Sponge: Fast Reactive Scaling for Stream Processing with Serverless Frameworks

Won Wook SONG, Taegeon Um, Sameh Elnikety, Myeongjae Jeon, Byung-Gon Chun

Seoul National University, Samsung Research, Microsoft Research, UNIST, FriendliAI
Stream Processing Happens Continuously

Stream processing deals with real-time data → Latency-critical
Stream Processing System Requirements

Low latency

High throughput

Correctness

Resource Efficiency
Input Patterns of Stream Workloads: Unpredictable

Stream data are generated in **real-time**, which are **irregular** and **unpredictable**, due to unforeseen events.
Input Patterns of Stream Workloads: Bursty

Real-time data can occur in sporadic bursts, due to random events (e.g., influencer tweets, breaking news, natural disasters)*

*Rastegar et. al., Rule caching in sdn-enabled base stations supporting massive iot devices with bursty traffic. (IEEE IoT Journal ‘20)
*Robinson et. al., A sensitive twitter earthquake detector. (WWW Companion ‘13)
Bursty Input Data Builds Up and Clogs the Pipeline

Map → Filter → Window → Join → GroupByKey (Combine) → 2nd GbK (Combine) → Write

Bottleneck!

\[r_i > m_i \]

Input rate > Max throughput
Stream Operators: Stateful vs. Stateless

CPU/Memory trace of a **stateful** join operator
Stateful operators are more **tricky** to handle
due to state handling (e.g., migration)

CPU/Memory trace of a **stateless** map operator
Stateless operators can **easily scale-out**
Stream Operators: Stateful vs. Stateless

CPU/Memory trace of a **stateful** join operator
Stateful operators are more **tricky** to handle due to state handling (e.g., migration)

CPU/Memory trace of a **stateless** map operator
Stateless operators can **easily scale-out**
Preventing Latency with Over-provisioned Resources

Simplest solution, but bursty loads are unpredictable

→ Must reserve 5-10x resources at all times = costly
Scaling with On-Demand Virtual Machines (VMs)

Machine-isolated by bare-metal hypervisors

Fixed specification of CPU and memory

10Gbps network

Stable and powerful
Scaling with On-Demand Virtual Machines (VMs)

VM Start-up Time is Too Slow (25-30s)

Over 25 seconds of launch overhead
Scaling with On-Demand Serverless Functions (SFs)

Process-isolated by OSes
- Flexible allocation of CPU according to mem size
- 800-1200Mbps network per instance
- 4x more expensive than VMs

300-750ms of launch overhead
Scaling with On-Demand VMs and SFs

SFs to handle short-living bursty input loads & VMs to handle long-living input loads
Direct Network Communications are Prohibited among SFs

Serverless instances are not designed to provide stable, direct network connections.
Managed Runtime Initialization Overhead

Managed runtimes (e.g., JVM) incur launch overheads (~4 seconds)
State & Task Migration Overhead

State & task migration overheads are not negligible due to smaller network bandwidths.
Challenges and Overheads to Overcome

Various overheads exist for using VMs and serverless instances
Sponge Overview

Sponge handles the challenges through compile-time and run-time.
Sponge handles the challenges through compile-time and run-time.
Injecting New Operators during Compile-Time

Query DAG is inserted with new operators at compile-time with ~200ms overhead
Injecting New Operators during Compile-Time

1. Router operators (ROs) enable **redirection of input events** to specific instances
2. Transient operators (TOs) enable **execution** of cloned operators on SFs
3. Merge operators (MOs) enable **merges** on partial states
Injecting New Operators during Compile-Time

1. Router operators (ROs) enable **redirection of input events** to specific instances
2. Transient operators (TOs) enable **execution** of cloned operators on SFs
3. Merge operators (MOs) enable **merges** on partial states
Injecting New Operators during Compile-Time

1. Router operators (ROs) enable **redirection of input events** to specific instances
2. Transient operators (TOs) enable **execution** of cloned operators **on SFs**
3. Merge operators (MOs) enable **merges** on **partial states**
Injecting New Operators during Compile-Time

1. Router operators (ROs) enable redirection of input events to specific instances.

2. Transient operators (TOs) enable execution of cloned operators on SFs.

3. Merge operators (MOs) enable merges on partial states.

[Diagram showing the flow of events through operators such as Map, RO_filter, Filter, RO_sum, and MO_sum, along with state transitions labeled K1 and K2.]
Injecting New Operators during Compile-Time

1. Router operators (ROs) enable redirection of input events to specific instances
2. Transient operators (TOs) enable execution of cloned operators on SFs
3. Merge operators (MOs) enable merges on partial states
How Much Resources are Required for Our Pipeline?

How much data should we redirect to serverless functions?

How many serverless instances should we be using?
Dynamic Resource Management during Runtime

CPU and input rates are monitored every second (~10ms overhead)

CPU utilization goal: 60-80%
Stable Input Load per CPU Core

Measure the **average stable CPU usage rate** on VMs and the **average task input rate** for every second.

