SOWalker: An I/O-Optimized
Out-of-Core Graph Processing System
for Second-Order Random Walks

Yutong Wu, Zhan Shi, Shicai Huang, Zhipeng Tian, Pengwe1 Zuo,

Peng Fang, Fang Wang, Dan Feng

Huazhong University of Science and Technology

USENIX ATC 2023

Random Walk in Graph

» Random walk, a powerful tool for extracting
information from graphs
a) Each walker starts from a given vertex
b) Randomly moves to a neighbor of the current vertex
c) Repeatb) until a termination condition is satistied

ﬂ. °
,\\../ ,/. o)

Random Walk in Graph

» Random walk, a powerful tool for extracting
information from graphs
a) Each walker starts from a given vertex
b) Randomly moves to a neighbor of the current vertex
c) Repeatb) until a termination condition is satistied

» First-order random walk
* Only depends on the current vertex
* E.g., DeepWalk, Personalized PageRank, SimRank ...

ﬁ. °
:\\../ ,/. o)

Random Walk in Graph

» Random walk, a powerful tool for extracting
information from graphs

a) Each walker starts from a given vertex
b) Randomly moves to a neighbor of the current vertex
c) Repeatb) until a termination condition is satistied

» First-order random walk °

* Only depends on the current vertex) /
* E.g., DeepWalk, Personalized PageRank, SimRank ...

» Second-order random walk
* Consider the previous vertex
* Facilitate to model higher-order structures

* E.g., node2vec, second-order PageRank, second-order SimRank ...

General Out-of-core Graph Processing Framework

First-order random walk

The current vertex is in the loaded block,
the first-order random walk can Dbe
immediately updated without [/Os

Second-order random walk
@ The previous vertex might belong to other

blocks on disks, leading to extra I/Os

N

How to load as
many updatable
walks as possible?

5

Limitation of Current Solution

* Load all walks on the current block, but not all second-order walks are

updatable
H’ H. HO 100% ------------- 1: —————————————
S g DeepWalk
o block bzo ug
block b Updatable walk »—"[:]‘
% P E 30%

“ o
Non-updatable walk 20%

block b, §
block b; 10% - - -

7
Memor Disk o/
y Memory Disk 0% FR UK
Dataset

(b) Second-order random walk

(a) First-order random walk

All three first-order random walks are updatable as opposed
to only two second-order random walks

| Nomupdateble walls sesultinuselesswalkios)

Walk utilization — #updatable walks
artutttizatton = #loaded walks

Our solution — Walk Matrix

* |[W| = |B]

* W, stores the walks whose previous S
vertex belongs to block i, and the ——————— walk buffer

current vertex belongs to block j o) 1121314 4’% walk ID source
2

9bit | 29bit | 7bit

34 bit 29 bit
e Check whether a walk can be

19 previous current hop

updated, judging that both the & |9 | 1011
previous and current vertices are in p,| 13| 14 | 15| 16
memory -

 Encode each walk with 128 bits

Skip loading non-updatable walks and eliminate useless walk I/Os

Limitation of Current Solution

. . ® DeepWalk
* Jteratively loads ancillary blocks, _40%{% e node2vec

unaware of updatable walk states

: 20%- i’
o .
* Run DeepWalk (i.e., first-order) 0% I
0%

and node2vec (i.e., second-order) 00 1600 2400
on GraphWalker Block I/O number

utilizatio
('S}
<
N
o

#walk steps

1/0 utilization =

#total edges in a loaed block

Our solution — Benefit-aware /O Model

* Load multiple blocks with the maximum accumulated updatable walks

bo b1 by b;
bl O | 1 2] 3
bil 40|56 map 8 5
ml7]8o]o| ——)
bs| 10| 11 (12| O
Maximum edge
44 iht clique J

Our solution — Benefit-aware /O Model

Linear programming method Simulated annealing method
/ \ Algorithm 1: SA-based benefit-aware I/O model
maxz z €ijVij Function SelectBlocks (CDG=(B,E), B,):
i B, < B, // 1nitial block set
s.t. ZIiV:BO_l X;=m t<T, // initial temperature Top-m blocks based on the
Np-1 3 i<0 // 1teration counter | number of walks in a block
zi=0 Pixy=m—k while > T and i < iter, do
yii < %, B, —« CHOOSENEWBLOCK (CDG, B,)
Vi < X; AS =S(8,) - S(B))
v : S/t
Xi,Yij € {0,1} if AS >0 or eA > random
\ / B, < B, Randomly swap a block between
L=yt the current and remaining block set
i< i+1
Exact but time- return 5,

