
Bifrost: Analysis and Optimization of Network

I/O Tax in Confidential Virtual Machines

Dingji Li, Zeyu Mi, Chenhui Ji, Yifan Tan, Binyu Zang,

Haibing Guan, and Haibo Chen

Institute of Parallel and Distributed Systems, Shanghai Jiao Tong University

Engineering Research Center for Domain-specific Operating Systems, Ministry of Education, China

MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University

Shanghai Key Laboratory of Scalable Computing and Systems, Shanghai Jiao Tong University

• Applications are processing sensitive data in the cloud

– For example, key-value store, AI inference, financial service, etc.

• A compromised hypervisor  steal VM data

– All VM memory is accessible to and controlled by the hypervisor

– Many VM escape CVEs are disclosed in recent years

• CVE-2019-6778, CVE-2019-14835, CVE-2019-18389, CVE-2021-29657, etc.

• Regulations have been established to enforce data security

– E.g., General Data Protection Regulation (GDPR)

Data Security is Crucial for Cloud Computing

KV-store & AI in the Cloud

• Good security

– OS-level confidential computing

• Each guest OS is hardware-isolated from outside

– CPU states are protected during VM exits

– Memory isolation with hardware encryption

• Private type: only accessible to CVM

• Shared type: also accessible to hypervisor

• Good compatibility

– Ease of integration with existing IaaS

– Transparent to application workloads

CVM is Becoming Popular in Data Centers

APP

Kernel

Traditional VMs

APP

Kernel

Unmodified

CVM

Enlightened

CPU / Mem / IRQ

Virtualization

In-kernel Hypervisor

Shared

APP

Kernel

CVMs

Security

Protection

Trusted Firmware

Private PrivateShared

Terabit Ethernet is Approaching

• The speed of modern network devices continues to grow

– For example, NVIDIA ConnectX-7 400GbE SmartNIC

• CPUs become performance bottleneck

– Both application logic and I/O processing consume significant CPU resources

Source:
ethernetalliance.org

CPUs are fully loaded

APP logic I/O processing

https://ethernetalliance.org/wp-content/uploads/2020/03/EthernetRoadmap-2020-Side2-FINAL.pdf

Paravirtual I/O Networking in CVMs

APP

CVMTraditional VM

Trusted

Firmware
In-kernel Hypervisor

APP

KernelKernel

Userspace

Hypervisor
APP APP

BE Driver

• A primary I/O virtualization choice for modern cloud providers

– Typical usage: a polling-based userspace I/O backend for high performance

• I/O event notification

– Hypervisor notifies VMs via vIRQs, which may trigger VM exits

– CVMs’ exits have higher latency vs. traditional VMs

Paravirtual I/O Networking in CVMs

• A primary I/O virtualization choice for modern cloud providers

– Typical usage: a polling-based userspace I/O backend for high performance

• I/O data transfer

– Hypervisor copies I/O data to/from VM memory

– CVMs require bounce buffer because hypervisor cannot access private memory

CVMTraditional VM

FE Driver

Bounce Buffer

FE Driver
Userspace

Hypervisor

BE Driver

Memcpy…… ……

Paravirtual I/O Networking in CVMs

• A primary I/O virtualization choice for modern cloud providers

– Typical usage: a polling-based userspace I/O backend for high performance

• I/O data protection

– End-to-end encryption, such as transport layer security (TLS)

