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Cloud Systems: Natural Arena for RL 
• Full of sequential decision-making processes
• E.g., resource management, job scheduling, congestion control, etc.

• Hard to model, mostly rely on human-engineered heuristics
• RL enables using DNNs to express the (1) complex dynamics with raw and 

noisy signals (2) policies

• Abundant data generated in modern cloud systems: monitoring measurements, 
systems metrics, workload performance, etc.
• E.g., Prometheus for Kubernetes, Monarch (Google), Scuba (Meta), etc.
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Examples of RL in Cloud Systems
• Cluster Management and Scheduling
• Job scheduling (SIGCOMM 2019, NeurIPS 2019, HotNets 2016), Process 

scheduling (ICML 2020), Device placement (ICLR 2018)

• Networking and Video Streaming
• Congestion control (ICML 2019, AAAI 2021, SIGCOMM 2022), Adaptive 

video streaming (SIGCOMM 2017)

• Database Optimization
• Query optimization (VLDB 2019), Index structure (SIGMOD 2018)

• Resource Management and Autoscaling [Our Focus]
• MIRAS (ICDCS 2019), FIRM (OSDI 2020)*, A-SARSA (ICWS 2020), ADRL 

(TPDS 2021), Q-learning-based Autoscaler (CCGrid 2021), SOL (ASPLOS 
2022), SIMPPO (SoCC 2022, NeurIPS 2022)*, DeepScaling (SoCC 2022)
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*H. Qiu, W. Mao, A. Patke, C. Wang, H. Franke, et. al. SIMPPO: A Scalable and Adaptive Online Learning Framework for Serverless Resource Management. SoCC 2022.
*H. Qiu, S. S. Banerjee, S. Jha, Z. T. Kalbarczyk, R. K. Iyer. FIRM: An Intelligent Fine-Grained Resource Management Framework for SLO-Oriented Microservices. OSDI 2020.



Cloud Systems Management with RL: A Primer
• RL agent interacts with an environment, step by step taking observations (𝑠!),

making actions (𝑎!), receiving rewards (𝑟!)
• Optimize for specific workloads (e.g., small jobs, low load, periodicity, high 

scaling factor) by continuing to learn and maximizing the reward
• Direct real benefit by aligning the objectives with reward functions (i.e., agent 

performance): Meeting SLOs & Higher cluster utilizations
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A Framework for Running RL in Production is Missing
• Bridge RL model development and advances to production

• Allow robust and reliable deployment of RL-based controllers in 
real cloud systems

• Goal: To provide a framework for managing and running RL-
based controller in production cloud systems
• E.g., Multi-dimensional workload autoscaling in Kubernetes
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Challenge #1: In the early training stages, RL agents tend 
to generate poor autoscaling decisions
• Lower than baseline rewards (i.e., worse agent 

performance) and more SLO violations
• Solution: Reliable RL exploration with offline training 

(i.e., bootstrapping) + online training & inference
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Enabling built-in intelligence in cloud systems with less manual intervention 
while achieving high robustness and self-adaptation (in both training/inference)

RL Episodes EP #1-100 EP #101-200 EP #201-300 EP #301-400

CPU Util -32.3% ± 14% -42.9% ± 15% -22.1% ± 12% -10.0% ± 6%

Memory Util -28.8% ± 11% -30.5% ± 10% -26.5% ± 8% -7.8 % ± 2%

SLO Violations 56.1 ± 14x 22.2 ± 7x 12.7 ± 5x 10.1 ± 3x

Overprovisioning -> CPU & memory 
utils deficit compared w/ baseline

Unable to re-scale properly for 
workloads changes -> SLO violations

FIRM (OSDI 2020)

What are the Challenges?



