted scenarios that make little
or no use of the underlying simulation. Instead, these
scenarios branch based on game conditions and player

2



choices. Much of the discussion below assumes the de-
signer will make use of the underlying simulation.

Before attempting to build a scenario, we suggest a
series of steps. First, play several existing scenarios of
varying complexity to become familiar with the game el-
ements. As part of this step CyberCIEGE will gener-
ate a game log each time a scenario is played. Second,
construct a relatively simple scenario such as the tutorial
scenario detailed in the SDT User’s Guide [14].

Finally, go back and replay existing scenarios while
identifying the genesis of each game event through anal-
ysis of that scenario’s scenario definition forms in the
SDT, and review of the game logs.

The steps listed above should help the potential de-
signer to understand many of the game features and the
general manner in which scenarios are constructed. From
there, the designer begins to formulate the particulars of a
new scenario, informed by an appreciation of the capabil-
ities and limitations of the Scenario Definition Language
(SDL). Imagine the scenario play as a story having many
potential branches, much like the Choose Your Own Ad-
venture books, e.g The Cave of Time [15]. Formulate
a narrative that explains the initial state of the scenario,
i.e., what the student sees and can explore without com-
mencing the simulation. And play the story forward in
your mind following different paths determined by stu-
dent choices. Organize the story into a set of phases, each
having one or more objectives that must be accomplished
to complete the phase. In other words, you should be able
to approximate scenario play in your head (or a state di-
agram) before it is codified in the SDL.

3.2 Express the scenario in the SDL

Mechanically, scenarios are constructed using an in-
tegrated development environment called the Scenario
Definition Tool (SDT). [14] This enables forms-based se-
lection and definition of game elements without requir-
ing the designer to learn the SDL syntax. A scenario is
defined by a collection of forms which can be treated as
the source code of the scenario.

Broadly, the scenario designer uses these forms to de-
fine the initial game state in terms of users, assets, poli-
cies, initial networking components, purchasable com-
ponents and the physical layout of the simulated envi-
ronment. The designer must also define the conditions
by which a student will achieve scenario-specific objec-
tives and proceed through scenario phases. And, while
the game engine automatically generates some feedback
informing the student of asset compromises and goal fail-
ures, this should be augmented through the use of game
triggers, e.g., causing a computer to burst into flames if
the player makes a particularly egregious choice.

4 Elements of scenario design

This section covers the major elements of typical Cy-
berCIEGE scenario construction. It describes Cyber-
CIEGE game elements and the relationships between
them. Completed SDT forms define the scenario. (See
the SDT users guide [14] for details.)

Define assets. Identify the information assets that the
player must protect and make available for access by
game characters. Assets have a variety of attributes that
affect whether they will be compromised and the impact
to the enterprise if they are compromised [8]. These at-
tributes allow the scenario designer to express policies
for each asset based on secrecy, integrity and availability.
Provide a description of each asset to inform the student
of its purpose and value to the enterprise, and the poten-
tial motivation of attackers to compromise the asset.

The scenario designer may initially allocate assets to
existing computers, or have game characters create assets
once the simulation commences and a suitable computer
is available. At the start of a scenario, assets need not
exist (or be visible to students). They can be introduced
as the scenario progresses by assigning some character a
goal that involves accessing the asset.

Define game characters. Select game characters who
will access the assets. Assign names and provide de-
scriptions for each character. Most importantly, identify
the specific assets the character must access, the modes
of access and the types of software that must be available
while accessing the assets. This provides the productivity
side of the trade-off between security and getting work
done. SDT Goal forms define access modes; software
types; and the potential costs to the enterprise if charac-
ters cannot access assets. SDT User forms allocate these
goals to specific game characters as a percentage of the
character’s potential overall productivity.

If multiple characters must access the same asset, then
each character must have access to a computer that can
reach the asset. This provides scenario designers with a
means to constrain the topology of successful network
designs. A goal that requires a particular software type
can include a “filtered” attribute that indicates the soft-
ware must reside on the same computer as the asset.
Network filters may block remote access to an asset by
blocking application software types, and thus, filtered
goals can fail based on network filter settings.

Characters can come and go over the course of a sce-
nario. If all of a character’s goals have a productivity
contribution of zero, then the character is not visible to
the student. Game triggers dynamically adjust a charac-
ter’s productivity dependency on each goal, and thus can
cause the character to appear or disappear.