– In-kernel TLS support for enhanced performance and extended features

APP

Network Stack

CVMTraditional VM

APP

TLS Offload

FE Driver

TLS Library

Bounce Buffer

FE Driver

TLS Library

Userspace

Hypervisor

BE Driver

NIC Driver

TLS Offload

APP

Network Stack

APP
Plaintext

Packet

Ciphertext

Packet

• End-to-end evaluation

– Baseline: traditional VMs

– Benchmark: network-intensive applications

• Testbed configuration

– CVM: AMD SEV-ES/SNP, w/o posted IRQ*

– CVM+PI: simulated Intel TDX, w/ posted IRQ

– More details in the Evaluation part

The Network Performance of CVM

*Posted IRQ: eliminate VM exits during vIRQ deliveries

• End-to-end evaluation

– Baseline: traditional VMs

– Benchmark: network-intensive applications

• Testbed configuration

– CVM: AMD SEV-ES/SNP, w/o posted IRQ*

– CVM+PI: simulated Intel TDX, w/ posted IRQ

– More details in the Evaluation part

• Summary: poor network performance

– CVM: 21% - 28% overhead vs. baseline

– CVM+PI: 13% - 29% overhead vs. baseline

The Network Performance of CVM

*Posted IRQ: eliminate VM exits during vIRQ deliveries

0%

10%

20%

30%

32KB 64KB 128KB 256KB 32KB 64KB 128KB 256KB

CVM CVM+PI

0%

10%

20%

30%

32KB 64KB 128KB 256KB 32KB 64KB 128KB 256KB

CVM CVM+PI

0%

10%

20%

30%

32KB 64KB 128KB 256KB 32KB 64KB 128KB 256KB

CVM CVM+PI

Memcached1vCPU 4vCPU

Nginx1vCPU 4vCPU

Redis1vCPU 4vCPU

• CVM-IO tax

– CPU time spent on security protections

and intrinsic network I/O procedures

– More CPU time Worse performance

• CVM-IO tax & application workloads share limited CPU execution time

CVM-IO Tax Greatly Impacts Performance

• Application workloads

– CPU time spent on business logic and

payload processing

– More CPU time Better performance

• CVM-IO tax

– CPU time spent on security protections

and intrinsic network I/O procedures

– More CPU time Worse performance

• CVM-IO tax & application workloads share limited CPU execution time

CVM-IO Tax Greatly Impacts Performance

CVM-IO tax type Factors that determine CPU time of each tax type

VM exits The frequency of guest-host interactions

Bounce buffer The size of I/O data transferred

Packet processing The number of network packets processed

• Application workloads

– CPU time spent on business logic and

payload processing

– More CPU time Better performance

• Example: a 4-thread Memcached server in a 4-vCPU VM

– memtier_benchmark: 8 clients, 32 concurrent requests and 256KB data size

• CVM-IO tax consumes > 50% CPU time

CVM-IO Tax Breakdown

• Example: a 4-thread Memcached server in a 4-vCPU VM

– memtier_benchmark: 8 clients, 32 concurrent requests and 256KB data size

• CVM-IO tax consumes > 50% CPU time

– Overhead vs. baseline: VM exits and bounce buffer

CVM-IO Tax Breakdown

• Example: a 4-thread Memcached server in a 4-vCPU VM

– memtier_benchmark: 8 clients, 32 concurrent requests and 256KB data size

• CVM-IO tax consumes > 50% CPU time

– Overhead vs. baseline: VM exits and bounce buffer

– Packet processing consumes a large portion of CPU time

CVM-IO Tax Breakdown

• CVMs introduce protection on CPU states

– For instance, when a VM exit happen, the trusted firmware may save and clear registers

• The protection add large CPU cycles to guest-host world switches

– CVM consumes 5,833 cycles more than its baseline

Lengthy VM Exits

7,476

1,643

0 2,000 4,000 6,000 8,000

SEV CVM

Baseline VM

World Switch Latency (Cycles)

• CVMs introduce protection on CPU states

– For instance, when a VM exit happen, the trusted firmware may save and clear registers

• The protection add large CPU cycles to guest-host world switches

– CVM consumes 5,833 cycles more than its baseline

• If without posted IRQ, vIRQ  frequent VM exits

– CVM triggers ~20x more VM exits/s than CVM+PI

Lengthy VM Exits

7,476

1,643

0 2,000 4,000 6,000 8,000

SEV CVM

Baseline VM

World Switch Latency (Cycles)

41,615

2,803

 0 10K 20K 30K 40K 50K

CVM

CVM+PI

Per-vCPU VM exit Frequency (exits/s)

• CVMs introduce protection on CPU states

– For instance, when a VM exit happen, the trusted firmware may save and clear registers

