
Beware of Fragmentation:
Scheduling GPU-Sharing Workloads

with Fragmentation Gradient Descent

Paper published in USENIX ATC 2023

Qizhen Weng¥, Lingyun Yang¥, YinghaoYu*¥, Wei Wang¥,
XiaochuanTang*, Guodong Yang*, Liping Zhang*

¥HKUST *AlibabaGroup

1

Agenda

ÅGPU Sharing & Fragmentation in ML Cluster

ÅInefficiency of Existing Approaches

ÅThe Fragmentation Measure

ÅFragmentation Gradient Descent

ÅImplementation and Evaluation

ÅConclusion

2

ML-as-a-Service (MLaaS) Cloud

All-in-one platform for users
using different ML frameworks

Support various workloads:
training, inference, evaluation ¤

ML tasks running in containers
scheduled to >1000 GPU servers

3
[1] Weng et al., "MLaaS in the Wild: Workload analysis and scheduling in large-scale

heterogeneous GPU clusters," in NSDI 2022.

GPU underutilization

25-50% GPU utilization in production ML clusters [1-4]
ÅMost ML tasks cannot fully utilize the capabilityof modern GPUs

4

[1] Weng et al., "MLaaS in the Wild: Workload analysis and scheduling in large-scale heterogeneous GPU clusters," in NSDI 2022.

[2] Narayanan et al., "Heterogeneity-aware cluster scheduling policies for deep learning workloads," in OSDI 2020

[3] Hu et al., "Characterization and prediction of deep learning workloads in large-scale GPU datacenters," in SC 2021.

[4] Li et al., "Lyra: Elastic scheduling for deep learning clusters," in EuroSys2023.

Alibaba PAI trace [1]

The need for GPU sharing

ÅGPU sharing lets multiple tasks run on a single GPU
Åe.g., via DL framework, CUDA API interception, or hardware support (MIG)

ÅSharing saves 50% GPUs in Alibaba PAI [1]

5[1] Weng et al., "MLaaS in the Wild: Workload analysis and scheduling in large-scale heterogeneous GPU clusters," in NSDI 2022.

Yet, partial GPU allocation results in
fragmentation and limits allocation rate

GPU-sharing cluster H with 1.2k nodes, 6.2k GPUs, 8k tasks (Alibaba)
ÅFully packedafter allocating 92% GPUs, wasting ~500 GPUs

ÅUser experience scheduling failures even with sufficient GPU allocation quotas

6Insufficient GPUs Insufficient CPUs (stranded GPU)

Agenda

ÅGPU Sharing & Fragmentation in ML Clusters

ÅExisting Approaches

ÅThe Fragmentation Measure

ÅFragmentation Gradient Descent

ÅImplementation and Evaluation

ÅConclusion

7

Packing improves allocation

8

ÅAfter GPU sharing, "1 GPU" left in idle but not allocatable to Task A

ÅMitigate fragmentation with packing

Recap: Multi-Resource Bin-Packing

9

Best Fit Dot Product

Task Resource Request

Node A Node B Node C

Node Resource Capacity

Task A

Task B

Task C

Remaining
Resource A

CPU

GPU
Mem

Remaining
Resource B

Best Fit:Vermaet al. "Borg"EuroSys'15
Dot Product: Grandlet al. "Tetris"SIGCOMM'14

Does classical multi-resource
bin-packing work for GPUs?
How to formulate GPUs into a resource dimension?

10

Task Resource Request

CPU

GPU
Mem

GPU

?
Node Resource Capacity

Attempt #1

ÅPool together a node®s multiple available GPUs into one logical GPU
Åe.g., 2-GPU node with <0.9 GPUs, 0.4 GPUs>=> having 1.3 GPUsidle

ÅProblem:
ÅGPU pooling ignores the allocation boundary between GPUs

ÅUnable to differentiate the fragmentation on individual GPUs

11

GPU-1 0.9

0.4GPU-2

1.3 GPUs

Logical GPU

1-GPU Task×

×

Ҟ

Attempt #2

ÅTreat each GPU as an independent resource dimension
Åe.g., 2-GPU node has 3D-resource vector <16 CPUs, 0.9 GPUs, 0.4 GPUs>