Challenge #2: During policy-serving stage, RL agent 
performance degrades when workloads are updated

• Solution: Continuous monitoring + Retraining 
detection & trigger mechanism
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Challenge #3: Trained policies are application-
specific, costly to adapt to new applications
• 45.6% reward degradation (~230 eps retraining)
• Solution: Meta-learning for fast model adaptation

Workload changes leads to 21.8% reward drops  

What are the Challenges?
Enabling built-in intelligence in cloud systems with less manual intervention 

while achieving high robustness and self-adaptation (in both training/inference)
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• Open-source Framework: A system design that allows general workloads on 
Kubernetes to use RL-based autoscalers such as FIRM
• Reusing HPA/VPA as a fallback to RL to have a default autoscaling algorithm
• Scaling recommendation is separated from actuation
• Supports customized plug-and-play multi-dimensional autoscaling algorithms
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RL Training Bootstrapping
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RL Retraining Detection and Trigger
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Fast Model Adaptation with Meta-learner
• Goal: To reduce RL model retraining time (cost) and adapt quickly to new application 

workloads (unseen during training)

• Key Idea: Model each RL agent as a base-learner and create a meta-learner to learn to 
generate an embedding that can accurately represent each environment
• The embedding is fed to the base-learner (as state input) to differentiate one RL 

environment from another -> customized to each environment

• Why meta-learning?
• “Learning to learn”
• Capable of adapting well or generalizing to new environments that have never been 

encountered during training
• Adaptation process requires only limited exposure to the new environment
• A systematic framework that enables automatic adjusting of internal hidden states to 

learn (combined with RL -> learned policy conditioning on the application)
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Interpreting “Embeddings” from Systems Perspective
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Evaluation
• RQ1: Does AWARE provide fast model adaptation to new workloads?

• What is the value of meta-learning?

• RQ2: How does AWARE perform in online policy-serving when workload updates 
or load changes occur?

• RQ3: How does AWARE perform in the early stages of policy training, compared to 
RL agents without bootstrapping?

• Workload generation:
• 16 represented production serverless function segments (e.g., CPU-intensive jobs, image 

manipulation, text processing, web serving, ML model serving, I/O services)
• Generated 1000 synthetic applications by random selection and combination

• RL agent/algorithm (i.e., base-learner) implementation adopted from FIRM (OSDI 
2020) – DDPG, an actor-critic RL algorithm
• Reward function: 𝑅 𝑡 = 𝛼 0 𝑅𝑈 𝑡 + (1 − 𝛼) 0 𝑆𝑃(𝑡), where 𝑆𝑃 𝑡 = min()*!+,-.%&'

/012345
, 1)
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RQ1 – Fast Model Adaptation

• AWARE adapts 5.5× and 4.6× faster than 
TL and TL+
• TL: Transfer learning with model 

parameter sharing
• TL+: Transfer learning that includes 

additional features

• AWARE saves 68–72% CPU cycles

• AWARE reduces CPU and memory 
utilization deficit by 4.6× and 6.2×

• AWARE reduces SLO violations by 7.1×
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RQ2 & RQ3 – Bootstrapping and Online Policy-serving

Compared to no-bootstrapping:

• AWARE had 47.5% and 32.2% higher 
CPU and memory utilization

• AWARE reduced workload SLO 
violations by 16.9×
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Compared to no-retraining:

• AWARE had 9.6% and 14.8% higher 
CPU and memory utilization

• AWARE reduced workload SLO 
violations by 3.1×

Bootstrapping Online Policy-serving
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Summary and Future Work
• AWARE is an extensible framework for deploying and managing RL-based 

controllers in production systems
• AWARE provides (1) fast adaptation with meta-learning, (2) reliable RL exploration 

with bootstrapping, (3) robust online performance with timely retraining
• Demonstrated AWARE in workload autoscaling:

• Adapts a learned autoscaling policy to new workloads 5.5× faster than the existing transfer-
learning-based approach

• Provides stable online policy-serving performance with less than 3.6% reward degradation
• Helps achieve 47% and 32% higher CPU and memory utilization while reducing SLO 

violations by a factor of 16.9× during initial policy training

• Out-of-distribution cases (limitation of meta-learning)
• Detection/classification + Fine-grained customization

• Future Work: Extend the meta-learning-based framework for other workload-aware 
ML4Sys cases as a general paradigm which supports fast model adaptation
• Scheduling, resource config search, congestion control, power management, etc.
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Thank you!
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Check out the paper for more details:
https://www.usenix.org/conference/atc23/presentation/qiuhaoran
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