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CPU: the bottleneck in key-value stores
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Compactions in log-structured merge trees (LSM) is CPU expensive
• Up to 72% of the total CPU time*!

CPU: the bottleneck in key-value stores
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Redundant compactions happen in each replica
• e.g., CockroachDB, ZippyDB, Cassandra, and etc.

Compactions in replicated LSM trees
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Redundant compactions happen in each replica
• e.g., CockroachDB, ZippyDB, Cassandra, and etc.

Compactions in replicated LSM trees
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Redundant compactions happen in each replica
• e.g., CockroachDB, ZippyDB, Cassandra, and etc.

Compactions in replicated LSM trees
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Redundant compactions happen in each replica
• e.g., CockroachDB, ZippyDB, Cassandra, and etc.

Compactions in replicated LSM trees
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Compactions in replicated LSM trees
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Redundant compactions can be eliminated

RubbleDB makes it practical to share compaction 
results with NVMe-oF



How to remove redundant compactions?

14

MemTable

SST

SST SST

SST SST

L0

L1

L2

Primary

Server 1

MemTable

SST

SST SST

SST SST

L0

L1

L2

Secondary R-1

Server R

MemTable

SST

SST SST

SST SST

L0

L1

L2

Secondary 1

Server 2



How to remove redundant compactions?

• Only perform compactions in the primary
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How to remove redundant compactions?

• Only perform compactions in the primary
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How to remove redundant compactions?

• Only perform compactions in the primary
• Ship compacted SST files to each secondary
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How to remove redundant compactions?

• Only perform compactions in the primary
• Ship compacted SST files to each secondary
• Delete input files in secondaries
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How to remove redundant compactions?

• Only perform compactions in the primary
• Ship compacted SST files to each secondary
• Delete input files in secondaries
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Challenges of sharing SST files 
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• Heavy network traffic
• Luckily datacenter network is often underutilized[1][2]

Challenges of sharing SST files 
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[1] Alibaba Cluster Trace 2018. 
[2] Building an elastic query engine on disaggregated storage. (NSDI 20)
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• Heavy network traffic
• Luckily datacenter network is often underutilized[1][2]

• CPU involvement on the secondary
• After receiving the data, the secondary writes it to the local disk

Challenges of sharing SST files 

22
[1] Alibaba Cluster Trace 2018. 
[2] Building an elastic query engine on disaggregated storage. (NSDI 20)
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• Non-Volatile Memory Express over Fabric
• Mount a remote disk as a local file system over RDMA or TCP

An attractive opportunity: NVMe-oF
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• Non-Volatile Memory Express over Fabric
• Mount a remote disk as a local file system over RDMA or TCP
• Zero CPU involvement on remote target
• Commodity NICs support NVMe-oF target offloading

An attractive opportunity: NVMe-oF
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The challenge: NVMe-oF bypasses the 
remote filesystem
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The challenge: NVMe-oF bypasses the 
remote filesystem
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RubbleDB’s approach: SST pre-allocation
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RubbleDB’s approach: SST pre-allocation

38

Disk 2

CPUCPU

NVMe-oF

Secondary

Disk 2

Primary

1. Create an SST pool 
before mounting

…

…

…

…

2. Mount secondary’s 
disk by NVMe-oF

R/OR/W
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RubbleDB’s approach: SST pre-allocation
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Primary’ and secondaries’ internal states are actually different

Shared SSTs causes replica inconsistency
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Primary’ and secondaries’ internal states are actually different

Shared SSTs causes replica inconsistency
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Primary’ and secondaries’ internal states are actually different
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Primary’ and secondaries’ internal states are actually different

Shared SSTs causes replica inconsistency
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Goal: MemTables with a same ID should store the same data

Partial order of write requests in RubbleDB

64



Goal: MemTables with a same ID should store the same data

Partial order of write requests in RubbleDB

65

SecondaryPrimary

MemTable 1

A B

MemTable 2

Thread 1 Thread 2

C

1. Thread 1 runs first



Goal: MemTables with a same ID should store the same data

Partial order of write requests in RubbleDB
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Goal: MemTables with a same ID should store the same data

Partial order of write requests in RubbleDB
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Goal: MemTables with a same ID should store the same data

Partial order of write requests in RubbleDB
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Goal: MemTables with a same ID should store the same data

Partial order of write requests in RubbleDB

69

SecondaryPrimary

MemTable 1

A B

MemTable 2

Thread 1 Thread 2

C

MemTable 1

A1

B1

Thread 1 Thread 2

1. Thread 1 runs first 3. Thread 2 runs first

2. Tag each req with 
the MemTable ID A1 B1 C2

Req Buffer

4. Buffer request C2

C2



Goal: MemTables with a same ID should store the same data

Partial order of write requests in RubbleDB
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Goal: MemTables with a same ID should store the same data

Partial order of write requests in RubbleDB
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Goal: MemTables with a same ID should store the same data

Partial order of write requests in RubbleDB
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Goal: MemTables with a same ID should store the same data

Partial order of write requests in RubbleDB
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Goal: MemTables with a same ID should store the same data

Partial order of write requests in RubbleDB
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2. Tag each req with 
the MemTable ID C2

Req Buffer

4. Buffer request C2

SST 1

A, B
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Evaluation

• How much can RubbleDB improve the end-to-end performance?

• What is the trade-off behind the improvement?

• How do different storage types affect RubbleDB?

• How fast can RubbleDB recover from failures?
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In the paper



Evaluation setup

Testbed: CloudLab r6525
• CPU: Two 32-core AMD 7543 at 2.8GHz
• Disk: One 1.6TB NVMe SSD
• NIC: Dual-port Mellanox ConnectX-6 100Gb

Benchmark:
• YCSB load and A-G workloads
• Five Twitter cluster traces

Baseline:
• Replicated RocksDB with compactions in secondaries
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Throughput under different workloads
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Throughput under different workloads
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Up to 1.9x for write-only workload



Throughput under different workloads
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Same performance for read-only 
workload



Throughput under different workloads
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1.0-1.4x under mixed workloads
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fewer write stalls in 
RubbleDB

YCSB Workload A (50% read and 50% update), 30GB DB size, 
and three-way replication
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Cluster-wide CPU, disk, and network stats
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• RubbleDB trades network for CPU and disk
• New network traffic for shipping SST files
• No compaction CPU and read I/O on secondaries 

YCSB load, 30GB DB size, and three-way replication
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Cluster-wide CPU, disk, and network stats
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• RubbleDB trades network for CPU and disk
• New network traffic for shipping SST files
• No compaction CPU and read I/O on secondaries 

66.3% less
144GB less

211GB more

YCSB load, 30GB DB size, and three-way replication



Conclusions

• NVMe-oF is an attractive opportunity for replicated storage 
systems

• RubbleDB trades network for CPU and disk read I/O by shipping 
compactions results to secondaries

• Try RubbleDB at https://github.com/lei-houjyu/RubbleDB
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Thank you!
haoyu.li@columbia.edu

https://github.com/lei-houjyu/RubbleDB


Backup Slides
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Cluster topology

• K replication groups spread on R servers
• Saving compactions in secondaries gives the primary more CPU
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Server 1

Group 1 (P)

Group K (S)

Group 2 (S)

Server 2

Group 1 (S)

Group K (S)

Group 2 (P)

Server R

Group 1 (S)

Group K (P)

Group 2 (S)