• The protection add large CPU cycles to guest-host world switches

– CVM consumes 5,833 cycles more than its baseline

• If without posted IRQ, vIRQ  frequent VM exits

– CVM triggers ~20x more VM exits/s than CVM+PI

Lengthy VM Exits

7,476

1,643

0 2,000 4,000 6,000 8,000

SEV CVM

Baseline VM

World Switch Latency (Cycles)

41,615

2,803

 0 10K 20K 30K 40K 50K

CVM

CVM+PI

Per-vCPU VM exit Frequency (exits/s)

 VM exits can take up a large portion of the CPU time of CVMs

– Up to 20% of CVM’s CPU cycles  Significant performance impact

– Increased latency & High frequency  Large overhead vs. baseline VMs

 Posted IRQ minimizes the performance impact of VM exits tax

– At most 1% of CVM+PI’s CPU cycles

– Will be supported soon on next-generation CVM hardware platforms

• Traditional VM memory is shared with the hypervisor

Bounce Buffer

Guest-Host

Shared Mem
Private

Memory

Shared

Memory
NIC

MemcpyDMA

Hypervisor copies packets from

guest-host shared memory

1 Copy

Traditional

VMHypervisor

• CVM memory is set to private by default

Bounce Buffer

Guest-Host

Shared Mem
Private

Memory

Shared

Memory
NIC

MemcpyDMA

Hypervisor copies packets from

guest-host shared memory

1 Copy

Traditional

VMHypervisor

Hypervisor cannot access

packets in private memory

No Access
NIC

CVMHypervisor

• CVM memory is set to private by default

Bounce Buffer

Guest-Host

Shared Mem
Private

Memory

Shared

Memory
NIC

MemcpyDMA

Hypervisor copies packets from

guest-host shared memory

1 Copy

Traditional

VMHypervisor

Hypervisor cannot access

packets in private memory

No Access
NIC

CVMHypervisor

NIC

CVM copies packets to Bounce

Buffers, then hypervisor copies

2 Copies

CVMHypervisor

• CVM memory is set to private by default

• 1 more copy  Larger I/O data size leads to more CPU time cost

Bounce Buffer

Guest-Host

Shared Mem
Private

Memory

Shared

Memory
NIC

MemcpyDMA

Hypervisor copies packets from

guest-host shared memory

1 Copy

Traditional

VMHypervisor

Hypervisor cannot access

packets in private memory

No Access
NIC

CVMHypervisor

NIC

CVM copies packets to Bounce

Buffers, then hypervisor copies

2 Copies

CVMHypervisor

• CVM memory is set to private by default

• 1 more copy  Larger I/O data size leads to more CPU time cost

Bounce Buffer

Guest-Host

Shared Mem
Private

Memory

Shared

Memory
NIC

MemcpyDMA

Hypervisor copies packets from

guest-host shared memory

1 Copy

Traditional

VMHypervisor

Hypervisor cannot access

packets in private memory

No Access
NIC

CVMHypervisor

NIC

CVM copies packets to Bounce

Buffers, then hypervisor copies

2 Copies

CVMHypervisor

 Bounce buffers can consume a large portion of the CPU time of CVMs

– Up to 20% of CVM+PI’s CPU cycles  Significant performance impact

– Both copying I/O data & maintaining metadata are costly

– CVM-specific & Large data size Large overhead vs. baseline VMs

 For performance, it is necessary to avoid bouncing large-size I/O data

• Comprise operations such as header parsing, encap and decap

• Process each packet more packets leads to more CPU time

Packet Processing

APP

PayloadTCPIPMAC

Payload

Payload

MAC

RX Example

Received Packet

FE Driver

Network

Stack
Packet

Processing

Virtual NIC

• Comprise operations such as header parsing, encap and decap

• Process each packet more packets leads to more CPU time

Packet Processing

APP

PayloadTCPIPMAC

Payload

Payload

MAC

RX Example

Received Packet

FE Driver

Network

Stack
Packet

Processing

Virtual NIC

 Packet processing consumes a large fraction of the CPU time of CVMs

– Up to 36% of CVM+PI’s CPU cycles  Significant performance impact

– There are a large number packets in network-intensive scenarios

 Reducing the number of packets can mitigate its performance impact

Our Design: Bifrost

CVM

Untrusted

Hypervisor

I/O Data

Side-channel

Denial-of-Service

CPU and firmware

CVMs protect I/O data with