Decide whether each character will have a predefined
workspace, (with or without a computer), or if the char-

3



acter will just stand or wander until the student assigns
a workspace. A potential source of student frustration
is the need to make many inconsequential purchases and
seating choices. More advanced scenarios should avoid
construction steps that don’t affect scenario outcomes.

Some characters may be malicious insiders motivated
to attack enterprise assets. These motives can be derived
from the asset attributes that drive external attackers, or
may be character-specific. Insiders may target assets for
which they have valid access or those that the enterprise
policy constrains them from accessing. Students can pur-
chase background checks for groups of users based on
which assets the user must access. The designer can
employ a trigger to replace untrustworthy characters as
a result of these checks. The designer must leverage
the game economy to prevent the student from replacing
all potentially malicious insiders with more trustworthy
characters.

Another variety of game character offers students ad-
vice and guidance. The Speak triggers generate bubble
text and optionally pause the game and move the camera
to the speaking character. The designer should exper-
iment to create a balance between useful game pauses
and those that disrupt the continuity of game-play.

Define the physical environment. The visible area
containing game elements is a single X-Y coordinate
grid. This grid contains each building, (including a main
site and multiple smaller offset offices.) The SDT Sce-
nario form defines the positions and types of buildings.
Each building contains workspaces with desks, comput-
ers, and server racks. Workspaces are enumerated in the
Workspace form and assigned an index value, which is
used to define the initial locations of game characters.

Each building is divided into one or more rectangular
zones defined in terms of X and Y coordinates. Typically,
zones correspond to offices. The designer must ensure
that these fall along wall boundaries. The designer must
also ensure that characters have room to walk between
offices, e.g., that desks do not block doors.

Artwork exists for four different main sites and three
different offsite offices. Figure 1 shows one of the main
site office buildings.

Physical security may rely on armed guards. The sce-
nario designer identifies whether guards will be present
in the scenario, and if the student is able to hire guards.
Guards may also man physical checkpoints.

Character Animation and Interaction. Game char-
acters have a limited number of animated actions. In
general, if a user has an assigned workstation, the cor-
responding animated character sits at it and works. If the
user is failing to achieve goals, the character pounds the
keyboard. If the user lacks an assigned computer, it may
wander the office, or if some unassigned computer can
be used, the character will sit at that computer. Some

Figure 1: CyberCIEGE screen shot of a typical office that
shows a user in deep in thought.

user and scenario settings allow characters to wander pe-
riodically while achieving goals. Users create assets as
needed, but do not necessarily interact with associated
computers when creating assets, viz., user interactions
with assets are not synchronous with their animations.

Characters interact with zone checkpoints. When
checkpoints are defined for a zone, a user cannot enter
the zone without passing the checkpoint, which may re-
quire interacting with a device such as a card reader or
iris scanner. Character entry into zones is synchronous
with the animations. However, a character can achieve
asset goals without being physically inside the zone the
character only needs to be able to enter the zone.

Initial network and catalogue. SDT Component
forms define the initial set of computers and network
equipment, and their initial configuration, including net-
work connections and software. The SDT Network
form identifies each different physical network. Con-
sider whether the initial state of the network will be se-
cure with respect to the policies of interest, or whether
the student will be required to assess and mitigate vul-
nerabilities prior to starting the simulation.

The SDT Catalogue form determines what equipment
the student can purchase, and its cost. The initial cash-
on-hand in the Scenario form can be set to limit equip-
ment options. Additionally, triggers can introduce new
items into the catalog as the game progresses.

Each computer and most network components include
operating systems. The game includes a variety of OSes
having differing levels of assurance and policy enforce-
ment functions. The designer allocates operating sys-
tems to initial computers and those available in the cata-
logue. Students cannot switch a computer’s OS.

The SDT Applications form defines the applications

4



software that can be installed on components, either ini-
tially or purchased by the student during the game. The
designer defines different applications in terms of the
software’s integrity (e.g., software security during its de-
velopment and distribution), and its need for patches.

Software can include cryptographic functions that pro-
tect assets read and written over networks by either peer-
to-peer or client-server applications. The strength of
these protections is based on the integrity of the software.

Interact with the student. When a scenario begins,
its initial briefing is displayed first. This should provide
a brief introduction to the scenario. Since many students
won’t read more than a sentence or two, don’t rely on the
briefing, (or any other single display of text) to convey
information necessary to play the scenario. Descriptions
of game characters, assets and zones are also available
before the simulation starts.

