
RubbleDB: CPU-Efficient
Replication with NVMe-oF
Haoyu Li1, Sheng Jiang1, Chen Chen1, Ashwini Raina2, Xingyu Zhu1,

Changxu Luo1, Asaf Cidon1
1Columbia University, 2Princeton University

CPU: the bottleneck in key-value stores

1

MemTable

SST

SST SST

SST SST

L0

L1

L2

*Workload: YCSB 100% insert, 10GB DB size

Compactions in log-structured merge trees (LSM) is CPU expensive

CPU: the bottleneck in key-value stores

2

MemTable

SST

SST SST

SST SST

L0

L1

L2

KV Pairs K

*Workload: YCSB 100% insert, 10GB DB size

Compactions in log-structured merge trees (LSM) is CPU expensive

CPU: the bottleneck in key-value stores

3

MemTable

SST

SST SST

SST SST

L0

L1

L2

KV Pairs K KKK

*Workload: YCSB 100% insert, 10GB DB size

Compactions in log-structured merge trees (LSM) is CPU expensive

K

CPU: the bottleneck in key-value stores

4

MemTable

SST SST

SST SST

SST SST

L0

L1

L2

FlushKV Pairs K KKK

*Workload: YCSB 100% insert, 10GB DB size

Compactions in log-structured merge trees (LSM) is CPU expensive

K

CPU: the bottleneck in key-value stores

5

MemTable

SST SST

SST SST

SST SST

L0

L1

L2

FlushKV Pairs K KKK

*Workload: YCSB 100% insert, 10GB DB size

Compactions in log-structured merge trees (LSM) is CPU expensive

K

CPU: the bottleneck in key-value stores

6

MemTable

SST SST

SST SST

SST SST SST

L0

L1

L2

Flush

Compaction

KV Pairs K KKK

*Workload: YCSB 100% insert, 10GB DB size

Compactions in log-structured merge trees (LSM) is CPU expensive

K

Compactions in log-structured merge trees (LSM) is CPU expensive
• Up to 72% of the total CPU time*!

CPU: the bottleneck in key-value stores

7

MemTable

SST SST

SST SST

SST SST SST

L0

L1

L2

Flush

Compaction

KV Pairs K KKK

*Workload: YCSB 100% insert, 10GB DB size

K

Redundant compactions happen in each replica
• e.g., CockroachDB, ZippyDB, Cassandra, and etc.

Compactions in replicated LSM trees

8

MemTable

SST

SST SST

SST SST

L0

L1

L2

Primary

Server 1

MemTable

SST

SST SST

SST SST

L0

L1

L2

Secondary R-1

Server R

MemTable

SST

SST SST

SST SST

L0

L1

L2

Secondary 1

Server 2

Redundant compactions happen in each replica
• e.g., CockroachDB, ZippyDB, Cassandra, and etc.

Compactions in replicated LSM trees

9

MemTable

SST

SST SST

SST SST

L0

L1

L2

Primary

Server 1

MemTable

SST

SST SST

SST SST

L0

L1

L2

Secondary R-1

Server R

MemTable

SST

SST SST

SST SST

L0

L1

L2

Secondary 1

Server 2

K

KV Pair

Redundant compactions happen in each replica
• e.g., CockroachDB, ZippyDB, Cassandra, and etc.

Compactions in replicated LSM trees

10

MemTable

SST

SST SST

SST SST

L0

L1

L2

Primary

Server 1

MemTable

SST

SST SST

SST SST

L0

L1

L2

Secondary R-1

Server R

MemTable

SST

SST SST

SST SST

L0

L1

L2

Secondary 1

Server 2

K

KV Pair
K

KV Pair
K

KV Pair
K

KV Pair
K

KV Pair

Redundant compactions happen in each replica
• e.g., CockroachDB, ZippyDB, Cassandra, and etc.

Compactions in replicated LSM trees

11

MemTable

SST SST

SST SST

SST SST SST

L0

L1

L2

Flush

Compaction

Primary

Server 1

MemTable

SST SST

SST SST

SST SST SST

L0

L1

L2

Flush

Compaction

Secondary R-1

Server R

MemTable

SST SST

SST SST

SST SST SST

L0

L1

L2

Flush

Compaction

Secondary 1

Server 2

K

KV Pair
K

KV Pair
K

KV Pair
K

KV Pair
K

KV Pair

Compactions in replicated LSM trees

12

MemTable

SST SST

SST SST

SST SST SST

L0

L1

L2

Flush

Server 1

MemTable

SST SST

SST SST

SST SST SST

L0

L1

L2

Flush

Server R

MemTable

SST SST

SST SST

SST SST SST

L0

L1

L2

Flush

Server 2

K

KV Pair

Can we remove redundant compactions?