end-to-end encryption, and

do not voluntarily leak data

• Performance

– Bounce buffer tax: avoid bouncing large-size I/O data

– Packet processing tax: reduce the number of packets to be processed

• Security

– Maintain the same level of security guarantees as existing CVMs

• Universality

– Applicable to diverse platforms (e.g., x86, ARM), guest/host OSes (e.g., Linux, FreeBSD)

• Practicality

– Transparent to applications & Non-intrusive and minor modifications

Design Goals

C1. Out-of-place hardware memory encryption and decryption

Challenges

Hypervisor CVM

Ideal: eliminate bounce buffer via zero copy

by keeping data in the same page

Page 1 Page 2

Page 1:

Private  Shared

Page 0

C1.

C1. Out-of-place hardware memory encryption and decryption

Challenges

Reality: out-of-place hardware encryption / decryption

 data loss after memory type conversion

Hypervisor CVM

Page 1 Page 2

Page 1:

Private  Shared

Page 0

Hypervisor CVM

Ideal: eliminate bounce buffer via zero copy

by keeping data in the same page

Page 1 Page 2

Page 1:

Private  Shared

Page 0

C1. Out-of-place hardware memory encryption and decryption

C2.

Challenges

PayloadTCPIPMAC FE Driver

Network

Stack
PayloadTCPIPMAC

Vanilla procedure: pass each packet to

the network stack as-is.
Too many packets to be processed.

Reality: out-of-place hardware encryption / decryption

 data loss after memory type conversion

Hypervisor CVM

Page 1 Page 2

Page 1:

Private  Shared

Page 0

Hypervisor CVM

Ideal: eliminate bounce buffer via zero copy

by keeping data in the same page

Page 1 Page 2

Page 1:

Private  Shared

Page 0

C1. Out-of-place hardware memory encryption and decryption

C2.

Challenges

PayloadTCPIPMAC FE Driver

Network

Stack
PayloadTCPIPMAC

PayloadTCPIPMAC

PayloadTCPIPMAC

Existing optimizations (e.g., GRO):

reassemble packets before the network stack.

Reduced packets to be processed.

Vanilla procedure: pass each packet to

the network stack as-is.
Too many packets to be processed.

C1. Out-of-place hardware memory encryption and decryption

C2. Costly packet pre-processing in the device driver

Reality: out-of-place hardware encryption / decryption

 data loss after memory type conversion

Hypervisor CVM

Page 1 Page 2

Page 1:

Private  Shared

Page 0

Hypervisor CVM

Ideal: eliminate bounce buffer via zero copy

by keeping data in the same page

Page 1 Page 2

Page 1:

Private  Shared

Page 0

O1. Either end-to-end encryption or private memory is sufficient to assure data security

Observations and Insights

Private

Memory
End-to-end

Encryption

Guest-Host

Shared Mem

Shared

Memory Only end-to-end

encryption. Secure

Only private memory

protection. Secure
Both protections. Secure,

but Redundant

O1. Either private memory or end-to-end encryption is sufficient to assure data security

O2. End-to-end encryption has the side effect of moving the payload location

Observations and Insights

Private

Memory
End-to-end

Encryption

Guest-Host

Shared Mem

Shared

Memory Only end-to-end

encryption. Secure

Only private memory

protection. Secure
Both protections. Secure,

but Redundant

Page NPage 0
Typical usage: in-place encryption then bouncing,

and bouncing then in-place decryption

O1. Either private memory or end-to-end encryption is sufficient to assure data security

O2. End-to-end encryption has the side effect of moving the payload location

Observations and Insights

Private

Memory
End-to-end

Encryption

Guest-Host

Shared Mem

Shared

Memory Only end-to-end

encryption. Secure

Only private memory

protection. Secure
Both protections. Secure,

but Redundant

Page NPage 0
Typical usage: in-place encryption then bouncing,

and bouncing then in-place decryption

Page NPage 0
Possible usage: out-of-place encryption / decryption,

no redundant protection or bouncing

O1. Either private memory or end-to-end encryption is sufficient to assure data security