ÅProblem:
ÅChoosing the wrong expansion of task resource vectors may block allocation

12

GPU-1 0.9

0.4GPU-2

CPU 16 CPUs

Task <2 CPUs, 0.5 GPUs, 0 GPUs>

Task <2 CPUs, 0 GPUs, 0.5 GPUs>

2 CPUs 0.5G

Task <2 CPUs, 0.5 GPUs>

ÅTreat each GPU as an independent resource dimension
Åe.g., a 2-GPU node with resource vector <16 CPUs, 0.9 GPUs, 0.4 GPUs>

ÅProblem:
ÅUnlike other resources, GPUs are interchangeable!

Task <2 CPUs, 0 GPUs, 0.5 GPUs>

Attempt #2

13

GPU-1 0.9

0.4GPU-2

CPU 16 CPUs 2 CPUs

A GPU task has a "deformable" resource vector wrt available GPUs

on the nodes, invalidating the conventional bin-packing formulation!

Task <2 CPUs, 0.5 GPUs, 0 GPUs>
0.5G ?

Task <2 CPUs, 0.5 GPUs>

Does classical multi-resource
bin-packing work for GPUs?
Not for shared GPUs! Need a new approach to address the
fragmentation problem of scheduling GPU-sharing workloads

14

Task Resource Request

CPU

GPU
Mem

GPU

?
Node Resource Capacity

Agenda

ÅGPU Sharing & Fragmentationin ML Clusters

ÅExisting Approaches

ÅThe Fragmentation Measure

ÅFragmentation Gradient Descent

ÅImplementation and Evaluation

ÅConclusion

15

"To Measure is the First Step to Improve"

ÅHow to formally define fragmentation?
Å"You keep using that word. I do not think it means what you think it means."

ÅHow to further reason the sources of fragmentation?
ÅInsufficient GPUs, stranded GPUs, or both, how much do they contribute?

ÅHow to efficiently mitigate fragmentation?
ÅSimpler and more explainable than using ML techniques

16

Fragmentation in absolute term L

Bad Def.: "A node is fragmented if and only ifit cannot run any task"

17

CPU

GPU

O

Node A

Task A

Task B

Task C

Task D

Node B

Node C

CPU

GPU

O

Node A

Task A

Task B

Task C

Task D

Node B

Node C

Task Sk y l in e

CPU

GPU

O

Node A

Task A

Task B

Task C

Task D

Node B

Node C

Task Sk y l in e

Fr ag Non - Fr ag

CPU

GPU

O

Node A

Task A

Task B

Task CTask C'

Task D

Node B

Node C

Task Sk y l in e

Fr ag Non - Fr ag

downscaling

Ignorantof high-demanding workloads
(e.g., Task D has no say on fragmentation)

Skyline tasks (A, B, C) dominateothers, regardless
of their tiny population (0.06%in our traces).
Å Average skyline task demand: <3.2 CPUs, 0.07 GPUs>

is far below avg. task demand: <9.4 CPUs, 0.9 GPUs>

Vulnerableto small workload changes (C -Ҕ /ΩύΦ
Unable to differentiate fragmentation sources.

Ҟ ×

Y(X)-axis: Idle GPU (CPU) on nodes or Requested GPU (CPU) of tasks

The absolute measure is overly restrictive
in fragmentation identification

ÅScheduling 8k tasks to 6.2k GPUs

18

Fragmentation stays at a low level (<5%)throughout the scheduling
²²Failing to provide early feedbacks to the scheduling quality

Q1:

Insufficient CPU & GPU
Q2:

Insufficient GPU

Q4:

Insufficient CPU

(Stranded GPU)

X-axis: Non -GPU tasks

A statistical fragmentation measure J

Fragmentation region
ÅQ1 & Q2: Insufficient GPU

ÅQ4: Stranded GPU

ÅX-axis: Non-GPU tasks

Frag rate: the likelihood that the
arriving task falls in frag regions
ÅFrag rate*:Ὢ ḙρ В ᶰ ὴ

(ὴ ᶰ πȟρ: task popularity)

ÅFrag amount: Ὂ Ὢ Ὑ

ÅCluster frag amount: Ὂ В Ὂ

19* Roughly, as finer-grained calculation should consider fragmentation at per-GPU level. See more in the 3.2 of the paper.