13

This Talk

Redundant compactions can be eliminated

RubbleDB makes it practical to share compaction
results with NVMe-oF

How to remove redundant compactions?

14

MemTable

SST

SST SST

SST SST

L0

L1

L2

Primary

Server 1

MemTable

SST

SST SST

SST SST

L0

L1

L2

Secondary R-1

Server R

MemTable

SST

SST SST

SST SST

L0

L1

L2

Secondary 1

Server 2

How to remove redundant compactions?

• Only perform compactions in the primary

15

MemTable

SST SST

SST SST

SST SST SST

L0

L1

L2

Flush

Compaction

Primary

Server 1

MemTable

SST

SST SST

SST SST

L0

L1

L2

Secondary R-1

Server R

MemTable

SST

SST SST

SST SST

L0

L1

L2

Secondary 1

Server 2

How to remove redundant compactions?

• Only perform compactions in the primary

16

SST SST

SST SST SST

L0

L1

L2

Primary

Server 1

MemTable

SST

SST SST

SST SST

L0

L1

L2

Secondary R-1

Server R

MemTable

SST

SST SST

SST SST

L0

L1

L2

Secondary 1

Server 2

How to remove redundant compactions?

• Only perform compactions in the primary
• Ship compacted SST files to each secondary

17

SST SST

SST SST SST

L0

L1

L2

Primary

Server 1

MemTable

SST

SST SST

SST SST

L0

L1

L2

Secondary R-1

Server R

MemTable

SST

SST SST

SST SST

L0

L1

L2

Secondary 1

Server 2

SSTSST

SSTSST

SST

SST

SST

SST

How to remove redundant compactions?

• Only perform compactions in the primary
• Ship compacted SST files to each secondary
• Delete input files in secondaries

18

SST SST

SST SST SST

L0

L1

L2

Primary

Server 1

SST

SST SST

L0

L1

L2

Secondary R-1

Server R

SST

SST SST

L0

L1

L2

Secondary 1

Server 2

SSTSST

SSTSST

SST

SST

SST

SST

How to remove redundant compactions?

• Only perform compactions in the primary
• Ship compacted SST files to each secondary
• Delete input files in secondaries

19

SST SST

SST SST SST

L0

L1

L2

Primary

Server 1

SST

SST SST

L0

L1

L2

Secondary R-1

Server R

SST

SST SST

L0

L1

L2

Secondary 1

Server 2

SSTSST

SSTSST

SST

SST

SST

SST

Challenges of sharing SST files

20

Primary

CPU

Disk NIC

CPU

NIC Disk
Secondary

• Heavy network traffic
• Luckily datacenter network is often underutilized[1][2]

Challenges of sharing SST files

21
[1] Alibaba Cluster Trace 2018.
[2] Building an elastic query engine on disaggregated storage. (NSDI 20)

Primary

CPU

Disk NIC

CPU

NIC Disk
…

Secondary

• Heavy network traffic
• Luckily datacenter network is often underutilized[1][2]

• CPU involvement on the secondary
• After receiving the data, the secondary writes it to the local disk

Challenges of sharing SST files

22
[1] Alibaba Cluster Trace 2018.
[2] Building an elastic query engine on disaggregated storage. (NSDI 20)

open()
write()
close()

Primary

CPU

Disk NIC

CPU

NIC Disk
…

Secondary

• Non-Volatile Memory Express over Fabric
• Mount a remote disk as a local file system over RDMA or TCP

An attractive opportunity: NVMe-oF

23

Primary

CPU

Disk 1 NIC

CPU

NIC Disk 2
…

Secondary

Disk 2

• Non-Volatile Memory Express over Fabric
• Mount a remote disk as a local file system over RDMA or TCP
• Zero CPU involvement on remote target
• Commodity NICs support NVMe-oF target offloading