O2. End-to-end encryption has the side effect of moving the payload location

O3. I/O backends usually have plenty of residual CPU resources available

Observations and Insights

Private

Memory
End-to-end

Encryption

Guest-Host

Shared Mem

Shared

Memory Only end-to-end

encryption. Secure

Only private memory

protection. Secure
Both protections. Secure,

but Redundant

Page NPage 0
Typical usage: in-place encryption then bouncing,

and bouncing then in-place decryption

Page NPage 0
Possible usage: out-of-place encryption / decryption,

no redundant protection or bouncing

CPUs running CVMs’

vCPUs are 100%-utilized

Confidential VM
Userspace

Hypervisor

CPUs dedicated for I/O

backends are usually

under-utilized

APP

I/O
Routing only

Architecture and High-Level Design

FE Driver

In-kernel TLS

Confidential VM

Network Stack

Userspace

Hypervisor

APP

OpenSSL

APP

OpenSSL

APP

OpenSSL
U

K

Bounce Buffer

BE Driver

NIC Driver

D1. Zero-copy encryption deduplication (ZCED)

– Eliminate payload bouncing tax by leveraging O1&O2

• APP memory  guest-host shared memory

Architecture and High-Level Design

Dedicated

Shared Mem

APP Mem

Hypervisor Mem

In-kernel TLS

FE Driver

FE Driver

In-kernel TLS

Confidential VM

APP

OpenSSL

APP

OpenSSL
U

K

APP

OpenSSL

1 Copy

D1. Zero-copy encryption deduplication (ZCED)

– Eliminate payload bouncing tax by leveraging O1&O2

• APP memory  guest-host shared memory

– Minimize modification & reuse CVM allocators

• Dedicated NUMA nodes (called ZCED NUMA)

Architecture and High-Level Design

In-kernel TLS

FE Driver

FE Driver

In-kernel TLS

Confidential VM

APP

OpenSSL

APP

OpenSSL
U

K

Dedicated

Shared Mem

APP Mem

Hypervisor Mem

Dedicated

Shared Mem

APP Mem

Hypervisor Mem

APP

OpenSSL

ZCED

ZCED

1 Copy 1 Copy

D1. Zero-copy encryption deduplication (ZCED)

– Eliminate payload bouncing tax by leveraging O1&O2

• APP memory  guest-host shared memory

– Minimize modification & reuse CVM allocators

• Dedicated NUMA nodes (called ZCED NUMA)

D2. One-time trusted read (OTTR)

– Defend against TOCTTOU attacks on ZCED NUMA

• Principle: only trust the 1st read from the shared memory

• Enforce protections in both TX and RX directions

Architecture and High-Level Design

FE Driver

In-kernel TLSZCED

Confidential VM

Network Stack

APP

OpenSSL

APP

OpenSSL

APP

OpenSSL

ZCED

OTTR Protection

U

K

Bounce Buffer

*Please refer to our paper for more details about OTTR

D1. Zero-copy encryption deduplication (ZCED)

– Eliminate payload bouncing tax by leveraging O1&O2

• APP memory  guest-host shared memory

– Minimize modification & reuse CVM allocators

• Dedicated NUMA nodes (called ZCED NUMA)

D2. One-time trusted read (OTTR)

– Defend against TOCTTOU attacks on ZCED NUMA

• Only trust the 1st read from the shared memory

D3. Pre-receiver packet reassembly (PRPR)

– Reduce packet processing tax by leveraging O3

• Offload reassembly to the network I/O backend

Architecture and High-Level Design

FE Driver

Confidential VMUserspace

Hypervisor

U

KBE Driver

FE Driver

Network

Stack

PayloadTCPIPMAC

PayloadTCPIPMAC

Existing optimizations (e.g., GRO)

BE Driver PayloadTCPIPMAC

Reassembly

D1. Zero-copy encryption deduplication (ZCED)

