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CPU: the bottleneck in key-value stores

Compactions in log-structured merge trees (LSM) is CPU expensive
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CPU: the bottleneck in key-value stores

Compactions in log-structured merge trees (LSM) is CPU expensive
 Up to 72% of the total CPU time™!
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Compactions in replicated LSM trees

Redundant compactions happen in each replica
* e.g.,CockroachDB, ZippyDB, Cassandra, and etc.
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Compactions in replicated LSM trees

Redundant compactions happen in each replica
* e.g.,CockroachDB, ZippyDB, Cassandra, and etc.

Can we remove redundant compactions?
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This Talk
Redundant compactions can be eliminated

RubbleDB makes it practical to share compaction
results with NVMe-oF



How to remove redundant compactions?
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How to remove redundant compactions?

* Only perform compactions in the primary
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How to remove redundant compactions?

* Only perform compactions in the primary
* Ship compacted SST files to each secondary
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How to remove redundant compactions?

* Only perform compactions in the primary
* Ship compacted SST files to each secondary

* Delete input files in secondaries
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How to remove redundant compactions?

* Only perform compactions in the primary
* Ship compacted SST files to each secondary
* Delete input files in secondaries
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Challenges of sharing SST files
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Challenges of sharing SST files

* Heavy network traffic
 Luckily datacenter network is often underutilizedIi2!

[ Disk ) [ NIC ) { NIC )

Primary Secondary

| Disk |




Challenges of sharing SST files

* Heavy network traffic
 Luckily datacenter network is often underutilizedIi2!

* CPU involvement on the secondary
 After receiving the data, the secondary writes it to the local disk
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An attractive opportunity: NVMe-oF

* Non-Volatile Memory Express over Fabric
* Mount a remote disk as a local file system over RDMA or TCP
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An attractive opportunity: NVMe-oF

* Non-Volatile Memory Express over Fabric
* Mount a remote disk as a local file system over RDMA or TCP

» Zero CPU involvement on remote target
 Commodity NICs support NVMe-oF target offloading
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The challenge: NVMe-oF bypasses the
remote filesystem

Secondaries cannot see incoming SST files
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The challenge: NVMe-oF bypasses the
remote filesystem

Secondaries cannot see incoming SST files and may overwrite them!
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The challenge: NVMe-oF bypasses the
remote filesystem

Secondaries cannot see incoming SST files and may overwrite them!
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RubbleDB’s approach: SST pre-allocation
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2. Mount secondary’s
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RubbleDB’s approach: SST pre-allocation

2. Mount secondary’s
disk by NVMe-oF
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RubbleDB’s approach: SST pre-allocation
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Shared SSTs causes replica inconsistency

Primary’and secondaries’ internal states are actually different
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Shared SSTs causes replica inconsistency

Primary’and secondaries’ internal states are actually different
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Partial order of write requests in RubbleDB

Goal: MemTables with a same ID should store the same data
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Partial order of write requests in RubbleDB

Goal: MemTables with a same ID should store the same data
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Partial order of write requests in RubbleDB

Goal: MemTables with a same ID should store the same data
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Partial order of write requests in RubbleDB

Goal: MemTables with a same ID should store the same data
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Evaluation

 How much can RubbleDB improve the end-to-end performance?

* What is the trade-off behind the improvement?



Evaluation setup

Testbed: CloudLab r6525
e CPU: Two 32-core AMD 7543 at 2.8GHz
e Disk: One 1.6TB NVMe SSD
* NIC: Dual-port Mellanox ConnectX-6 100Gb

Benchmark:
* YCSB load and A-G workloads
* Five Twitter cluster traces

Baseline:
* Replicated RocksDB with compactions in secondaries
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Tail latency comparison
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Tail latency comparison
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Tail latency comparison
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* New network traffic for shipping SST files
 No compaction CPU and read |I/O on secondaries
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Cluster-wide CPU, disk, and network stats

 RubbleDB trades network for CPU and disk

* New network traffic for shipping SST files
 No compaction CPU and read |I/O on secondaries
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Conclusions

* NVMe-oF is an attractive opportunity for replicated storage
systems

* RubbleDB trades network for CPU and disk read 1/0 by shipping
compactions results to secondaries

* Try RubbleDB at https://github.com/lei-houjyu/RubbleDB

Thank you!

haoyu.li@columbia.edu
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Cluster topology

K replication groups spread on R servers
* Saving compactions in secondaries gives the primary more CPU

Server 1 Server 2 Server R
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