%WN Efficient and effective
10

Limitation of Current Solution

* Manage walks at a block granularity and restrict walk updating to a block

Fail to utilize the vertex information
in other blocks residing in memory

block sz
% Updatable walk

Non-updatable walk

If the previous and current vertex
block b3

information are both available, the

Memory Disk walk can further be updated

11

Our Solution — Block Set-Oriented Walk Updating

» Walks can move across blocks via the

Sy cut edges between these blocks
B (3 * Each walk can be updated as much as

possible in the loaded block set

12

Evaluation

» Applications

« Node2vec, second-order PageRank

» Environment
e 32-core 2.10GHz Intel Xeon CPU E5-2620

* 128GB main memory and 3TB HDD > Comp arison systems

» Datasets « GraphWalker [ATC’20], GraSorw [VLDB’22]
Dataset Vi |[El Graph Size CSRSize Block Size | B
RM27 1342M 1.1B 18GB 4GB 512MB 9
RND 2684M 1.4B 24.7GB 5.2GB 512MB 11
™ 61.5M 1.5B 24.4GB 5.5GB 1GB
RM28 268.4M 2.1B 34.9GB 8GB 1GB
FR 65.6M 3.6B 58GB 13.5GB 1GB 14
UK 133.6M 5.5B 94.6GB 20.4GB 1GB 21
K30 1.1B 33.8B 628.3GB 120GB 8GB 16
CW 3.6B 126B 2.6TB 470GB 8GB 59

13

Overall Performance

B GraphWalker B GraSorw B SOWalker B GraphWalker B GraSorw Bl SOWalker

1.01

))

£ £

=038 =

= 2

= =

2 0.61 2

= =

() ()

o) o)

Boa

S s

£ 02 :

Z Z

M o Q& e DA R R
Q2N & R QO % S Q2N & R QO % S
& < & & & < & A

node2vec Second-order PageRank

14

[/O-etticiency Evaluation

B GraphWalker B GraSorw Bl SOWalker B GraphWalker B GraSorw Bl SOWalker

1.0- 1.0-
S 0.8 S 0.8
206 LK
° °
= =
804 804
S S
§0.2 §0.2
0.0- 0.0-
N © & §E D AR SR G SIS
& & o o & o
S S N S AR U &S S N S T @O

node2vec Second-order PageRank

15

[/O-etticiency Evaluation

Normalized I/0O utilization

B GraphWalker
0 GraSorw
B SOWalker

[\ e N
S))

Normalized walk updating rate

)

027 GraphWalker

376

[GraSorw
B SOWalker

16

Design Choices

» Scheduling Models

Random: randomly chooses m blocks
to load into memory

Max-m: chooses top-m blocks based
on the number of walks in a block

Exact: the exact benefit-aware /O
model according to the linear
programming method

BA: the benefit-aware I/O model
according to the simulated annealing
method

Execution | Block I/O | Block I/O | Computation
Model : : :
time (s) time (s) | number time (s)
Random 4970 3234 9868 -
Max-m 3871 2162 6391 »
—r
Exact 14311 548 1484 ﬁ 12/(39%
AN
BA 2133 575 1537 10

17

Design choices

» Walk Updating Schemes

B Block-oriented I Block set-oriented
2500 1

OTW FR UK

e [/O model: loads a block with the

maximum number of walks as the current %2000
block and iteratively loads another block § 1500
into memory as the ancillary block E

i

18

Conclusion

» SOWalker: An I/O-Optimized Out-of-Core Graph Processing
System for Second-Order Random Walks

» Walk matrix
 Avoid loading non-updatable walks

e Benefit-aware I/O model

* Load multiple blocks with the maximum accumulated updatable

* Block set-oriented walk updating scheme
» Allow each walk to move as many steps as possible in the loaded block set

e Result

* Achieve up to 10.2x speedups compared to two state-of-the-art out-of-
core random walk systems

19

Thanks tor your attention!

Email: yutongwu@hust.edu.cn
Open-source code: https://github.com/Teamb507/SOWalker.git

20

	SOWalker: An I/O-Optimized �Out-of-Core Graph Processing System �for Second-Order Random Walks
	Random Walk in Graph
	Random Walk in Graph
	Random Walk in Graph
	General Out-of-core Graph Processing Framework
	Limitation of Current Solution
	Our solution – Walk Matrix
	Limitation of Current Solution
	Our solution – Benefit-aware I/O Model
	Our solution – Benefit-aware I/O Model
	Limitation of Current Solution
	Our Solution – Block Set-Oriented Walk Updating
	Evaluation
	Overall Performance
	I/O-efficiency Evaluation
	I/O-efficiency Evaluation
	Design Choices
	Design choices
	Conclusion
	Thanks for your attention!