In our experience, the most frequented source of tex-
tual information is the Objectives screen, which de-
scribes the unmet objectives for the current game phase
and provides brief summaries of upcoming game phases.
Goal-oriented students look here to understand what they
must do to get to the next step. This is also a good place
to reference other sources of key information such as,
“Refer to the Assets screen for the Mocha recipe’s value.”

Objectives and phases are the primary tool for orga-
nizing a scenario’s flow and giving the student a sense of
progress. For each objective to be met, the game condi-
tion state that must exist should be identified. This may
include conditions such as the passing of some amount
of simulated time with all user goals met and no as-
set compromises. The SetObjectiveStatus triggers con-
trol whether the game engine views any given objec-
tive as being completed. Similarly, the SetPhase trig-
ger causes the game to enter a new phase. The firing of
these triggers depends entirely on designer-defined con-
ditions. For phases with multiple objectives, the stu-
dent may meet one objective, but then backslide while
attempting to meet another. A scenario may need trig-
gers to reverse the completion of an objective.

The SDT offers over eighty game conditions for use
when determining if a trigger should fire. Within a given
scenario, only a subset of the conditions might be used.
Many of the conditions are intended to allow the designer
to provide the player with feedback prior to an attack en-
gine action. For example, the condition that measures the
number of open application ports in a router can be used
to warn the player. Use of that (or any other) condition
is not necessary to cause the game engine to attack as-
sets. Similarly, some conditions measure a user’s ability
to achieve a goal. Such conditions are not needed to pe-
nalize the player for unproductive users - rather it can be
used to provide the player with context-specific help.

Most conditional state assessment is straight-forward.

For example, a simple condition measures if the com-
ponent containing some asset has a specific policy. It
is easy to assess whether a user is achieving a specific
goal, and whether the user has achieved the goal for a
given duration. The question of whether a given asset has
been attacked (i.e., the AssetAttacked condition) is sub-
tler. (See the Trigger form description in the SDT users
guide [14].) The AssetAttacked condition value depends
on whether a successful attack occurred subsequent to
the previous evaluation of the trigger that references the
AssetAttack condition. This state management is local
to each trigger, and is intended to allow the scenario de-
signer to avoid reporting the same attack multiple times.

Measuring time. The passage of time can be mea-
sured via the Time condition, either from the beginning of
the scenario or from the beginning of the current phase.
Also, each Trigger form includes fixed and random delay
values that allow the designer to incorporate time into the
decision to fire a trigger. The semantics of these delays
is quite different from the Time condition. The condition
simply determines if a given amount of time has passed
without regard to other game conditions. In contrast, per-
trigger delays allow the designer to prevent a trigger from
firing until all the trigger’s conditions have been met con-
tinually for the period specified by the delay.

Since the designer controls the frequency of AssetAt-
tack triggers, the designer can determine that the asset
has indeed been protected from one or more attacks.
Similarly, the designer can determine that the users have
had uninterrupted access to the assets for a specified pe-
riod. Thus, delays can be used to determine if game state
conditions have persisted over some period during which
some defined set of events have occurred.

If the trigger’s condition evaluation changes to a false
state during the specified delay period, the trigger will
not fire. To cause a trigger to fire some fixed time after
some game state has been reached (or some fixed time
after the game state has persisted per a delay value), split
the trigger into two triggers: the first fires when the con-
ditions are met and should be invisible to the player (e.g.,
a LogTrigger); the second trigger would then include the
first triggers firing as an intrinsic condition and the sec-
ond trigger’s specified delay controls the period between
the first trigger’s firing and the firing of the second.

Attack and vulnerability visualization. Automated,
generalizable visualization of vulnerabilities and attacks
is challenging. We explored this topic [17], and con-
cluded it was unacheiveable without creating distractions
and disrupting game flow. The game engine does not
create graphical representations of attacks or system vul-
nerabilities. That is allocated to animated tutorial videos
displayed by triggers that fire based on scenario designer-
defined game conditions. Judicious use of this type of
“cut scene” is suggested because they can take the stu-

5



dent out of the context of the game. It is sometimes bet-
ter to let the student choose when to view such material.
Our experience indicates that is more important to give
the student a clear means by which to discover cause and
effect. Students can reference a game engine-managed
attack log any time after a successful attack. It identifies
the source of the attack and the reason for its success.

