
SOWalker: An I/O-Optimized
Out-of-Core Graph Processing System

for Second-Order Random Walks

Yutong Wu, Zhan Shi, Shicai Huang, Zhipeng Tian, Pengwei Zuo,
Peng Fang, Fang Wang, Dan Feng

Huazhong University of Science and Technology

USENIX ATC 2023

1

Random Walk in Graph

2

 Random walk, a powerful tool for extracting
information from graphs

a) Each walker starts from a given vertex
b) Randomly moves to a neighbor of the current vertex
c) Repeat b) until a termination condition is satisfied

Random Walk in Graph
 Random walk, a powerful tool for extracting

information from graphs
a) Each walker starts from a given vertex
b) Randomly moves to a neighbor of the current vertex
c) Repeat b) until a termination condition is satisfied

 First-order random walk
• Only depends on the current vertex
• E.g., DeepWalk, Personalized PageRank, SimRank …

3

Random Walk in Graph
 Random walk, a powerful tool for extracting

information from graphs
a) Each walker starts from a given vertex
b) Randomly moves to a neighbor of the current vertex
c) Repeat b) until a termination condition is satisfied

 First-order random walk
• Only depends on the current vertex
• E.g., DeepWalk, Personalized PageRank, SimRank …

 Second-order random walk
• Consider the previous vertex
• Facilitate to model higher-order structures

4

• E.g., node2vec, second-order PageRank, second-order SimRank …

0
1

2

3

4

5

6
7

8

9

10

General Out-of-core Graph Processing Framework

5

Second-order random walk
The previous vertex might belong to other
blocks on disks, leading to extra I/Os

Disk

Memory

block b0

block b1

block b2

block b3

block b0

First-order random walk
The current vertex is in the loaded block,
the first-order random walk can be
immediately updated without I/Os

How to avoid
loading non-

updatable walks?

How to load as
many updatable
walks as possible?

0
1

2

Limitation of Current Solution
• Load all walks on the current block, but not all second-order walks are

updatable

6

All three first-order random walks are updatable as opposed
to only two second-order random walks

(a) First-order random walk (b) Second-order random walk

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 𝑢𝑢𝑢𝑢𝑢𝑢𝑊𝑊𝑢𝑢𝑢𝑢𝑊𝑊𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 =
#𝑢𝑢𝑢𝑢𝑢𝑢𝑊𝑊𝑢𝑢𝑊𝑊𝑢𝑢𝑊𝑊𝑢𝑢 𝑤𝑤𝑊𝑊𝑊𝑊𝑊𝑊𝑤𝑤

#𝑊𝑊𝑢𝑢𝑊𝑊𝑢𝑢𝑢𝑢𝑢𝑢 𝑤𝑤𝑊𝑊𝑊𝑊𝑊𝑊𝑤𝑤

Non-updatable walks result in useless walk I/Os

0
1

2
3

4

5

6
7

8

9

block b0

block b1

block b2

block b3

Memory Disk

10

0
1

2
3

4

5

6
7

8

9

block b0

block b1

block b2

block b3

Memory Disk

10

Updatable walk

Non-updatable walk

Our solution – Walk Matrix
• 𝑊𝑊 = 𝐵𝐵
• Wij stores the walks whose previous

vertex belongs to block i, and the
current vertex belongs to block j

• Check whether a walk can be
updated, judging that both the
previous and current vertices are in
memory

• Encode each walk with 128 bits

7

Skip loading non-updatable walks and eliminate useless walk I/Os

34 bit
29 bit 7 bit29 bit

29 bit

walk buffer
walk ID source

previous current hop

1
b0 b1 b2 b3

10

2 3 4

5 6 7 8

9 11 12

1413 15 16

b0

b1

b2

b3

W

Limitation of Current Solution

• Iteratively loads ancillary blocks,
unaware of updatable walk states

• Run DeepWalk (i.e., first-order)
and node2vec (i.e., second-order)
on GraphWalker

8

The non-optimal block scheduling model results in low I/O utilization

𝐼𝐼/𝑂𝑂 𝑢𝑢𝑢𝑢𝑢𝑢𝑊𝑊𝑢𝑢𝑢𝑢𝑊𝑊𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 =
#𝑤𝑤𝑊𝑊𝑊𝑊𝑊𝑊 𝑤𝑤𝑢𝑢𝑢𝑢𝑢𝑢𝑤𝑤

#𝑢𝑢𝑢𝑢𝑢𝑢𝑊𝑊𝑊𝑊 𝑢𝑢𝑢𝑢𝑒𝑒𝑢𝑢𝑤𝑤 𝑢𝑢𝑢𝑢 𝑊𝑊 𝑊𝑊𝑢𝑢𝑊𝑊𝑢𝑢𝑢𝑢 𝑢𝑢𝑊𝑊𝑢𝑢𝑏𝑏𝑊𝑊

Our solution – Benefit-aware I/O Model
• Load multiple blocks with the maximum accumulated updatable walks

9

Maximize the I/O utilization in a block I/O

map

W CDG
Maximum edge

weight clique

0
b0 b1 b2 b3

8

1 2 3

4 0 5 6

7 0 9

1110 12 0

b0

b1

b2

b3

b0 b1

b3 b2

1
4

310

9
12

8 57
2

11

6

Our solution – Benefit-aware I/O Model
Linear programming method

10

Exact but time-
consuming Efficient and effective

Algorithm 1: SA-based benefit-aware I/O model
Function SelectBlocks (CDG=(B,E), B0):

BL ← B0 // initial block set
t ← T0 // initial temperature
i ← 0 // iteration counter
while t ≥ Ts and i ≤ itermax do