Approx. throughput rate per VM core = \(\frac{\text{input rate}}{\text{number of VM cores}} \)
Recovery Deadline and Target Throughput

\[\text{Data piled up in the event queue} \leq \text{Data to process within our target deadline} \]

\[(\text{Input rate} - \text{throughput}) \times \text{time} \leq (\text{Target throughput} - \text{input rate}) \times \text{time} \]
Recovery Deadline and Target Throughput

Data piled up in the event queue \(\leq \) Data to process within our target deadline

\((\text{Existing throughput} \times \text{time} \leq \text{Target throughput} \times \text{time})\)
Preparation of SFs to Reduce Runtime Launch Overhead

1. Retrieve the existing metrics on approx. throughput per VM core and target throughput.
2. Profile capacity between SF and VM cores for scaling.
3. Find the number of target SF cores for 70% utilization (with a ±10% buffer for minor profiling errors).

\[
\text{required SF cores} = \left\lfloor \frac{\text{Target additional throughput}}{70\% \times \text{Approx. throughput per SF core}} \right\rfloor
\]
Preparing SFs to Reduce Runtime Launch Overhead

1. Retrieve the existing metrics on approx. throughput per VM core and target throughput.

2. Profile capacity between SF and VM cores for scaling.

3. Find # of target SF cores for 70% utilization (with a ±10% buffer for minor profiling errors).

\[
\text{required SF cores} = \left\lceil \frac{\text{Target additional throughput}}{70\% \times \text{Approx. throughput per SF core}} \right\rceil
\]
Sponge In Action
Sponge In Action

Query

Sponge Compiler

DAG Optimizer

Scheduler

Sponge Runtime

VM

VM
Sponge In Action
Sponge In Action
Sponge In Action

Sponge Compiler

DAG Optimizer

Sponge Runtime

Monitoring

Scheduler

VM

Event queue

Tasks

SF
Sponge In Action
Sponge In Action

Sponge Compiler

Sponge Runtime

Query

Monitoring

Event queue

Tasks

Scheduler
Sponge Implementation

- **Programming interface:** Apache Beam
 - Associative and commutative operators are extracted to implement the merge operators

- **DAG reshaping mechanisms & data processing runtime:** Apache Nemo
 - Operator insertion can be expressed as reusable algorithms

- **Serverless frameworks:** AWS Lambda

- **Managing & deploying different instances:** boto3
 - AWS SDK API for controlling AWS instances
Evaluation Results

- **AWS Cluster of 5 nodes** for execution + 1 large node for data generation
 - r5.xlarge (4vCPUs, 32GB Memory) * 5
 - c5d.12xlarge for data generation (48vCPUs, 96GB Memory) * 1
 - 1769MB AWS Lambda instances (1769MB offers instance with 1 vCore) * up to 200

- **NEXMark Benchmark Suite**
 - A suite of pipelines, provided by Apache Beam, representing an online auction system
 - Queries include
 - 1 (currency conversion)
 - 4, 6 (avg. price per category, avg. price by seller)
 - 5, 7 (hot items, highest bid)
 - 8 (monitor new users)
Evaluation Results: Input Patterns

3 different input patterns with different burstiness and duration
Evaluation Results: Latency and CPU Utilizations

<table>
<thead>
<tr>
<th>Latency (sec)</th>
<th>Utilization (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Latency for 5x burst at 380s</td>
<td>CPU Utilizations for 5x burst at 380s</td>
</tr>
</tbody>
</table>

![Graphs showing latency and CPU utilization over time]
Sponge Evaluation: Performance Breakdown

Performance breakdown of different Sponge components

+ Router operators → + Transient operators → + Merge operators
Evaluation Results: Different Input Patterns

Tail latency for different patterns, burstiness, and durations
Evaluation Results: Cost Analysis

(a) Sponge effectively keeps latencies low compared to over-provisioned solutions

(b) Bursty duration falls below 15% of total time, making Sponge cost-effective
Conclusion

• **Bursts of input events** → input data to piles up in the input queue

• Sponge prevents **launch** and **migration overheads**
 • By **redirecting** bursts of input data to fast-starting serverless frameworks
 • SFs are **automatically scaled** to keep **latencies** and **budget** within our target

• Sponge reduces **tail latencies** by **88%** on average vs. VM scaling
• Sponge reduces **cost** to **17% (83% reduction)** vs. over-provisioning
Thank you!
Questions?

Won Wook SONG
https://wonook.github.io
wonook@apache.org
Sponge:
Fast Reactive Scaling for Stream Processing with Serverless Frameworks

Won Wook SONG, Taegeon Um, Sameh Elnikety, Myeongjae Jeon, Byung-Gon Chun

Seoul National University, Samsung Research, Microsoft Research, UNIST, FriendliAI