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Conflicting Cloud Trends: Al & Privacy

Cloud Accelerators Enable Hyper-scale Al

* Medical diagnostics, financial forecasting, generative Al

* Large models require 10N high-end GPUs

Ever-growing Confidentiality & Privacy Concerns
* Privacy-sensitive data (e.g., medical history, transactions)

* Proprietary Al models DMA\

* Sharing of infrastructure, sophisticated attacks

Need strong security mechanisms for preserving cloud Al privacy




Confidential Computing to the Rescue

—————————

Code | Trusted Execution Environments (TEE)

' * Execution isolated from privileged attackers

* Remote attestation for establishing trust

* Support by major CPU vendors (past 10 years)

* Process-basedvs. VM-based

Limited Support in PCle Devices

* Research proposals, e.g., Graviton [OSDI’18]

* Upcoming NVIDIA Hopper GPUs
* Works in conjunction with VM-based TEEs
- Large TCB, dependency with host CPU

Need low-TCB and flexible Al Accelerator TEE



ITX: A Case for a Confidential Al Accelerator

Security Guarantees
* Confidentiality, integrity of computation & data

e Remote attestation

IPU Trusted Extensions (ITX)
* No trustin CPU
* No changes to programming model

* Low performance overheads

Development board manufactured in 2020



Outline

* Graphcore IPU and Threat Model
* |PU Trusted Extensions (ITX)
* Conclusion



IPU Hardware Architecture

Tiled Architecture (>1400 tiles)

 Compute: in-order multi-threaded core with Al units

PCI
Complex

* Memory: fixed-latency SRAM
* No caching, mapped to tile’s address space

PCI Controller

Internal Interconnect

Exchange

PCl Complex IPU-IPU

Link Controller

* Mediates IPU-Host communication BUNRU

Link Controller

* Host memory mapped to tiles via page tables

* |PU memory mapped to host via PCI BAR

How do we program such a massively parallel processor?




|IPU Execution Model

Bulk Synchronous Parallel Paradigm

« Compute and exchange phases

* Internal synchronization for Tile-Tile 1/0
* External synchronization for Host-Tile I/0

Compiler-driven Resource Allocation
* Each node inthe ML graph is assigned tile resources (threads, memory)

* |[PU binary defines its entire control and data flow
* Compute and exchange phases defined at compilation time

How does the IPU software stack support external [/0?



Streams: An External I/0O Abstraction

« Compiler maps external I/0O to streams, generates tile code for DMA

* Runtime implements streams
 DMA buffer mapped to tile’s address space
* DMA buffer populated during external synchronization

# IPUBinary @ Metadata 0 Data

* |IPU binary pulls streams
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Streams: An External I/0O Abstraction

« Compiler maps external I/0O to streams, generates tile code for DMA

* Runtime implements streams
« DMA buffer mapped to tile’s address space I IPUBinary ' Metadata 10 Data
* DMA buffer populated during external synchronization

* |IPU binary pulls streams
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The external I/0 path has a large attack surface



Threat Model .

Application

Runtime

Trusted Computing Base (TCB) Guest OS
* |IPU Package including on-chip SRAM Hypervisor

‘B'ﬂ
[ 1PU

« IPU HRoT (HW and FW) CPU

ML Framework and IPU Compiler

Goal: Confidentiality and integrity of computation and data

Out-of-scope
* Physical side-channel attacks (e.g., DPA)
* Package manufacturing attacks
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ITX in a NUtShell AES units for encrypting &

authenticating
communication over PCle

Trusted Mode
* Setby CCU during TEE initialization
* No sharingin space or time

Blocks the host from IPU access

Decoupled compilation from
execution

Application binary & data can be
prepared at tenant’s premises
Runtime mediates data using a
compiler-generated job manifest
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ITX in a Nutshell: Attestation & Key Provisioning

 CCU receives job manifest, issues attestation, receives and deploys keys from verifier(s)

Bootloader 0 IPUBinary 0 Data
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ITX in a Nutshell: Secure Bootstrapping

 CCU receives job manifest, issues attestation, receives and deploys keys from verifier(s)
 CCU deploys bootloader to load encrypted IPU binary, computes hash of the IPU binary

Bootloader 0 IPUBinary 0 Data
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ITX In a Nutshell: Confidential Streams

 CCU receives job manifest, issues attestation, receives and deploys keys from verifier(s)
 CCU deploys bootloader to load encrypted IPU binary, computes hash of the IPU binary

* |PU binary fetches encrypted data from DMA buffer Bootloader I IPUBinary N Data
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Need to prevent reorder and replay attacks from host CPU




