
TiDedup: A New Distributed
Deduplication Architecture for Ceph

Myoungwon Oh, Sungmin Lee, Samuel Just, Young Jin Yu, Duck-Ho Bae
Sage Weil, Sangyeun Cho, Heon Y. Yeom

Samsung Electronics IBM Ceph Foundation Seoul National University

AGENDA

Background

Motivation

Design

Conclusion

Background

Conventional (local) deduplication system

An object

Fingerprint index (fingerprint : address)

C

0

C

2

C

3

C

4

C

5

C

6

Hash(C1) : 0

0 1 2 3 4 5Address

Hash(C4) : 3

Hash(C2) : 1

Hash(C5) : 4

Hash(C3) : 2

Hash(C6) : 5

1. Divide an object

into chunks using

chunk algorithmChunk

2

An object

2. Generate

fingerprint from the

chunk

Chunk

1

Chunk

3

Chunk

4

3. Find out the

location of chunks

Hash(Cx) = fingerprint

Background

We had a discussion on how deduplication can be implemented on Ceph. The primary

concern is how Ceph manage fingerprint index at scale

• How to look up a pair < fingerprint : address >

• How to distribute fingerprint index entry evenly

Fingerprint index (fingerprint : address)

Hash(C0) : 0

Hash(C4) : 3

Hash(C2) : 1

Hash(C5) : 4

Hash(C3) : 2

Hash(C6) : 5

How can we ensure the scalability?

Our prior solution is double hashing !!

Background (prior work)

What is double hashing?

• Use existing data placement algorithm once again

• Completely remove fingerprint index itself

OID

Data

OID

DataCRUSH (OID)

Fingerprint

OID (=fingerprint)

Data

Reference count

CRUSH

(Fingerprint)

User request

< chunk tier >

[Metadata Object layout] [Chunk Object layout]

< base tier >

Background (prior work)

What is double hashing?

• Use existing data placement algorithm once again

• Completely remove fingerprint index itself

OID

Data

OID

DataCRUSH (OID)

Fingerprint

OID (=fingerprint)

Data

Reference count

CRUSH

(Fingerprint)

User request

< chunk tier >

[Metadata Object layout] [Chunk Object layout]

< base tier >

Background (prior work)

What is double hashing?

• Use existing data placement algorithm once again

• Completely remove fingerprint index itself

OID

Data

OID

DataCRUSH (OID)

Fingerprint

OID (=fingerprint)

Data

Reference count

CRUSH

(Fingerprint)

User request

< chunk tier >

[Metadata Object layout] [Chunk Object layout]

< base tier >

Background (prior work)

What is double hashing?

• Use existing data placement algorithm once again

• Completely remove fingerprint index itself

OID

Data

OID

DataCRUSH (OID)

Fingerprint

OID (=fingerprint)

Data

Reference count

CRUSH

(Fingerprint)

User request

< chunk tier >

[Metadata Object layout] [Chunk Object layout]

Metadata and chunk objects are equal to existing object

More details in the paper !

< base tier >

Motivation

We made a prototype version of cluster-level deduplication, but the following challenges

arose

1. Is deduplication really helpful?

2. Structure limitations: performance degradation and inefficient chunking

3. Snapshot and scrub (reference GC) overhead

Is deduplication always helpful?

Ceph is a general-purpose storage system

Deduplication penalty: If objects have unique content, the storage space is wasted, if

anything.

Block service File service Object service

Ceph RADOS

Deduplication Logic

Is deduplication always helpful?

Ceph is a general-purpose storage system

Deduplication penalty: If objects have unique content, the storage space is wasted, if

anything.

Block service File service Object service

Ceph RADOS Workload differs in the services:

Dedup could or

could not be helpful

Metadata size added for

deduplication

increases significantly

Deduplication Logic

Structure limitations

Performance degradation

Meta

OBJ

Meta

OBJ

User I/Os Replication Recovery Scrub

ChunkChunk
Chunk

Meta

OBJ

Enumeration

Chunk

Chunking

Move chunks

< Object Service Daemon > < Object Service Daemon >

Chunk

OBJ
Chunk

OBJ

Chunk

OBJ

Chunk

OBJ
Chunk

OBJ

Chunk

OBJ
Chunk

OBJ

Chunk

OBJ

Chunk

OBJ

Structure limitations

Performance degradation

Meta

OBJ

Meta

OBJ

User I/Os Replication Recovery Scrub

ChunkChunk
Chunk

Meta

OBJ

Enumeration

Chunk

Chunking

Move chunks

< Object Service Daemon > < Object Service Daemon >

1. The background thread for deduplication job

disturbs high-priority I/Os as the number of objects grows

Chunk

OBJ
Chunk

OBJ

Chunk

OBJ

Chunk

OBJ
Chunk

OBJ

Chunk

OBJ
Chunk

OBJ

Chunk

OBJ

Chunk

OBJ

2. Limited chunking algorithm (fixed)

Snapshot and scrub time

Snapshot support

• An naive approach can not work out because snapshot creation generates messages as

much as the chunks the object contains (e.g., if SNAP 10 contains three chunks, the three

messages are generated)