An attractive opportunity: NVMe-oF

24

Primary

CPU

Disk 1 NIC

CPU

NIC Disk 2
…

Secondary

NVMe-oF
offloading

Disk 2

The challenge: NVMe-oF bypasses the
remote filesystem

25

Primary

CPU

Disk 1

Secondary

/mnt/1

NIC

CPU

NIC

/mnt/2

Disk 2

Secondaries cannot see incoming SST files

The challenge: NVMe-oF bypasses the
remote filesystem

26

CPU

Disk 1

/mnt/1

Disk 2

/mnt/2

NIC

CPU

NIC

/mnt/2

Disk 2

Secondaries cannot see incoming SST files

NVMe-oF

Primary Secondary

The challenge: NVMe-oF bypasses the
remote filesystem

27

CPU

Disk 1

/mnt/1

Disk 2

/mnt/2

NIC

CPU

NIC

/mnt/2

Disk 2

$ touch /mnt/2/a.sst

Secondaries cannot see incoming SST files

NVMe-oF

Primary Secondary

The challenge: NVMe-oF bypasses the
remote filesystem

28

CPU

Disk 1

/mnt/1

Disk 2

/mnt/2

NIC

CPU

NIC

/mnt/2

Disk 2

$ touch /mnt/2/a.sst

Secondaries cannot see incoming SST files

NVMe-oF

Primary Secondary

The challenge: NVMe-oF bypasses the
remote filesystem

29

CPU

Disk 1

/mnt/1

Disk 2

/mnt/2

NIC

CPU

NIC

/mnt/2

Disk 2

$ touch /mnt/2/a.sst

Secondaries cannot see incoming SST files

NVMe-oF

Primary Secondary

The challenge: NVMe-oF bypasses the
remote filesystem

30

CPU

Disk 1

/mnt/1

Disk 2

/mnt/2

NIC

CPU

NIC

/mnt/2

Disk 2

$ touch /mnt/2/a.sst

Secondaries cannot see incoming SST files

NVMe-oF

Primary Secondary

The challenge: NVMe-oF bypasses the
remote filesystem

31

CPU

Disk 1

/mnt/1

Disk 2

/mnt/2

NIC

CPU

NIC

/mnt/2

Disk 2

$ touch /mnt/2/a.sst $ ls /mnt/2/a.sst
No such file or directory

Secondaries cannot see incoming SST files

NVMe-oF

Primary Secondary

The challenge: NVMe-oF bypasses the
remote filesystem

32

CPU

Disk 1

/mnt/1

Disk 2

/mnt/2

NIC

CPU

NIC

/mnt/2

Disk 2

$ touch /mnt/2/a.sst $ ls /mnt/2/a.sst
No such file or directory

Secondaries cannot see incoming SST files

$ touch /mnt/2/b.log

and may overwrite them!

NVMe-oF

Primary Secondary

The challenge: NVMe-oF bypasses the
remote filesystem

33

CPU

Disk 1

/mnt/1

Disk 2

/mnt/2

NIC

CPU

NIC

/mnt/2

Disk 2

$ touch /mnt/2/a.sst $ ls /mnt/2/a.sst
No such file or directory

Secondaries cannot see incoming SST files

$ touch /mnt/2/b.log

and may overwrite them!