Bc ← CHOOSENEWBLOCK (CDG, BL)
ΔS = S(Bc) – S(BL)
if ΔS > 0 or eΔS/t > random(0, 1) then

BL ← Bc
t ← γt
i ← i + 1

return BL

max�
𝑖𝑖

�
𝑗𝑗

𝑢𝑢𝑖𝑖𝑗𝑗𝑦𝑦𝑖𝑖𝑗𝑗

s.t. ∑𝑖𝑖=0
𝑁𝑁𝐵𝐵−1 𝑥𝑥𝑖𝑖 = 𝑚𝑚

�
𝑖𝑖=0

𝑁𝑁𝐵𝐵−1
𝛽𝛽𝑖𝑖𝑥𝑥𝑖𝑖 = 𝑚𝑚 − 𝑊𝑊

𝑦𝑦𝑖𝑖𝑗𝑗 ≤ 𝑥𝑥𝑖𝑖
𝑦𝑦𝑖𝑖𝑗𝑗 ≤ 𝑥𝑥𝑗𝑗

𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖𝑗𝑗 ∈ 0,1

Simulated annealing method

Top-m blocks based on the
number of walks in a block

Randomly swap a block between
the current and remaining block set

Limitation of Current Solution
• Manage walks at a block granularity and restrict walk updating to a block

11

The block-oriented walk updating scheme brings low walk updating rate

Fail to utilize the vertex information
in other blocks residing in memory

If the previous and current vertex
information are both available, the
walk can further be updated

0
1

2
3

4

5

6
7

8

9

block b0

block b1

block b2

block b3

Memory Disk

10

Updatable walk

Non-updatable walk

Our Solution – Block Set-Oriented Walk Updating

• Walks can move across blocks via the
cut edges between these blocks

• Each walk can be updated as much as
possible in the loaded block set

12

Maximize the walk updating rate of the loaded block set

01

2 3

4
5 6

7

8
b0 b1 b2

Evaluation
 Environment

• 32-core 2.10GHz Intel Xeon CPU E5-2620
• 128GB main memory and 3TB HDD

 Datasets

13

Dataset |V| |E| Graph Size CSR Size Block Size |B|

RM27 134.2M 1.1B 18GB 4GB 512MB 9
RND 268.4M 1.4B 24.7GB 5.2GB 512MB 11
TW 61.5M 1.5B 24.4GB 5.5GB 1GB 6

RM28 268.4M 2.1B 34.9GB 8GB 1GB 9
FR 65.6M 3.6B 58GB 13.5GB 1GB 14
UK 133.6M 5.5B 94.6GB 20.4GB 1GB 21
K30 1.1B 33.8B 628.3GB 120GB 8GB 16
CW 3.6B 126B 2.6TB 470GB 8GB 59

Applications
• Node2vec, second-order PageRank

 Comparison systems
• GraphWalker [ATC’20], GraSorw [VLDB’22]

Overall Performance

14

node2vec Second-order PageRank

SOWalker achieves 1.4-10.2× speedups over GraphWalker.
SOWalker achieves 1.2-5.7× speedups over GraSorw.

I/O-efficiency Evaluation

15

node2vec Second-order PageRank

The block I/O time in SOWalker is only 5.8-41.3% of that in
GraphWalker, and 7.5-72.9% of that in GraSorw, respectively.

I/O-efficiency Evaluation

16

I/O utilization of SOWalker is improved by 13.2-34.2× and 2.3-
26.4× compared to GraphWalker and GraSorw, respectively.

Design Choices
 Scheduling Models
• Random: randomly chooses m blocks

to load into memory

• Max-m: chooses top-m blocks based
on the number of walks in a block

• Exact: the exact benefit-aware I/O
model according to the linear
programming method

• BA: the benefit-aware I/O model
according to the simulated annealing
method

17

Model Execution
time (s)

Block I/O
time (s)

Block I/O
number

Computation
time (s)

Random 4970 3234 9868 -

Max-m 3871 2162 6391 -

Exact 14311 548 1484 12097

BA 2133 575 1537 10

Benefit-aware I/O model (BA) can achieve
better I/O performance and faster runtime.

Design choices
Walk Updating Schemes

• I/O model: loads a block with the
maximum number of walks as the current
block and iteratively loads another block
into memory as the ancillary block

18

Yield up to 2.1× speedups under the block set-oriented scheme.

Conclusion
 SOWalker: An I/O-Optimized Out-of-Core Graph Processing

System for Second-Order Random Walks
• Walk matrix

• Avoid loading non-updatable walks

• Benefit-aware I/O model
• Load multiple blocks with the maximum accumulated updatable

• Block set-oriented walk updating scheme
• Allow each walk to move as many steps as possible in the loaded block set

• Result
• Achieve up to 10.2× speedups compared to two state-of-the-art out-of-

core random walk systems

19

Thanks for your attention!

Email: yutongwu@hust.edu.cn
Open-source code: https://github.com/Teamb507/SOWalker.git

20

	SOWalker: An I/O-Optimized �Out-of-Core Graph Processing System �for Second-Order Random Walks
	Random Walk in Graph
	Random Walk in Graph
	Random Walk in Graph
	General Out-of-core Graph Processing Framework
	Limitation of Current Solution
	Our solution – Walk Matrix
	Limitation of Current Solution
	Our solution – Benefit-aware I/O Model
	Our solution – Benefit-aware I/O Model
	Limitation of Current Solution
	Our Solution – Block Set-Oriented Walk Updating
	Evaluation
	Overall Performance
	I/O-efficiency Evaluation
	I/O-efficiency Evaluation
	Design Choices
	Design choices
	Conclusion
	Thanks for your attention!