– Eliminate payload bouncing tax by leveraging O1&O2

• APP memory  guest-host shared memory

– Minimize modification & reuse CVM allocators

• Dedicated NUMA nodes (called ZCED NUMA)

D2. One-time trusted read (OTTR)

– Defend against TOCTTOU attacks on ZCED NUMA

• Only trust the 1st read from the shared memory

D3. Pre-receiver packet reassembly (PRPR)

– Reduce packet processing tax by leveraging O3

• Offload reassembly to the network I/O backend

Architecture and High-Level Design

FE Driver

Confidential VMUserspace

Hypervisor

U

KBE Driver

PRPR

FE Driver

Network

Stack
PayloadTCPIPMAC

Offload reassembly to backend

BE Driver PayloadTCPIPMAC

PayloadTCPIPMAC

Header

Incoming packets arrive at the backend driver

1. PRPR reassembles same-flow packets

2. The backend driver flushes the packet to CVM

– Encrypted payload: kept in ZCED NUMA memory

– Header: bounced to private memory by OTTR

3. The TLS layer decrypts payload for APPs

– Directly from ZCED NUMA memory to APP memory

– OTTR eliminates TOCTTOU issues during decryption

Packet Receiving Workflow

FE Driver

In-kernel TLS

Confidential VM

Network Stack

Userspace

Hypervisor

APP

OpenSSL

APP

OpenSSL

APP

OpenSSL

ZCED

OTTR Protection

U

K

Bounce Buffer

Payload

BE Driver

PRPR

NIC Driver

NIC

Header Payload@

Packet

@

@

End-to-end

Encryption

APPs start to send out payload for network I/O

1. The TLS layer encrypts payload

– Directly from APP memory to ZCED NUMA memory

– OTTR eliminates TOCTTOU issues during encryption

2. The CVM prepares packets for the backend driver

– Encrypted payload: kept in shared memory

– Header: built in private mem, bounced to shared mem

3. The backend driver obtains packets from shared memory

Packet Sending Workflow

FE Driver

In-kernel TLS

Network Stack

Userspace

Hypervisor

APP

OpenSSL

APP

OpenSSL

APP

OpenSSL
U

K

Bounce Buffer
Header

Payload

BE Driver

NIC Driver

Confidential VM OTTR Protection

@

Header Payload@

Packet End-to-end

Encryption

@

ZCED

• VM exits tax

✔ Solved by posted interrupt on next-gen CVM hardware

• Bounce buffer tax

– Challenge: out-of-place hardware memory encryption

✔ Zero-copy encryption deduplication (ZCED)

• Eliminate payload bouncing

• TOCTTOU defense: One-time trusted read (OTTR)

• Packet processing tax

– Challenge: costly packet pre-processing in the device driver

✔ Pre-receiver packet reassembly (PRPR)

• Offload packet reassembly to network I/O backend

Bifrost Summary

Header

FE Driver

In-kernel TLSZCED

Network Stack

Userspace

Hypervisor

APP

OpenSSL

APP

OpenSSL

APP

OpenSSL

ZCED

U

K

Bounce Buffer
Header

Payload

Payload

BE Driver

PRPR

NIC Driver

TXRX

Confidential VM OTTR Protection

*Please refer to our paper for more details

Prototype and Evaluation

Prototype and Testbed Setup

Component LoC

Guest Linux v6.0-rc1 815

Open vSwitch v2.17.3 175

DPDK v21.11.2 541

Implementation Complexity

Naming Description

CVM+RIF CVM + Reduced IRQ Frequency

+ZC Only apply ZCED & OTTR

+PRPR Only apply PRPR

Additional Naming Convention

*Please refer to our paper for more details

Component Configuration

CPU
CVM+RIF: 2x AMD EPYC 7T83, 128 cores

CVM+PI: 2x Intel Xeon Gold 5317, 24 cores

DDR4 DRAM AMD 500GB; Intel 188GB

NIC NVIDIA Connect-X6 200Gbps, back-to-back

Host OS

Ubuntu 20.04.4 LTS

CVM+RIF: Linux v5.19.0-rc6 (SEV enabled)

