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• Applications are processing sensitive data in the cloud

– For example, key-value store, AI inference, financial service, etc.

• A compromised hypervisor  steal VM data

– All VM memory is accessible to and controlled by the hypervisor

– Many VM escape CVEs are disclosed in recent years

• CVE-2019-6778, CVE-2019-14835, CVE-2019-18389, CVE-2021-29657, etc.

• Regulations have been established to enforce data security

– E.g., General Data Protection Regulation (GDPR)

Data Security is Crucial for Cloud Computing

KV-store & AI in the Cloud



• Good security

– OS-level confidential computing

• Each guest OS is hardware-isolated from outside

– CPU states are protected during VM exits

– Memory isolation with hardware encryption

• Private type: only accessible to CVM

• Shared type: also accessible to hypervisor

• Good compatibility

– Ease of integration with existing IaaS

– Transparent to application workloads

CVM is Becoming Popular in Data Centers
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Terabit Ethernet is Approaching

• The speed of modern network devices continues to grow

– For example, NVIDIA ConnectX-7 400GbE SmartNIC

• CPUs become performance bottleneck

– Both application logic and I/O processing consume significant CPU resources

Source:
ethernetalliance.org

CPUs are fully loaded

APP logic I/O processing

https://ethernetalliance.org/wp-content/uploads/2020/03/EthernetRoadmap-2020-Side2-FINAL.pdf


Paravirtual I/O Networking in CVMs
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• A primary I/O virtualization choice for modern cloud providers

– Typical usage: a polling-based userspace I/O backend for high performance

• I/O event notification

– Hypervisor notifies VMs via vIRQs, which may trigger VM exits

– CVMs’ exits have higher latency vs. traditional VMs



Paravirtual I/O Networking in CVMs

• A primary I/O virtualization choice for modern cloud providers

– Typical usage: a polling-based userspace I/O backend for high performance

• I/O data transfer

– Hypervisor copies I/O data to/from VM memory

– CVMs require bounce buffer because hypervisor cannot access private memory
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Paravirtual I/O Networking in CVMs

• A primary I/O virtualization choice for modern cloud providers

– Typical usage: a polling-based userspace I/O backend for high performance

• I/O data protection

– End-to-end encryption, such as transport layer security (TLS)

– In-kernel TLS support for enhanced performance and extended features
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• End-to-end evaluation

– Baseline: traditional VMs

– Benchmark: network-intensive applications

• Testbed configuration

– CVM: AMD SEV-ES/SNP, w/o posted IRQ*

– CVM+PI: simulated Intel TDX, w/ posted IRQ

– More details in the Evaluation part

The Network Performance of CVM

*Posted IRQ: eliminate VM exits during vIRQ deliveries



• End-to-end evaluation

– Baseline: traditional VMs

– Benchmark: network-intensive applications

• Testbed configuration

– CVM: AMD SEV-ES/SNP, w/o posted IRQ*

– CVM+PI: simulated Intel TDX, w/ posted IRQ

– More details in the Evaluation part

• Summary: poor network performance

– CVM: 21% - 28% overhead vs. baseline

– CVM+PI: 13% - 29% overhead vs. baseline

The Network Performance of CVM

*Posted IRQ: eliminate VM exits during vIRQ deliveries
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• CVM-IO tax

– CPU time spent on security protections 

and intrinsic network I/O procedures

– More CPU time Worse performance

• CVM-IO tax & application workloads share limited CPU execution time

CVM-IO Tax Greatly Impacts Performance

• Application workloads

– CPU time spent on business logic and

payload processing

– More CPU time Better performance



• CVM-IO tax

– CPU time spent on security protections 

and intrinsic network I/O procedures

– More CPU time Worse performance

• CVM-IO tax & application workloads share limited CPU execution time

CVM-IO Tax Greatly Impacts Performance

CVM-IO tax type Factors that determine CPU time of each tax type

VM exits The frequency of guest-host interactions

Bounce buffer The size of I/O data transferred

Packet processing The number of network packets processed

• Application workloads

– CPU time spent on business logic and

payload processing

– More CPU time Better performance



• Example: a 4-thread Memcached server in a 4-vCPU VM

– memtier_benchmark: 8 clients, 32 concurrent requests and 256KB data size

• CVM-IO tax consumes > 50% CPU time

CVM-IO Tax Breakdown
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• Example: a 4-thread Memcached server in a 4-vCPU VM

