Beware of Fragmentation: Scheduling GPU-Sharing Workloads with Fragmentation Gradient Descent

Paper published in USENIX ATC 2023 Qizhen Weng† , Lingyun Yang† , Yinghao Yu*† , Wei Wang† , Xiaochuan Tang* , Guodong Yang* , Liping Zhang* †HKUST *Alibaba Group

• GPU Sharing & Fragmentation in ML Cluster

- Inefficiency of Existing Approaches
- The Fragmentation Measure
- Fragmentation Gradient Descent
- Implementation and Evaluation
- Conclusion

ML-as-a-Service (MLaaS) Cloud

All-in-one platform for users using different ML frameworks

Support various workloads: training, inference, evaluation …

ML tasks running in containers scheduled to >1000 GPU servers

3 [1] Weng et al., "MLaaS in the Wild: Workload analysis and scheduling in large-scale heterogeneous GPU clusters," in NSDI 2022.

GPU underutilization

25-50% GPU utilization in production ML clusters [1-4]

• Most ML tasks cannot fully utilize the capability of modern GPUs

[1] Weng et al., "MLaaS in the Wild: Workload analysis and scheduling in large-scale heterogeneous GPU clusters," in NSDI 2022. [2] Narayanan et al., "Heterogeneity-aware cluster scheduling policies for deep learning workloads," in OSDI 2020 [3] Hu et al., "Characterization and prediction of deep learning workloads in large-scale GPU datacenters," in SC 2021. [4] Li et al., "Lyra: Elastic scheduling for deep learning clusters," in EuroSys 2023.

The need for GPU sharing

- GPU sharing lets multiple tasks run on a single GPU
	- e.g., via DL framework, CUDA API interception, or hardware support (MIG)
- Sharing saves 50% GPUs in Alibaba PAI [1]

Yet, partial GPU allocation results in fragmentation and limits allocation rate

GPU-sharing cluster H with 1.2k nodes, 6.2k GPUs, 8k tasks (Alibaba)

- Fully packed after allocating 92% GPUs, wasting ~500 GPUs
- User experience scheduling failures even with sufficient GPU allocation quotas

- GPU Sharing & Fragmentation in ML Clusters
- Existing Approaches
- The Fragmentation Measure
- Fragmentation Gradient Descent
- Implementation and Evaluation
- Conclusion

Packing improves allocation

- After GPU sharing, "1 GPU" left in idle but not allocatable to Task A
- Mitigate fragmentation with packing Task A

Best Fit: Verma *et al.* "Borg" *EuroSys* '15 Dot Product: Grandl *et al.* "Tetris" *SIGCOMM* '14

Does classical multi-resource bin-packing work for GPUs?

How to formulate GPUs into a resource dimension?

Attempt #1

- Pool together a node's multiple available GPUs into one logical GPU
	- e.g., 2-GPU node with <0.9 GPUs, 0.4 GPUs $>$ => having 1.3 GPUs idle
- Problem:
	- GPU pooling ignores the allocation boundary between GPUs
	- Unable to differentiate the fragmentation on individual GPUs

Attempt #2

- Treat each GPU as an independent resource dimension
	- e.g., 2-GPU node has 3D-resource vector <16 CPUs, 0.9 GPUs, 0.4 GPUs>
- Problem:
	- Choosing the wrong expansion of task resource vectors may block allocation

Task <2 CPUs, 0.5 GPUs>

Task <2 CPUs, 0.5 GPUs, 0 GPUs>

Task <2 CPUs, 0 GPUs, 0.5 GPUs>

Attempt #2

- Treat each GPU as an independent resource dimension
	- e.g., a 2-GPU node with resource vector <16 CPUs, 0.9 GPUs, 0.4 GPUs>
- Problem:
	- Unlike other resources, GPUs are interchangeable! A GPU task has a "deformable" resource vector wrt available GPUs on the nodes, invalidating the conventional bin-packing formulation!

Does classical multi-resource bin-packing work for GPUs?

Not for shared GPUs! Need a new approach to address the fragmentation problem of scheduling GPU-sharing workloads

- GPU Sharing & Fragmentation in ML Clusters
- Existing Approaches
- The Fragmentation Measure
- Fragmentation Gradient Descent
- Implementation and Evaluation
- Conclusion

"To Measure is the First Step to Improve"

- How to formally define fragmentation?
	- "You keep using that word. I do not think it means what you think it means."
- How to further reason the sources of fragmentation?
	- Insufficient GPUs, stranded GPUs, or both, how much do they contribute?
- How to efficiently mitigate fragmentation?
	- Simpler and more explainable than using ML techniques

Fragmentation in absolute term \odot

Bad Def.: "A node is fragmented if and only if it cannot run any task"

Y(X)-axis: Idle GPU (CPU) on nodes or Requested GPU (CPU) of tasks

Ignorant of high-demanding workloads (e.g., Task D has no say on fragmentation)

Skyline tasks (A, B, C) dominate others, regardless of their tiny population (0.06% in our traces).

• Average skyline task demand: <3.2 CPUs, 0.07 GPUs> is far below avg. task demand: <9.4 CPUs, 0.9 GPUs>

 (3) Vulnerable to small workload changes (C -> C'). Unable to differentiate fragmentation sources.