< 1. Send increment message for three chunks for snapshot creation, 2. Acks, 3. Snapshot creation is done >

Snapshot and scrub time

Snapshot support

• An naive approach can not work out because snapshot creation generates messages as

much as the chunks the object contains (e.g., if SNAP 10 contains three chunks, the three

messages are generated)

< 1. Send increment message for three chunks for snapshot creation, 2. Acks, 3. Snapshot creation is done >

Must wait for all increment messages to complete snapshot creation

(1, 2, and 3)

Snapshot and scrub time

Scrub overhead

• Scrub is something like reference garbage collection that check the reference is valid

• Scrub is needed because reference leak (rarely) occur from false-positive design, as follows:

Chunk object A

Ref. count : 2

Metadata object

Fingerprints {a, b, c..}

Metadata object

Fingerprints {a, d, e..}

Metadata object

Fingerprints {a, c, t..}

< Base tier >

< Chunk tier >Chunk object A

Ref. count : 1

< Possible case > < Impossible case >

Snapshot and scrub time

Scrub overhead

• Scrub requires a full search on the base tier. So, it takes a significant time to complete as

the number of objects grows

Chunk object A

Ref. count : 3

Metadata object

Fingerprints {a, b, c..}

Metadata object

Fingerprints {a, d, e..}

Metadata object

Fingerprints {a, c, t..}

Need to check all metadata objects to see if ref. count is valid

O (#chunk objects × #metadata objects).

< Base tier >

< Chunk tier >

Design

Selective cluster-level crawling

Event driven architecture

OID shared reference scheme

System Overview

Selective dedup processing using crawler

• Perform deduplication if data is dedup-able

Event-driven architecture with content defined chunking

• Only act in the event of predefined APIs with CDC

(content defined chunking)

OID-shared reference scheme

• Reduce the number of message for snapshot and scrub

based on false-positive ref. management

System Overview

Selective dedup processing using crawler

• Perform deduplication if data is dedup-able

Event-driven architecture with content defined chunking

• Only act in the event of predefined APIs with CDC

(content defined chunking)

OID-shared reference scheme

• Reduce the number of message for snapshot and scrub

based on false-positive ref. management

Crawler find out dedup-able

chunks and perform dedup. on

the base tier

System Overview

Selective dedup processing using crawler

• Perform deduplication if data is dedup-able

Event-driven architecture with content defined chunking

• Only act in the event of predefined APIs with CDC

(content defined chunking)

OID-shared reference scheme

• Reduce the number of message for snapshot and scrub

based on false-positive ref. management

Re-architecting entire tiering

mechanism on the base tier

System Overview

Selective dedup processing using crawler

• Perform deduplication if data is dedup-able

Event-driven architecture with content defined chunking

• Only act in the event of predefined APIs with CDC

(content defined chunking)

OID-shared reference scheme

• Reduce the number of message for snapshot and scrub

based on false-positive ref. management

Snapshot support and minimize

scrub time

Crawler

Decoupled dedup controller scheme from server daemon

• Unlike prior work, TiDedup employ a separate process, called crawler

• The crawler process searches objects, then makes a decision on deduplication if the chunk is dedup-able

(> threshold value)

Perform deduplication if the chunk is found more than threshold times with two modes

• Incremental mode

- At daytime, scan a small set of metadata object gradually to minimize resource usage

• Full mode

- At nighttime, scan all metadata object, then perform deduplication without consider resource utilization

Crawler

Object management

• Object is one of three states: hot or cold or deduped

Stateless

• Re-execution to overcome failures

• Repeat the loop in the reverse direction

• In-memory fingerprint store

- Store fingerprints to check which fingerprint is dedup-able

- Map < fingerprint : duplicate count >

OBJ OBJ OBJ

Nth search

N+1th search

Event-driven architecture

The goal is to react an action in the event of external APIs with CDC

• I/O path and APIs are designed (e.g., set_chunk, tier_flush, tier_evict, tier_promote)

• Relevant metadata (e.g., chunk_info_t) is embedded into existing object metadata, called “object_info_t”

• chunk_state in chunk_info_t can be one of {MISSING, CLEAN}

- MISSING: no cached content, CLEAN: cached content

Read

• Find chunk_info_t which is associated with the requested offset

• Forward read request to a chunk object (OID is the destination OID

In chunk_info_t) if the chunk state is MISSING

Write

• Write contents, then clear the corresponding chunk_info_t---content define chunking calculates the different chunk

boundary depending on the contents, so modification requires a recalculation

Existing metadata

New metadata

Event-driven architecture

Set_chunk()

• Set a part of the object to deduped

• Synchronous call (wait for increment message’s ack, then reply the result to caller and update metadata)