Encrypted Direct Memory Access

Address Space

Image (1/4) |Tag | IV Image (2/4) |Tag | IV Image (3/4) |Tag | IV Image (4/4) | Tag

Voo ol

* Compiler maps all streams into a stream address space (AS)

 Compiler partitions the application’s streams into frames

* Frames identified with a unique ASID acting as an IV during encryption
* |V enclosed within frame for efficient supply to the HW decryption

* HW decryption ensures integrity based on tag

* The receiver verifies that the frame’s IV matches the requested ASID

Low-cost protection against replay and re-order attacks



More Detalils In the Paper

Measured boot protocol
* Firmware provisioning with no trust in supply chain

* Firmware updates w/o device re-certification

TEE lifecycle (initialization, launch, termination
* Remote attestation protocol

Multi-key support in encryption engines

Secure checkpointing
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Abstract

We present IPU Trusted Extensions (ITX), a set of hardware
extensions that enables trusted execution environments in
Graphcore’s Al accelerators. ITX enables the execution of Al
workloads with strong confidentiality and integrity guaran-
tees at low performance overheads. ITX isolates workloads
from untrusted hosts, and ensures their data and models re-
main encrypted at all times except within the accelerator’s
chip. ITX includes a hardware root-of-trust that provides at-
testation capabilities and orchestrates trusted execution, and
on-chip programmable cryptographic engines for authenti-
cated encryption of code/data at PCle bandwidth.

We also present software for ITX in the form of compiler
and runtime extensions that support multi-party training with-
out requiring a CPU-based TEE.

We included experimental support for ITX in Graphcore’s
GC200 IPU taped out at TSMC’s 7nm node. Its evaluation on
a development board using standard DNN training workloads
suggests that ITX adds < 5% performance overhead and de-
livers up to 17x better performance compared to CPU-based
confidential computing systems based on AMD SEV-SNP.

1 Introduction

Machine learning (ML) is transforming many tasks such as
medical diagnostics, video analytics, and financial forecasting.
Their progress is largely driven by the computational capa-
bilities and large memory bandwidth of AI accelerators such
as NVIDIA GPUs, Alibaba’s NPU [2], Google’s TPU [18],
and Amazon'’s Inferentia [3]. Their security and privacy is a
serious concern: due to the nature and volume of data required
to train sophisticated models, the sharing of accelerators in
public clouds to reduce cost, and the increasing frequency
and severity of data breaches, there is a realization that ma-
chine learning systems require stronger end-to-end protection
mechanisms for their sensitive models and data.

Work done while at Microsoft; ¥Work done while at Graphcore.

Figure 1: Graphcore Intelligence Processing Unit (IPU) develop-
ment board (May 2020) with ITX extensions, showing two IPUs on
the front side connected to the CCU via the ICU on the back.

Confidential computing [1,4, 11,31] relies on custom hard-
ware support for trusted execution environments (TEE), also
known as enclaves, that can provide such security guarantees.
Abstractly, a TEE is capable of hosting code and data while
protecting them from privileged attackers. The hardware can
also measure this code and data to issue an artestation re-
port, which can be verified by any remote party to establish
trust in the TEE. In principle, confidential computing enables
multiple organizations to collaborate and train models using
sensitive data, and to serve these models with assurance that
their data and models remain protected. However, the predom-
inant TEEs such as Intel SGX [22], AMD SEV-SNP [5], Intel
TDX [16], and ARM CCA [6] are limited to CPUs. Recently,
NVIDIA has announced TEE support in upcoming Hopper
GPUs [25] that works in conjunction with CPU TEEs.

Adding native support for confidential computing into Al
accelerators can greatly increase their security, but also in-
volves many challenges. Security features such as isolation,
attestation, and side-channel resilience must be fitted in their




Experimental Setup

IPU development board, manufactured at TSMC’s 7nm
* Engineering samples operating at 900 MHz (of possible 1400MH2z)

ResNet-X Training with Cifar-10 dataset
* At the time of evaluation, ResNet was a key ML workload

Comparison against VM-based TEE on 48-core AMD Zen3 Azure VM



Experimental Results
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* For small models, ITX overheads dominated by TEE creation, key deployment
* For large models, overheads are amortized, accounting for ~3%
* Single ITX-enabled IPU delivers 12-18x higher performance than CPU TEEs



Conclusion

Ever-growing need for hyper-scale privacy-preserving Al

ITX: First ASIC enabling high-performance confidential Al

* Strong security guarantees
 Low TCB without trust on the CPU
* Low performance overheads

Since then, we have seen support by the Al ecosystem (NVIDIA)
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