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Conflicting Cloud Trends: AI & Privacy

Cloud Accelerators Enable Hyper-scale AI
• Medical diagnostics, financial forecasting, generative AI
• Large models require 10N high-end GPUs

Ever-growing Confidentiality & Privacy Concerns
• Privacy-sensitive data (e.g., medical history, transactions)
• Proprietary AI models
• Sharing of infrastructure, sophisticated attacks

Need strong security mechanisms for preserving cloud AI privacy



Confidential Computing to the Rescue
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App Trusted Execution Environments (TEE)
• Execution isolated from privileged attackers
• Remote attestation for establishing trust
• Support by major CPU vendors (past 10 years)

• Process-based vs. VM-based 
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Need low-TCB and flexible AI Accelerator TEE

Limited Support in PCIe Devices 
• Research proposals, e.g., Graviton [OSDI’18]
• Upcoming NVIDIA Hopper GPUs

• Works in conjunction with VM-based TEEs 
→ Large TCB, dependency with host CPU



ITX: A Case for a Confidential AI Accelerator

Security Guarantees
• Confidentiality, integrity of computation & data 

• Remote attestation

IPU Trusted Extensions (ITX)
• No trust in CPU

• No changes to programming model

• Low performance overheads

IPU0 IPU1

HRoT

Development board manufactured in 2020



Outline

• Introduction
• Graphcore IPU and Threat Model
• IPU Trusted Extensions (ITX)
• Conclusion



IPU Hardware Architecture
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Tiled Architecture (>1400 tiles)
• Compute: in-order multi-threaded core with AI units

• Memory: fixed-latency SRAM
• No caching, mapped to tile’s address space

PCI Complex
• Mediates IPU-Host communication

• Host memory mapped to tiles via page tables

• IPU memory mapped to host via PCI BAR

How do we program such a massively parallel processor?



I-I/O ComputeI-I/O

IPU Execution Model

Bulk Synchronous Parallel Paradigm
• Compute and exchange phases
• Internal synchronization for Tile-Tile I/O
• External synchronization for Host-Tile I/O

Compiler-driven Resource Allocation
• Each node in the ML graph is assigned tile resources (threads, memory)
• IPU binary defines its entire control and data flow

• Compute and exchange phases defined at compilation time

Compute ComputeE-I/O E-I/O

How does the IPU software stack support external I/O?



Streams: An External I/O Abstraction

• Compiler maps external I/O to streams, generates tile code for DMA

• Runtime implements streams
• DMA buffer mapped to tile’s address space
• DMA buffer populated during external synchronization

• IPU binary pulls streams
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Streams: An External I/O Abstraction
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The external I/O path has a large attack surface 



DRAM

Threat Model

Trusted Computing Base (TCB)
• IPU Package including on-chip SRAM
• IPU HRoT (HW and FW)
• ML Framework and IPU Compiler 

Goal: Confidentiality and integrity of computation and data

Out-of-scope
• Physical side-channel attacks (e.g., DPA) 
• Package manufacturing attacks
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ITX in a Nutshell
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Trusted Mode
• Set by CCU during TEE initialization
• No sharing in space or time
• Blocks the host from IPU access

PCI Bus IPU
IPU

Confidential Compute Unit
responsible for code attestation 

and key provisioning

AES units for encrypting & 
authenticating  

communication over PCIe
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• Decoupled compilation from 
execution

• Application binary & data can be 
prepared at tenant’s premises

• Runtime mediates data using a 
compiler-generated job manifest



ITX in a Nutshell: Attestation & Key Provisioning
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ITX in a Nutshell: Secure Bootstrapping
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• CCU receives job manifest

• CCU deploys bootloader to load encrypted IPU binary, computes hash of the IPU binary 

C
C

U

sync0
syncN

sync0
syncN

, issues attestation, receives and deploys keys from verifier(s)
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DRAM

ITX in a Nutshell: Confidential Streams
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• CCU receives job manifest

• CCU deploys bootloader to load encrypted IPU binary, computes hash of the IPU binary 

• IPU binary fetches encrypted data from DMA buffer

Need to prevent reorder and replay attacks from host CPU 
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Encrypted Direct Memory Access

• Compiler maps all streams into a stream address space (AS)
• Compiler partitions the application’s streams into frames
• Frames identified with a unique ASID acting as an IV during encryption

• IV enclosed within frame for efficient supply to the HW decryption
• HW decryption ensures integrity based on tag
• The receiver verifies that the frame’s IV matches the requested ASID

IV IV IV IVTagImage (1/4) TagImage (2/4) TagImage (3/4) TagImage (4/4)

Training Images Labels CheckpointCode OutputAddress Space

Low-cost protection against replay and re-order attacks



More Details In the Paper

• Measured boot protocol
• Firmware provisioning with no trust in supply chain
• Firmware updates w/o device re-certification 

• TEE lifecycle (initialization, launch, termination)
• Remote attestation protocol

• Multi-key support in encryption engines
• Secure checkpointing



Experimental Setup

IPU development board, manufactured at TSMC’s 7nm
• Engineering samples operating at 900 MHz (of possible 1400MHz)

ResNet-X Training with Cifar-10 dataset
• At the time of evaluation, ResNet was a key ML workload

Comparison against VM-based TEE on 48-core AMD Zen3 Azure VM



Experimental Results

• For small models, ITX overheads dominated by TEE creation, key deployment
• For large models, overheads are amortized, accounting for ~3%
• Single ITX-enabled IPU delivers 12-18x higher performance than CPU TEEs 
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Conclusion

Ever-growing need for hyper-scale privacy-preserving AI

ITX: First ASIC enabling high-performance confidential AI
• Strong security guarantees
• Low TCB without trust on the CPU
• Low performance overheads

Since then, we have seen support by the AI ecosystem (NVIDIA)
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