CVM+PI: Linux v5.4.0

Network

Backend

Open vSwitch v2.17.3

DPDK v21.11.2

Guest OS

Ubuntu 20.04.4 LTS

Linux v6.0-rc1

1 or 4 vCPUs, 16GB memory, 2 virtqueues

Testbed Configuration

Application Benchmarks
Y-axis: Overhead vs. traditional VMs

Lower is better, negative improvement

Memcached

Redis

-15%

-5%

5%

15%

25%

32KB 256KB

1vCPU

32KB 256KB

4vCPU

CVM+RIF

-10%

0%

10%

20%

-30%

-15%

0%

15%

30%

-10%

0%

10%

20%

32KB 256KB

1vCPU

32KB

4vCPU

CVM+PI

256KB

21% worse

↓

14% better

29% worse

↓

21% better

18% worse

↓

7% better

19% worse

↓

19% better

Application Benchmarks
Y-axis: Overhead vs. traditional VMs

Lower is better, negative improvement

Memcached

Redis

-15%

-5%

5%

15%

25%

32KB 256KB

1vCPU

32KB 256KB

4vCPU

CVM+RIF

-10%

0%

10%

20%

-30%

-15%

0%

15%

30%

-10%

0%

10%

20%

32KB 256KB

1vCPU

32KB

4vCPU

CVM+PI

256KB

21% worse

↓

14% better

29% worse

↓

21% better

18% worse

↓

7% better

19% worse

↓

19% better

Improvement increases

as the data size grows

Application Benchmarks
Y-axis: Overhead vs. traditional VMs

Lower is better, negative improvement

Memcached

Redis

-15%

-5%

5%

15%

25%

32KB 256KB

1vCPU

32KB 256KB

4vCPU

CVM+RIF

-10%

0%

10%

20%

-30%

-15%

0%

15%

30%

-10%

0%

10%

20%

32KB 256KB

1vCPU

32KB

4vCPU

CVM+PI

256KB

21% worse

↓

14% better

29% worse

↓

21% better

18% worse

↓

7% better

19% worse

↓

19% better

CVM+RIF w/o PI still

have much VM exits tax

 Smaller improvement

Improvement increases

as the data size grows

CVM+RIF w/o PI still

have much VM exits tax

 Smaller improvement

Improvement increases

as the data size grows

Application Benchmarks
Y-axis: Overhead vs. traditional VMs

Lower is better, negative improvement

Memcached

Nginx

Redis

-15%

-5%

5%

15%

25%

32KB 256KB

1vCPU

32KB 256KB

4vCPU

CVM+RIF

0%

10%

20%

-10%

0%

10%

20%

-30%

-15%

0%

15%

30%

0%

10%

20%

30%

-10%

0%

10%

20%

32KB 256KB

1vCPU

32KB

4vCPU

CVM+PI

256KB

21% worse

↓

14% better

29% worse

↓

21% better

Overhead

cut > 50% Overhead 0TX traffic is dominant

PRPR has little effect

18% worse

↓

7% better

19% worse

↓

19% better

• To explain the aforementioned

performance improvements

• Breakdown examples

– Memcached experiments

– 4-vCPU VM and 256KB data size

CPU Utilization Breakdown

• Where does the improvement come from?

– Application workloads CPU time: 43%  74%

– Bounce buffer tax: 23%  2%

– Packet processing tax: 36% 22%

CPU Utilization Breakdown

• Where does the improvement come from?

– Application workloads CPU time: 43%  74%

– Bounce buffer tax: 23%  2%

– Packet processing tax: 36% 22%

• How is backend CPU utilization impacted?