• Transactional processing

OID shared reference

Scrub worker

• Each chunk object has OIDs (like a back pointer) instead of ref. count

- Ceph’s OID format includes location information such as tier and object name

• To check if a reference is valid, TiDedup needs only two reads (chunk object’s extended attributed and

metadata object), unlike the prior work

Chunk object A

OIDs {A, B, C}

Metadata object A

Fingerprints {a, b, c..}

Metadata object B

Fingerprints {a, d, e..}

Metadata object C

Fingerprints {a, c, t..}

OID shared reference

Scrub worker

• Each chunk object has OIDs (like a back pointer) instead of ref. count

- Ceph’s OID format includes location information such as tier and object name

• To check if a reference is valid, TiDedup needs only two reads (chunk object’s extended attributed and

metadata object), unlike the prior work

Chunk object A

OIDs {A, B, C}

Metadata object A

Fingerprints {a, b, c..}

Metadata object B

Fingerprints {a, d, e..}

Metadata object C

Fingerprints {a, c, t..}

No need to check all metadata objects to see if chunk object’s ref. count is valid

OID shared reference

Objective

• Based on false-positive design, minimize the number of generated message

Snapshot creation

• Check adjacent snapshot’s chunk first, then do not add chunk’s reference if adjacent snapshot’s chunk is

identical when creating a new snapshot

• The number of chunk’s reference:

➢ AAA: 1, BBB: 1, DDD: 1, CCC: 1

Snapshot deletion

• If either adjacent snapshots has the same chunk, no messages needs to be generated

• TiDedup would send a delete reference message only if adjacent chunks and itself are unreferenced.

OID shared reference

Objective

• Based on false-positive design, minimize the number of generated message

Snapshot creation

• Check adjacent snapshot’s chunk first, then do not add chunk’s reference if adjacent snapshot’s chunk is

identical when creating a new snapshot

• The number of chunk’s reference:

➢ AAA: 1, BBB: 1, DDD: 1, CCC: 1

Snapshot deletion

• If either adjacent snapshots has the same chunk, no messages needs to be generated

• TiDedup would send a delete reference message only if adjacent chunks and itself are unreferenced.

More details are in the paper

Evaluation

Test Environment

• 10 machines in total (a 2-way AMD EPYC 7543 32-cores)

• 512 GB DRAM for each machine

• QLC SSDs (4 TB) for each machine

• The latest version (Reef) of the Ceph

• Two replicas

• FastCDC [Wen Xia et al., USENIX ATC 2016]

• SHA1 is used to generate fingerprint value among the available fingerprint algorithm options

(e.g., SHA1, SHA128, and SHA256).

Evaluation

The effect of deduplication in real world workload

< Space saving on factory data >

Workload 1: equipment status

Workload 2: chip information during manufacturing

Workload 3: logs for photo lithography

Workload 4: metrology and inspection image files

Evaluation

The effect of deduplication in real world workload

< Space saving on factory data >

Workload 1: equipment status

Workload 2: chip information during manufacturing

Workload 3: logs for photo lithography

Workload 4: metrology and inspection image files

The effect of deduplication differs in the workloads

Evaluation

Throughput test

< YCSB throughput (Workload a) >

Evaluation

Throughput test

< YCSB throughput (Workload a) >Performance fluctuation disappear in TiDedup

Evaluation

Throughput test

< YCSB throughput (Workload a) >

More experiments are in the paper

Conclusion

Prior work has a few limitations to be used in Ceph

• Storage saving, structure limitations, scrub and snapshot support

TiDedup proposed three key design to resolve observed problems

• Selective crawler, event-driven architecture, OID-shared reference

The source code is available at Ceph github

• https://docs.ceph.com/en/latest/dev/deduplication/

• https://github.com/ssdohammer-sl/ceph/tree/tidedup

Welcome feedback

• GitHub, private email, mailing list, whatever

https://docs.ceph.com/en/latest/dev/deduplication/
https://github.com/ssdohammer-sl/ceph/tree/tidedup

Thank You

Evaluation

The effect of deduplication in real world workload

Virtual disks Logs

Chunk size 8K 16K 32K 8K 16K 32K

Fixed 21% 12% 10% 5.7% 5.4% 5.3%

TiDedup

(CDC)

45% 36% 27% 18.5% 16% 12.6%

< Space saving on real-world datasets depends on the chunking

algorithm and average chunk size. Virtual disks represents

VMware vSphere images (10.1 TB) from a developer cloud service

(67 users). Logs represents service logs (560 GB) for cloud

Infrastructure including monitoring and device state.>

Evaluation

The effect of deduplication in real world workload

Virtual disks Logs

Chunk size 8K 16K 32K 8K 16K 32K

Fixed 21% 12% 10% 5.7% 5.4% 5.3%

TiDedup

(CDC)

45% 36% 27% 18.5% 16% 12.6%

< Space saving on real-world datasets depends on the chunking

algorithm and average chunk size. Virtual disks represents

VMware vSphere images (10.1 TB) from a developer cloud service

(67 users). Logs represents service logs (560 GB) for cloud

Infrastructure including monitoring and device state.>

CDC shows considerable improvement in terms of space saving in some workload

The both algorithms can be a compliment approach