NVMe-oF

Primary Secondary

RubbleDB’s approach: SST pre-allocation

34

Disk 2

CPU

Secondary

RubbleDB’s approach: SST pre-allocation

35

Disk 2

CPU

Secondary

1. Create an SST pool
before mounting

…

…

RubbleDB’s approach: SST pre-allocation

36

Disk 2

CPUCPU

NVMe-oF

Secondary

Disk 2

Primary

1. Create an SST pool
before mounting

…

…

…

…

2. Mount secondary’s
disk by NVMe-oF

RubbleDB’s approach: SST pre-allocation

37

Disk 2

CPUCPU

NVMe-oF

Secondary

Disk 2

Primary

1. Create an SST pool
before mounting

…

…

…

…

2. Mount secondary’s
disk by NVMe-oF

R/W

RubbleDB’s approach: SST pre-allocation

38

Disk 2

CPUCPU

NVMe-oF

Secondary

Disk 2

Primary

1. Create an SST pool
before mounting

…

…

…

…

2. Mount secondary’s
disk by NVMe-oF

R/OR/W

RubbleDB’s approach: SST pre-allocation

39

Disk 2

CPUCPU

NVMe-oF

Secondary

Disk 2

Primary

1. Create an SST pool
before mounting

…

…

…

…

2. Mount secondary’s
disk by NVMe-oF

3. Manage the SST
file usage in the pool
by a bitmap

R/OR/W

RubbleDB’s approach: SST pre-allocation

40

Disk 2

CPUCPU

NVMe-oF

Secondary

Disk 2

Primary

1. Create an SST pool
before mounting

…

…

…

…

2. Mount secondary’s
disk by NVMe-oF

4. Overwrite an
unused SST from the
pool with direct I/O

3. Manage the SST
file usage in the pool
by a bitmap

R/OR/W

RubbleDB’s approach: SST pre-allocation

41

Disk 2

CPUCPU

NVMe-oF

Secondary

Disk 2

Primary

1. Create an SST pool
before mounting

…

…

…

…

2. Mount secondary’s
disk by NVMe-oF

4. Overwrite an
unused SST from the
pool with direct I/O

3. Manage the SST
file usage in the pool
by a bitmap

R/OR/W

RubbleDB’s approach: SST pre-allocation

42

Disk 2

CPUCPU

NVMe-oF

Secondary

Disk 2

Primary

1. Create an SST pool
before mounting

…

…

…

…

2. Mount secondary’s
disk by NVMe-oF

4. Overwrite an
unused SST from the
pool with direct I/O

3. Manage the SST
file usage in the pool
by a bitmap

R/OR/W

RubbleDB’s approach: SST pre-allocation

43

Disk 2

CPUCPU

NVMe-oF

Secondary

Disk 2

Primary

1. Create an SST pool
before mounting

…

…

…

…

2. Mount secondary’s
disk by NVMe-oF

4. Overwrite an
unused SST from the
pool with direct I/O

3. Manage the SST
file usage in the pool
by a bitmap

5. I shipped file 2

R/OR/W

RubbleDB’s approach: SST pre-allocation

44

Disk 2

CPUCPU

NVMe-oF

Secondary

Disk 2

Primary

1. Create an SST pool
before mounting

…

…

…

…

2. Mount secondary’s
disk by NVMe-oF

4. Overwrite an
unused SST from the
pool with direct I/O

6. Read the incoming
SST with direct I/O

3. Manage the SST
file usage in the pool
by a bitmap

5. I shipped file 2

R/OR/W

RubbleDB’s approach: SST pre-allocation

45

Disk 2

CPUCPU

NVMe-oF

Secondary

Disk 2

Primary

1. Create an SST pool
before mounting

…

…

…

…

2. Mount secondary’s
disk by NVMe-oF

4. Overwrite an
unused SST from the
pool with direct I/O

6. Read the incoming
SST with direct I/O

3. Manage the SST
file usage in the pool
by a bitmap

5. I shipped file 2

R/OR/W

Primary’ and secondaries’ internal states are actually different

Shared SSTs causes replica inconsistency

46

Primary’ and secondaries’ internal states are actually different

Shared SSTs causes replica inconsistency

47

SecondaryPrimary

MemTable 1 MemTable 1

Primary’ and secondaries’ internal states are actually different

Shared SSTs causes replica inconsistency

48

SecondaryPrimary

MemTable 1

A

MemTable 1

A

Primary’ and secondaries’ internal states are actually different

Shared SSTs causes replica inconsistency

49

SecondaryPrimary

MemTable 1

A

Thread 1 Thread 2

MemTable 1

A

Thread 1 Thread 2

Primary’ and secondaries’ internal states are actually different

Shared SSTs causes replica inconsistency

50

SecondaryPrimary

MemTable 1

A

B

Thread 1 Thread 2

C

MemTable 1

A

Thread 1 Thread 2

Primary’ and secondaries’ internal states are actually different

Shared SSTs causes replica inconsistency

51

SecondaryPrimary

MemTable 1

A

B

Thread 1 Thread 2

C

MemTable 1

A

Thread 1 Thread 2

1. Thread 1 runs first

Primary’ and secondaries’ internal states are actually different

Shared SSTs causes replica inconsistency

52

SecondaryPrimary

MemTable 1

A

Thread 1 Thread 2