When assets are compromised, the in-game economy
reflects the losses in the player’s current cash-on-hand.
Compromise of valuable assets can be catastrophic, and,
depending on the scenario design, fatal, requiring the
player to restart from some previous game state. As the
game evolved, informal player feedback made clear that
sudden loss without warning leads to frustration, partic-
ularly in early scenarios played by less experienced stu-
dents. In many cases, game conditions can be used by the
scenario designer to detect impending doom and warn
the player. For example, a game condition might report
on whether a particular asset can be reached from a given
network using a specific application protocol. We con-
tinued to add this type of game condition to the SDL,
but eventually realized we were often trying to predict
the outcome of the simulation, which can become com-
plex as students deploy multiple components and adjust
configurations in attempts to ward off attacks. To sim-
plify the issuance of warnings, we introduced a means
of generating benign attacks that are not detected by the
in-game economy engine, but are reported as conditions.

Network traffic analysis. A relatively new Cyber-
CIEGE feature allows the scenario designer to provide
the student with insight into game events through net-
work traffic analysis. [2] PCAP files of actual network
traffic can be imported into a scenario and appear as traf-
fic captured at one of the simulated network connections.

The PacketXform form maps in-game component
names to generic component names found within net-
work traffic packet samples. These forms (and the net-
work packet samples) are named by PacketXform trig-
gers. The transformed packets are written into a packet
log for the selected component. These packet logs can be
viewed using the CyberChark tool, illustrated in Figure
2, which incorporates many Wireshark [4] functions.

Dynamic student assessment. Question triggers can
test a student’s understanding of material and alter the di-
rection of a scenario. Questions can be either true-false
or multiple choice. There are two forms of Question trig-
gers. The Question class of trigger assumes the scenario
designer will create responses using other triggers. The
QuestionMult trigger makes reference to a question form
that defines the question and the responses (i.e., pop-up
messages to display in response to each player answer.)
Both forms of Question trigger are assigned what should
be a unique Register condition. A register is a named
state variable with an initial value of zero. When a Ques-

Figure 2: Students use CyberChark to analyze network
traffic, e.g., by setting filters to view selected traffic.

tion trigger fires, its associated register is assigned the
value of the keyboard response provided by the player.

The QuestionMult triggers should be used to give
player feedback as pop-up messages. The Question
forms simplify question and response management for
such questions. If the player feedback will not include
pop-up messages, then Question triggers, wich require
additional logic, should be used.

When using Question triggers, designers trigger re-
sponses to player-provided answers based on the value
of registers. For example, a speaks trigger might cause
a user to say: correct! when the Question trigger’s
register has a selected value, e.g., b. The response to
an incorrect player answer can be uniquely defined for
each potential incorrect answer. Or a single wrong, ...
response trigger can be designed to fire when the associ-
ated register value is NOT 0 and NOT b.

When responding to individual incorrect answers, it
may be useful to re-ask the question until the player se-
lects the correct reply (see the SDT Users Guide [14].)

Attack triggers. When an Attack trigger fires, all as-
sets are attacked via the defined attack type by all attack-
ers (including insiders where appropriate), in the modes
prescribed by the asset’s motive values. Each asset will
not be compromised more than one time as an effect of
an Attack trigger firing. The designer can also cause the
attacks on other assets (due to this same trigger firing) to
cease subsequent to a compromise and delay the evalua-
tion of an Attack trigger following any asset compromise.
The trigger frequency determines the delay period (e.g., a
frequency of 0.05 ensures the trigger cannot possibly fire
within 0.05 days of the most recent asset compromise.)

The order in which assets are attacked is based on the
motive that an outside attacker has to compromise the
asset in any mode, with higher motive attacks occurring
first. Insider motives do not affect the order of attacks.

6



5 Understanding attacks

The CyberCIEGE attack engine simulates a broad range
of attacks, including: Trojan horses, viruses, subversion
of protection mechanisms, unpatched software flaws, in-
sider attacks, network-based attacks and physical attacks.
A frequent question has been how we planned to update
the game to reflect new attacks and counter-measures.
Our answer is that the fundamental nature of attacks has
changed little since the seminal vulnerability identifica-
tions decades ago, e.g. [19, 1, 12], although the size and
complexity of the attacks and their target systems have
increased dramatically. The most challenging issue is the
potent mix of vulnerable and malicious software.