The absolute measure is overly restrictive in fragmentation identification

• Scheduling 8k tasks to 6.2k GPUs

Fragmentation stays at a low level (<5%) throughout the scheduling Failing to provide early feedbacks to the scheduling quality

A statistical fragmentation measure \odot

The next task to arrive is considered to be randomly sampled from typical workloadsFragmentation region GPU

- Q1 & Q2: Insufficient GPU
- Q4: Stranded GPU
- X-axis: Non-GPU tasks

Frag rate: the likelihood that the arriving task falls in frag regions GPUS)

- Frag rate*: $f_n^{\text{GPU}} \cong 1 \sum_{m \in Q_3} p_m$ $(p_m \in (0, 1]$: task popularity)
- Frag amount: $F_n^{\text{GPU}} = f_n^{\text{GPU}} R_n^{\text{GPU}}$
- Cluster frag amount: $F_N^{\text{GPU}} = \sum_n F_n^{\text{GPU}}$

* Roughly, as finer-grained calculation should consider fragmentation at per-GPU level. See more in the §3.2 of the paper. ¹⁹

A statistical fragmentation measure \odot

Given the task distribution of a target workload, it measures the expected GPU resources that cannot be allocated

• Further broken down into different sources of fragmentation: Insufficient GPU $(Q2)$, stranded GPU $(Q4)$, lack both $(Q1)$, non-GPU tasks (X-axis).

GPU Task D **Frag (Deficient)** Task A i Node A III Task B Task C **Task E**

A statistical fragmentation measure \odot

- Sensitive to scheduling quality; useful feedback at early stages
- Scheduling: Frag rate $f_{n_{\text{out}}}^{\text{GPU}}$ 1 Remaining resources R_n^{GPU} ↓ Until all remaining resources are unallocatable to any tasks $(i.e., Frag rate = $100\%)$.$
- Cluster Frag = $\sum_n (f_n^{\text{GPU}} R_n^{\text{GPU}})$ / Total (%): normalized by cluster GPU capacity

Clustering: Xiao *et al.* "Gandiva" *OSDI* '18 Packing: Weng *et al.* "MLaaS" *NSDI* '22

- GPU Sharing & Fragmentation in ML Clusters
- Existing Approaches
- The Fragmentation Measure
- Fragmentation Gradient Descent
- Implementation and Evaluation
- Conclusion

Fragmentation Gradient Descent (FGD)

Heuristic: schedule tasks towards the *steepest descent* of fragmentation

FGD scores nodes in parallel, thus scaling to large clusters: each decision can be made in *hundred of milliseconds* in cluster with 1200 nodes

Algorithm 1: Task scheduling of FGD

Input : Cluster N, incoming task m , target workload M **Output:** Assigned node n^*

1 Initialize node score set
$$
S \leftarrow \emptyset
$$
, and output $n^* \leftarrow \emptyset$.

2 **parallel for** *node* $n \in N$ **do** \bigcirc

- **if** Insufficient resources \parallel constraints not met then $\mathbf{3}$ \triangleright Filter out unavailable nodes Return \blacktriangleleft
- $n^{-} \leftarrow$ AssignTaskToNode $(m, n) \geq$ Hypothetically 5
- $\Delta \leftarrow F_{n}-(M)-F_n(M) \triangleright \text{Fragmentation increment}$ $S \leftarrow S \cup (n, \Delta)$
- 8 if $S \neq \emptyset$ then

 $\circled{2}$

 $n^* \leftarrow \arg\min_{n \in S} \Delta$ \triangleright pick the node with the least Δ . $\circled{3}$

A running example of FGD scheduling

To GPU B: B will be fragmented to Task A, B, C $(F_B^{GPU} = 100\% * 0.2 - 0)$

③ To GPU A: Impossible

To GPU B: B will have no GPU left, thus no fragmentation $(F_B^{GPU} = 0 - 0\% * 0.7)$ \forall

- GPU Sharing & Fragmentation in ML Clusters
- Existing Approaches
- The Fragmentation Measure
- Fragmentation Gradient Descent
- Implementation and Evaluation
- Conclusion

Large-scale trace-driven emulation

- Implementation: a pluggable scheduler in Kubernetes
- High-fidelity event-driven emulator
	- Cluster-H: 1.2k nodes, 6.2k GPUs
	- Production trace of 8k tasks as input
	- Plugin + Emulator: 10k lines of code
- FGD outperforms all heuristics
	- 1. Has the **least** amount of GPU fragment
	- 2. Hosts more tasks before saturation
	- 3. Packs tasks to 250+ fewer nodes
	- 4. Reduces unallocated GPUs by 33-49% (utilizes additional 150-290 GPUs)
- Emulator: <https://github.com/hkust-adsl/kubernetes-scheduler-simulator>
- Traces:<https://github.com/alibaba/clusterdata/tree/master/cluster-trace-gpu-v2023>

• Packing: Weng et al. "MLaaS" NSDI '22

26

Under varying workload distribution

GPU-Sharing Tasks Multi-GPU Tasks

Tasks with GPU-type constraints Tasks Non-GPU Tasks

- GPU Sharing & Fragmentation
- Existing Approaches
- The Fragmentation Measure
- Fragmentation Gradient Descent
- Implementation and Evaluation
- Conclusion

Trace & Code

Conclusion

Allocating partial GPUs results in severe fragmentation

- A new challenge that cannot be addressed using conventional binpacking approaches
- A new fragmentation metrics
	- Measure the expected GPU resources that cannot be allocated given a workload distribution
	- Support breakdown analysis to reason about fragmentation
- Fragmentation Gradient Descent (FGD)
	- Schedules tasks towards the steepest descent of GPU fragmentation
	- Packs tasks to fewer nodes, substantially reducing unallocated GPUs
	- Easy to implement