– memtier_benchmark: 8 clients, 32 concurrent requests and 256KB data size

• CVM-IO tax consumes > 50% CPU time

– Overhead vs. baseline: VM exits and bounce buffer

– Packet processing consumes a large portion of CPU time

CVM-IO Tax Breakdown



• CVMs introduce protection on CPU states

– For instance, when a VM exit happen, the trusted firmware may save and clear registers

• The protection add large CPU cycles to guest-host world switches

– CVM consumes 5,833 cycles more than its baseline
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• CVMs introduce protection on CPU states

– For instance, when a VM exit happen, the trusted firmware may save and clear registers

• The protection add large CPU cycles to guest-host world switches

– CVM consumes 5,833 cycles more than its baseline

• If without posted IRQ, vIRQ  frequent VM exits

– CVM triggers ~20x more VM exits/s than CVM+PI
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• CVMs introduce protection on CPU states

– For instance, when a VM exit happen, the trusted firmware may save and clear registers

• The protection add large CPU cycles to guest-host world switches

– CVM consumes 5,833 cycles more than its baseline

• If without posted IRQ, vIRQ  frequent VM exits

– CVM triggers ~20x more VM exits/s than CVM+PI
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 VM exits can take up a large portion of the CPU time of CVMs

– Up to 20% of CVM’s CPU cycles  Significant performance impact

– Increased latency & High frequency  Large overhead vs. baseline VMs

 Posted IRQ minimizes the performance impact of VM exits tax

– At most 1% of CVM+PI’s CPU cycles

– Will be supported soon on next-generation CVM hardware platforms



• Traditional VM memory is shared with the hypervisor
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• CVM memory is set to private by default
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• CVM memory is set to private by default

• 1 more copy  Larger I/O data size leads to more CPU time cost
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• CVM memory is set to private by default

• 1 more copy  Larger I/O data size leads to more CPU time cost
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 Bounce buffers can consume a large portion of the CPU time of CVMs

– Up to 20% of CVM+PI’s CPU cycles  Significant performance impact

– Both copying I/O data & maintaining metadata are costly

– CVM-specific & Large data size Large overhead vs. baseline VMs

 For performance, it is necessary to avoid bouncing large-size I/O data



• Comprise operations such as header parsing, encap and decap

• Process each packet more packets leads to more CPU time

Packet Processing
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• Comprise operations such as header parsing, encap and decap

• Process each packet more packets leads to more CPU time

Packet Processing
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 Packet processing consumes a large fraction of the CPU time of CVMs

– Up to 36% of CVM+PI’s CPU cycles  Significant performance impact

– There are a large number packets in network-intensive scenarios

 Reducing the number of packets can mitigate its performance impact



Our Design: Bifrost
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end-to-end encryption, and 
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• Performance

– Bounce buffer tax: avoid bouncing large-size I/O data

– Packet processing tax: reduce the number of packets to be processed

• Security

– Maintain the same level of security guarantees as existing CVMs

• Universality

– Applicable to diverse platforms (e.g., x86, ARM), guest/host OSes (e.g., Linux, FreeBSD)

• Practicality

– Transparent to applications & Non-intrusive and minor modifications

Design Goals



C1. Out-of-place hardware memory encryption and decryption

Challenges

Hypervisor CVM

Ideal: eliminate bounce buffer via zero copy 

by keeping data in the same page
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Challenges

Reality: out-of-place hardware encryption / decryption 

 data loss after memory type conversion
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C1. Out-of-place hardware memory encryption and decryption

C2.

Challenges

PayloadTCPIPMAC FE Driver
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Vanilla procedure: pass each packet to
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C1. Out-of-place hardware memory encryption and decryption

C2.

Challenges

PayloadTCPIPMAC FE Driver

Network
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PayloadTCPIPMAC

PayloadTCPIPMAC

PayloadTCPIPMAC

Existing optimizations (e.g., GRO):  

reassemble packets before the network stack.

Reduced packets to be processed.

Vanilla procedure: pass each packet to

the network stack as-is.
Too many packets to be processed.