Malicious software. The CyberCIEGE simulation
largely represents ongoing problems associated with ma-
licious software. As in the real world, malicious soft-
ware often exploits vulnerabilities in poorly designed and
implemented systems. However, the CyberCIEGE sim-
ulation includes certain counter-measures not available
in the real world, e.g., high assurance trusted systems.
Within the game, these protections appear in selected
components, which the scenario designer can include or
omit from a given scenario.

We assume that most application software can contain
Trojan horses, and that most operating system services
contain flaws or trap doors. In contemporary terms, we
assume that access points and tools have been planted as
part of advanced persistent threat (APT) operations. This
perspective influenced the network simulation treatment
of assets, where high value can strongly motivate attack-
ers. Obviously, not all environments include assets of
sufficient value to attract APTs, so a variable motive is
a central construct of the simulation. Yet, for high-value
assets, a trustworthy security mechanism can make the
difference between protection and compromise.

Software flaws. A major element of the simulation
is the modeling of software flaws that result either in di-
rect compromise of assets or the implantation of mali-
cious software. The precise nature of the flaw is unim-
portant: from the students perspective, the effects are the
same, and they are likely to occur, particularly for a mo-
tivated attacker. In CyberCIEGE, the player can observe
programs that might be susceptible to data-driven attacks
because they are not patched. A network scanning func-
tion provides a view similar to tools based on nmap [13].
The scenario designer indicates the frequency at which
patches are required for a given application, and that is
compared to the student-selected patch policies. One
assignable attribute value reflects an insatiable need for
patches, hence such applications must then be kept from
attacker-facing software, e.g., by using network filters.

Software flaws resulting from a lack of application
software integrity are invisible to students unless explic-

itly described by the designer, e.g. as a scenario [3].
By allocating distinct patching and integrity attributes to
software applications, the designer can simulate environ-
ments in which students must institute software patching
policies and limit exposure of some software to poten-
tially hostile data in order to avoid known flaws; while si-
multaneously living with the threat of zero-day exploits.

6 Educational efficacy

Earlier work summarized studies conducted toward mea-
suring the efficacy of CyberCIEGE [18, 6, 11]. There
we described game event logging and a student assess-
ment tool that is available to educators. Unfortunately,
we have lacked the resources to pursue the assessment
tool enhancements described in that paper.

In addition to the previously detailed challenges asso-
ciated with the assessment of an educational tool such
as CyberCIEGE, the game’s encouragement of experi-
mentation and failure also complicate assessment. For
example, how does an automated tool, (or even a trained
instructor), distinguish between a student who is greatly
confused and one who is experimenting with the conse-
quences of deliberately wrong choices? Along similar
lines, what is the effect on student interaction with the
game if the student learns that the logs will be scruti-
nized? Clearly, care is needed to design appropriate ex-
periments and avoid conflated results.

7 Availability and future work

CyberCIEGE is freely available for use by the U.S. Gov-
ernment, and educational institutions have a no-cost ed-
ucational license. Educators in the government, univer-
sities, community colleges and high schools request Cy-
berCIEGE at a rate of several times a week, generally
due to word-of-mouth and web searches. Directions for
requesting CyberCIEGE may be found at

http://cisr.nps.edu/cyberciege

CyberCIEGE runs with WINE on Linux systems [20].
Its native platform is Windows, either running natively
or on VMs hosted by VMWare or Parallels.

We continue to seek sponsorship to adapt the Cyber-
CIEGE simulation to incorporate wireless devices, (e.g.,
access points and user devices), to design scenery and
scenarios that appeal to females and younger students, to
conduct further assessments of its utility, and to create a
browser-based port of the game for use on mobile devices
(e.g., tablets).

7



8 Acknowledgments

The authors are grateful to the many educators who have
used CyberCIEGE and whose feedback made this paper
possible.

References

[1] ANDERSON, J. P. Computer security technol-
ogy planning study. Tech. Rep. ESD-TR-73-51,
Air Force Electronic Systems Division, Hanscom
AFB, Bedford, MA, 1972. (Also available as Vol.
I,DITCAD-758206. Vol. II, DITCAD-772806).