(Residual

GPUs) TasksTasks

Tasks

Q3: No Fragmentation

The next task to arrive is considered to be randomly sampled from typical workloads

A statistical fragmentation measureJ

Given the task distribution of a target workload, it measures the
expected GPU resources that cannot be allocated
ÅFurther broken down into different sources of fragmentation: Insufficient

GPU (Q2), stranded GPU (Q4), lack both (Q1), non-GPU tasks (X-axis).

20

A statistical fragmentation measure J

21

ÅSensitive to scheduling quality;
useful feedback at early stages

ÅScheduling: Frag rate Ὢ ʏ
Remaining resources Ὑ ʑ
Until all remainingresources
are unallocatableto any tasks
(i.e., Frag rate = 100%).

ÅCluster Frag = В Ὢ Ὑ
/ Total (%): normalized by
cluster GPU capacity

Clustering:Xiao et al. άGandiva" OSDI'18
Packing: Weng et al. άa[ŀŀ{ϦNSDI '22

Agenda

ÅGPU Sharing & Fragmentationin ML Clusters

ÅExisting Approaches

ÅThe Fragmentation Measure

ÅFragmentation Gradient Descent

ÅImplementation and Evaluation

ÅConclusion

22

Fragmentation Gradient Descent (FGD)

Heuristic: schedule tasks towards the steepest descent of fragmentation

23

Task

Node A Node B Node C

Ὂ+= 40

Ὂ+= 10

Ὂ+= -20
Ҟ

FGD scores nodes in parallel, thus scaling to large clusters: each decision

can be made in hundred of millisecondsin cluster with 1200 nodes

A running example of FGD scheduling

24

Ɩ To GPU A: A will be fragmented to Task A, B, C (Ὂ += 100% * 0.2²33% * 0.5)

To GPU B: B will be no fragmentation to any Task (Ὂ += 0% * 0.7 - 0) ʮ

Ɨ To GPU A: A will have no GPU left, thus no fragmentation (Ὂ += 0²33% * 0.5) ʮ
To GPU B: B will be fragmented to Task A, B, C (Ὂ += 100% * 0.2²0)

Ƙ To GPU A: Impossible

To GPU B: B will have no GPU left, thus no fragmentation (Ὂ += 0²0% * 0.7) ʮ

Frag amount:
Ὂ Ὢ Ὑ

ʮ
ʮ

ʮ

after alloc. before alloc.

Agenda

ÅGPU Sharing & Fragmentationin ML Clusters

ÅExisting Approaches

ÅThe Fragmentation Measure

ÅFragmentation Gradient Descent

ÅImplementation and Evaluation

ÅConclusion

25

Large-scale trace-driven emulation

ÅImplementation: a pluggable
scheduler in Kubernetes

ÅHigh-fidelity event-driven emulator
ÅCluster-H: 1.2k nodes, 6.2k GPUs

ÅProduction trace of 8k tasks as input

ÅPlugin + Emulator: 10k lines of code

ÅFGDoutperforms all heuristics

1. Has the least amount of GPU fragment

2. Hosts more tasks before saturation

3. Packs tasks to 250+ fewernodes

4. Reducesunallocated GPUsby 33-49%
(utilizes additional 150-290 GPUs)

26

Å Emulator: https://github.com/hkust-adsl/kubernetes-scheduler-simulator
Å Traces: https://github.com/alibaba/clusterdata/tree/master/cluster-trace-gpu-v2023

Å Clustering: Xiao et al. "Gandiva" OSDI '18
Å Packing: Weng et al. "MLaaS"NSDI '22

https://github.com/hkust-adsl/kubernetes-scheduler-simulator
https://github.com/alibaba/clusterdata/tree/master/cluster-trace-gpu-v2023

Under varying workload distribution

27

GPU-SharingTasks Multi-GPUTasks

Tasks with GPU-type constraints Non-GPU Tasks