C1. Out-of-place hardware memory encryption and decryption

C2. Costly packet pre-processing in the device driver

Reality: out-of-place hardware encryption / decryption 

 data loss after memory type conversion

Hypervisor CVM
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O1. Either end-to-end encryption or private memory is sufficient to assure data security

Observations and Insights

Private

Memory
End-to-end 

Encryption

Guest-Host

Shared Mem

Shared

Memory Only end-to-end

encryption. Secure

Only private memory

protection. Secure
Both protections. Secure,

but Redundant



O1. Either private memory or end-to-end encryption is sufficient to assure data security

O2. End-to-end encryption has the side effect of moving the payload location 
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O1. Either private memory or end-to-end encryption is sufficient to assure data security

O2. End-to-end encryption has the side effect of moving the payload location 

O3. I/O backends usually have plenty of residual CPU resources available 

Observations and Insights
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Architecture and High-Level Design
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D1. Zero-copy encryption deduplication (ZCED)

– Eliminate payload bouncing tax by leveraging O1&O2

• APP memory  guest-host shared memory
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D1. Zero-copy encryption deduplication (ZCED)

– Eliminate payload bouncing tax by leveraging O1&O2

• APP memory  guest-host shared memory

– Minimize modification & reuse CVM allocators

• Dedicated NUMA nodes (called ZCED NUMA)
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D1. Zero-copy encryption deduplication (ZCED)

– Eliminate payload bouncing tax by leveraging O1&O2

• APP memory  guest-host shared memory

– Minimize modification & reuse CVM allocators

• Dedicated NUMA nodes (called ZCED NUMA)

D2. One-time trusted read (OTTR)

– Defend against TOCTTOU attacks on ZCED NUMA

• Principle: only trust the 1st read from the shared memory

• Enforce protections in both TX and RX directions

Architecture and High-Level Design
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*Please refer to our paper for more details about OTTR



D1. Zero-copy encryption deduplication (ZCED)

– Eliminate payload bouncing tax by leveraging O1&O2

• APP memory  guest-host shared memory

– Minimize modification & reuse CVM allocators

• Dedicated NUMA nodes (called ZCED NUMA)

D2. One-time trusted read (OTTR)

– Defend against TOCTTOU attacks on ZCED NUMA

• Only trust the 1st read from the shared memory

D3. Pre-receiver packet reassembly (PRPR)

– Reduce packet processing tax by leveraging O3

• Offload reassembly to the network I/O backend
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D1. Zero-copy encryption deduplication (ZCED)

– Eliminate payload bouncing tax by leveraging O1&O2

• APP memory  guest-host shared memory

– Minimize modification & reuse CVM allocators

• Dedicated NUMA nodes (called ZCED NUMA)

D2. One-time trusted read (OTTR)

– Defend against TOCTTOU attacks on ZCED NUMA

• Only trust the 1st read from the shared memory

D3. Pre-receiver packet reassembly (PRPR)

– Reduce packet processing tax by leveraging O3

• Offload reassembly to the network I/O backend

Architecture and High-Level Design
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Header

Incoming packets arrive at the backend driver

1. PRPR reassembles same-flow packets

2. The backend driver flushes the packet to CVM

– Encrypted payload: kept in ZCED NUMA memory

– Header: bounced to private memory by OTTR

3. The TLS layer decrypts payload for APPs

– Directly from ZCED NUMA memory to APP memory

– OTTR eliminates TOCTTOU issues during decryption

Packet Receiving Workflow
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APPs start to send out payload for network I/O

1. The TLS layer encrypts payload

– Directly from APP memory to ZCED NUMA memory

– OTTR eliminates TOCTTOU issues during encryption

2. The CVM prepares packets for the backend driver

– Encrypted payload: kept in shared memory

– Header: built in private mem, bounced to shared mem

3. The backend driver obtains packets from shared memory

Packet Sending Workflow
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• VM exits tax

✔ Solved by posted interrupt on next-gen CVM hardware

• Bounce buffer tax

– Challenge: out-of-place hardware memory encryption

✔ Zero-copy encryption deduplication (ZCED)

• Eliminate payload bouncing

• TOCTTOU defense: One-time trusted read (OTTR)

• Packet processing tax

– Challenge: costly packet pre-processing in the device driver

✔ Pre-receiver packet reassembly (PRPR)

• Offload packet reassembly to network I/O backend

Bifrost Summary
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*Please refer to our paper for more details