[2] CHANG, X. S., AND CHUA, K. Y. A Cyber-
CIEGE Traffic Analysis Extension for Teaching
Network Security. Master’s thesis, Naval Postgrad-
uate School, Monterey, California, December 2011.

[3] CHAY, C. A cyberciege scenario illustrating soft-
ware integrity and management of air-gapped newt-
works in a military environment. Master’s thesis,
Naval Postgraduate School, Monterey, CA, Decem-
ber 2005.

[4] COMBS, G. Wireshark. http://www.wireshark.org/,
Last accessed 30 April 2014 2006.

[5] CONE, B. D., IRVINE, C. E., THOMPSON, M. F.,
AND NGUYEN, T. D. A video game for cyber se-
curity training and awareness. Computers and Se-
curity 26, 1 (2007), 63–72.

[6] FUNG, C. C., KHERA, V., DEPICKERE, A., TAN-
TATSANAWONG, P., AND BOONBRAHM, P. Rais-
ing inforation security awareness in digital ecosys-
tem with games - a pilot study in thailand. In Pro-
ceedings of the Second IEEE International Con-
ference on Digital Ecosystems and Technologies
(DEST 2008) (2008), pp. 375–380.

[7] IRVINE, C. E., AND THOMPSON, M. F. Teaching
objectives of a simulation game for computer secu-
rity. In Proceedings of Informing Science and Infor-
mation Technology Joint Conference (Pori, Finland,
June 2003).

[8] IRVINE, C. E., AND THOMPSON, M. F. Express-
ing an information security policy within a security
simulation game. In Proc. 6th Workshop on Educa-
tion in Computer Security: Avoiding Fear Uncer-
tainty and Doubt Through Effective Security Edu-
cation (Monterey, California, July 2004), C. Irvine,
Ed., pp. 43–49.

[9] IRVINE, C. E., AND THOMPSON, M. F. Simu-
lation of PKI-enabled Communication for Identity

Management Using CyberCIEGE. In Proceedings
of the 2010 Military Communications Conference
(MILCOM 2010) (San Jose, CA, October 2010),
pp. 1758–1763.

[10] IRVINE, C. E., THOMPSON, M. F., AND ALLEN,
K. Cyberciege: Gaminig for information assur-
ance. IEEE Security and Privacy 3, 3 (May 2005),
61–64.

[11] JONES, J., YUAN, X., CARR, E., AND YU, H. A
comparative study of cyberciege game and depart-
ment of defense information assurance awareness
video. In Proceedings of the IEEE SoutheastCon
2010 (SoutheastCon) (March 2010), pp. 176 –180.

[12] KARGER, P. A., AND SCHELL, R. R. Multics
security evaluation: Vulnerability analysis. Tech.
Rep. ESD-TR-74-193, Vol. II, Information Systems
Technology Application Office Deputy for Com-
mand and Management Systems Electronic Sys-
tems Division (AFSC), Hanscom AFB, Bedford,
MA 01730, 1974.

[13] LYON, G. F. Nmap Network Scanning: The Offi-
cial Nmap Project Guide to Network Discovery and
Security Scanning., 3rd “zero day” edition ed. In-
secure.com LLC, 2008.

[14] NAVAL POSTGRADUATE SCHOOL. Cyber-
CIEGE Scenario Development Tool User’s Guide.
http://cisr.nps.edu/cyberciege/downloads/sdt.pdf,
Last accessed 17 April 2014.

[15] PACKARD, E. The Cave of Time. Bantam Books,
1979.

[16] ROLLINGS, A., AND ADAMS, E. Fundamentals of
Game Design. Prentice Hall, 2006.

[17] SLEDZ, D. A., AND COOMES, D. E. A dynamic
three-dimensional network visualization program
for integration into CyberCIEGE and other network
visualization scenarios. Master’s thesis, Naval
Postgraduate School, Monterey, California, June
2007.

[18] THOMPSON, M., AND IRVINE, C. Active learning
with the cyberciege video game. In Proceedings
of the 4th Conference on Cyber Security Exper-
imentation and Test (Berkeley, CA, USA, 2011),
CSET’11, USENIX Association, pp. 10–10.

[19] WARE, W. H. Security controls for computer sys-
tems: Report of defense science board task force
on computer security. Tech. Rep. R-609-1, Rand
Corporation, Santa Monica, CA, 1970.

[20] WINE. http://www.winehq.com, June 2000.

8