– Spend at most 19% more CPU time than the

baseline (i.e., traditional VM)

– Still not fully loaded, no negative impact on

backend processing

CPU Utilization Breakdown

*Please refer to our paper for more details

Conclusion

• The 1st systematic CVM-IO tax analysis for network-intensive CVMs

• A new paravirtual I/O design: Bifrost

– Eliminate redundant bounces for network packets (Design 1: ZCED)

– Maintain the same level of security guarantees as existing CVMs (Design 2: OTTR)

– Greatly reduce packet processing cost in CVMs (Design 3: PRPR)

• Significantly improve the network I/O performance of CVMs

– Outperform traditional VMs by up to 21.50%

Thanks!Bifrost prototype available:

https://github.com/IPADS-Bifrost

https://github.com/IPADS-Bifrost

Backup Slides

• I/O-intensive workloads frequent vIRQ due to I/O notifications

Frequent VM Exits without Posted IRQ

Hardware

interaction

VM exit

Hardware

vIRQ chip

Software vIRQ chip

In-kernel Hypervisor

Guest OS

VM

SW-based vIRQ Chip

Massive VM exits

• I/O-intensive workloads frequent vIRQ due to I/O notifications

Frequent VM Exits without Posted IRQ

Hardware

interaction

VM exit

Hardware

vIRQ chip

Software vIRQ chip

In-kernel Hypervisor

Guest OS

VM

SW-based vIRQ Chip

Massive VM exits

In-kernel Hypervisor

Guest OS

HW-based vIRQ Chip

Reduced VM exits

HW vIRQ Mgmt.

VM

• I/O-intensive workloads frequent vIRQ due to I/O notifications

Frequent VM Exits without Posted IRQ

Hardware

interaction

VM exit

Hardware

vIRQ chip

Software vIRQ chip

In-kernel Hypervisor

Guest OS

VM

SW-based vIRQ Chip

Massive VM exits

In-kernel Hypervisor

Guest OS

HW-based vIRQ Chip

Reduced VM exits

HW vIRQ Mgmt.

VM

In-kernel Hypervisor

Guest OS

HW chip + Posted IRQ

No VM exits

HW vIRQ Mgmt.

VM

• For integrity, an Auth Tag is computed iteratively based on each block of ciphertext

• The correctness of the Auth Tag depends on the correctness of each block of ciphertext

A TOCTTOU Example in AES-GCM

A high-level workflow of AES-GCM encryption

• For integrity, an Auth Tag is computed iteratively based on each block of ciphertext

• The correctness of the Auth Tag depends on the correctness of each block of ciphertext

A TOCTTOU Example in AES-GCM

A high-level workflow of AES-GCM encryption

Time of Use

Attack Window

Time of Check

HypervisorCVM

Encrypt Block 2 plaintext

and write ciphertext to

shared memory

Read the tainted Block 2

ciphertext from shared

memory to compute Hash

Taint the Block 2 ciphertext

in shared memory

Unaware of

compromised

integrity

• Payload: keep encryption/decryption processing in CPU registers

• Header: bounced to private memory before processing

One-Time Trusted Read (OTTR)

Time of Use

Attack Window

Time of Check

HypervisorCVM

Encrypt Block 2 plaintext

and write ciphertext to

shared memory

Read the tainted Block 2

ciphertext from shared

memory to compute Hash

Taint the Block 2 ciphertext

in shared memory

Unaware of

compromised

integrity

Time of Use

Attack Window

Time of Check

HypervisorCVM

Encrypt, write ciphertext

from CPU registers to

shared memory

Read the correct Block 2

ciphertext from CPU

registers to compute Hash

Taint the Block 2 ciphertext

in shared memory

Able to detect

comprised

integrity

• Memory access in AES implementations

– Precomputed lookup tables (for performance), S-box (for security)

– Access patterns on these tables reveal information about encryption keys

• Cache-based side-channel (though out-of-scope in CVM’s threat model)

– Access patterns on tables + Known precomputed tables  Possible key leakage

• ZCED does NOT leak access patterns on tables in private memory

– Though attackers may be able to know when encryption is happening

• Already mitigated in previous work [1,2,3], such as dynamic table storage

Side-Channel Attacks on AES Encryption

[1] Cache Attacks and Countermeasures: the Case of AES (CT-RSA’06)

[2] Hey, you, get off of my cloud: exploring information leakage in third-party compute clouds (CCS’09)

[3] Cross-VM side channels and their use to extract private keys (CCS’12)