Prototype and Evaluation



Prototype and Testbed Setup

Component LoC

Guest Linux v6.0-rc1 815

Open vSwitch v2.17.3 175

DPDK v21.11.2 541

Implementation Complexity

Naming Description

CVM+RIF CVM + Reduced IRQ Frequency

+ZC Only apply ZCED & OTTR

+PRPR Only apply PRPR

Additional Naming Convention

*Please refer to our paper for more details

Component Configuration

CPU
CVM+RIF: 2x AMD EPYC 7T83, 128 cores

CVM+PI: 2x Intel Xeon Gold 5317, 24 cores

DDR4 DRAM AMD 500GB; Intel 188GB

NIC NVIDIA Connect-X6 200Gbps, back-to-back

Host OS

Ubuntu 20.04.4 LTS

CVM+RIF: Linux v5.19.0-rc6 (SEV enabled)

CVM+PI: Linux v5.4.0

Network

Backend

Open vSwitch v2.17.3

DPDK v21.11.2

Guest OS

Ubuntu 20.04.4 LTS

Linux v6.0-rc1

1 or 4 vCPUs, 16GB memory, 2 virtqueues

Testbed Configuration



Application Benchmarks
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CVM+RIF w/o PI still 

have much VM exits tax

 Smaller improvement

Improvement increases

as the data size grows

Application Benchmarks
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• To explain the aforementioned 

performance improvements

• Breakdown examples

– Memcached experiments

– 4-vCPU VM and 256KB data size

CPU Utilization Breakdown



• Where does the improvement come from?

– Application workloads CPU time: 43%  74%

– Bounce buffer tax: 23%  2%

– Packet processing tax: 36% 22%

CPU Utilization Breakdown



• Where does the improvement come from?

– Application workloads CPU time: 43%  74%

– Bounce buffer tax: 23%  2%

– Packet processing tax: 36% 22%

• How is backend CPU utilization impacted?

– Spend at most 19% more CPU time than the 

baseline (i.e., traditional VM)

– Still not fully loaded, no negative impact on 

backend processing

CPU Utilization Breakdown

*Please refer to our paper for more details



Conclusion

• The 1st systematic CVM-IO tax analysis for network-intensive CVMs

• A new paravirtual I/O design: Bifrost

– Eliminate redundant bounces for network packets (Design 1: ZCED)

– Maintain the same level of security guarantees as existing CVMs (Design 2: OTTR)

– Greatly reduce packet processing cost in CVMs (Design 3: PRPR)

• Significantly improve the network I/O performance of CVMs

– Outperform traditional VMs by up to 21.50%

Thanks!Bifrost prototype available: 

https://github.com/IPADS-Bifrost

https://github.com/IPADS-Bifrost


Backup Slides



• I/O-intensive workloads frequent vIRQ due to I/O notifications

Frequent VM Exits without Posted IRQ
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• For integrity, an Auth Tag is computed iteratively based on each block of ciphertext

• The correctness of the Auth Tag depends on the correctness of each block of ciphertext

A TOCTTOU Example in AES-GCM

A high-level workflow of AES-GCM encryption
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A TOCTTOU Example in AES-GCM

A high-level workflow of AES-GCM encryption
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• Payload: keep encryption/decryption processing in CPU registers

• Header: bounced to private memory before processing

One-Time Trusted Read (OTTR)

Time of Use

Attack Window

Time of Check

HypervisorCVM

Encrypt Block 2 plaintext

and write ciphertext to

shared memory

Read the tainted Block 2

ciphertext from shared

memory to compute Hash

Taint the Block 2 ciphertext

in shared memory

Unaware of

compromised

integrity

Time of Use

Attack Window

Time of Check

HypervisorCVM

Encrypt, write ciphertext

from CPU registers to

shared memory

Read the correct Block 2

ciphertext from CPU

registers to compute Hash

Taint the Block 2 ciphertext

in shared memory

Able to detect

comprised

integrity



• Memory access in AES implementations

– Precomputed lookup tables (for performance), S-box (for security)

– Access patterns on these tables reveal information about encryption keys

• Cache-based side-channel (though out-of-scope in CVM’s threat model)

– Access patterns on tables + Known precomputed tables  Possible key leakage

• ZCED does NOT leak access patterns on tables in private memory

– Though attackers may be able to know when encryption is happening

• Already mitigated in previous work [1,2,3], such as dynamic table storage

Side-Channel Attacks on AES Encryption

[1] Cache Attacks and Countermeasures: the Case of AES (CT-RSA’06) 

[2] Hey, you, get off of my cloud: exploring information leakage in third-party compute clouds (CCS’09)

[3] Cross-VM side channels and their use to extract private keys (CCS’12)