B

MemTable 1

A

Thread 1 Thread 2

1. Thread 1 runs first C

Primary’ and secondaries’ internal states are actually different

Shared SSTs causes replica inconsistency

53

SecondaryPrimary

MemTable 1

A

MemTable 2

Thread 1 Thread 2

MemTable 1

A

Thread 1 Thread 2

1. Thread 1 runs first

B C

Primary’ and secondaries’ internal states are actually different

Shared SSTs causes replica inconsistency

54

SecondaryPrimary

MemTable 1

A

MemTable 2

Thread 1 Thread 2

MemTable 1

A

B

Thread 1 Thread 2

C1. Thread 1 runs first

B C

Primary’ and secondaries’ internal states are actually different

Shared SSTs causes replica inconsistency

55

SecondaryPrimary

MemTable 1

A

MemTable 2

Thread 1 Thread 2

MemTable 1

A

B

Thread 1 Thread 2

C1. Thread 1 runs first 2. Thread 2 runs first

B C

Primary’ and secondaries’ internal states are actually different

Shared SSTs causes replica inconsistency

56

SecondaryPrimary

MemTable 1

A

MemTable 2

Thread 1 Thread 2

MemTable 1

A

B

Thread 1 Thread 2

C

1. Thread 1 runs first 2. Thread 2 runs first

B C

Primary’ and secondaries’ internal states are actually different

Shared SSTs causes replica inconsistency

57

SecondaryPrimary

MemTable 1

A

MemTable 2

Thread 1 Thread 2

MemTable 1

A

MemTable 2

B

Thread 1 Thread 2

1. Thread 1 runs first 2. Thread 2 runs first

B C C

Primary’ and secondaries’ internal states are actually different

Shared SSTs causes replica inconsistency

58

SecondaryPrimary

MemTable 1

SST 1

A

MemTable 2

A, B

Thread 1 Thread 2

MemTable 1

A

MemTable 2

Thread 1 Thread 2

1. Thread 1 runs first 2. Thread 2 runs first

3. Flush MemTable 1

B C BC

Primary’ and secondaries’ internal states are actually different

Shared SSTs causes replica inconsistency

59

SecondaryPrimary

SST 1

MemTable 2

A, B

Thread 1 Thread 2

MemTable 1

A

MemTable 2

Thread 1 Thread 2

1. Thread 1 runs first 2. Thread 2 runs first

3. Flush MemTable 1

C BC

Primary’ and secondaries’ internal states are actually different

Shared SSTs causes replica inconsistency

60

SecondaryPrimary

SST 1

MemTable 2

A, B

Thread 1 Thread 2

MemTable 1

A

MemTable 2

Thread 1 Thread 2

SST 1

A, B

1. Thread 1 runs first 2. Thread 2 runs first

3. Flush MemTable 1

C BC

SST 1

A, B

Primary’ and secondaries’ internal states are actually different

Shared SSTs causes replica inconsistency

61

SecondaryPrimary

SST 1

MemTable 2

A, B

Thread 1 Thread 2

MemTable 1

A

MemTable 2

Thread 1 Thread 2

SST 1

A, B

1. Thread 1 runs first 2. Thread 2 runs first

3. Flush MemTable 1
4. Apply the
compaction result

C BC

SST 1

A, B

Primary’ and secondaries’ internal states are actually different

Shared SSTs causes replica inconsistency

62

SecondaryPrimary

SST 1

MemTable 2

A, B

Thread 1 Thread 2

MemTable 2

Thread 1 Thread 2

SST 1

A, B

1. Thread 1 runs first 2. Thread 2 runs first

3. Flush MemTable 1
4. Apply the
compaction result

C B

SST 1

A, B

Primary’ and secondaries’ internal states are actually different

Shared SSTs causes replica inconsistency

63

SecondaryPrimary

SST 1

MemTable 2

A, B

Thread 1 Thread 2

MemTable 2

Thread 1 Thread 2

SST 1

A, B

1. Thread 1 runs first 2. Thread 2 runs first

3. Flush MemTable 1
4. Apply the
compaction result

C is lost!

C B

SST 1

A, B

Goal: MemTables with a same ID should store the same data

Partial order of write requests in RubbleDB

64

Goal: MemTables with a same ID should store the same data

Partial order of write requests in RubbleDB

65

SecondaryPrimary

MemTable 1

A B

MemTable 2

Thread 1 Thread 2

C

1. Thread 1 runs first

Goal: MemTables with a same ID should store the same data

Partial order of write requests in RubbleDB

66

SecondaryPrimary

MemTable 1

A B

MemTable 2

Thread 1 Thread 2

C

1. Thread 1 runs first

2. Tag each req with
the MemTable ID A1 B1 C2

Goal: MemTables with a same ID should store the same data

Partial order of write requests in RubbleDB

67

SecondaryPrimary

MemTable 1

A B

MemTable 2

Thread 1 Thread 2

C

MemTable 1

A1

B1

Thread 1 Thread 2

C21. Thread 1 runs first

2. Tag each req with
the MemTable ID A1 B1 C2

Goal: MemTables with a same ID should store the same data

Partial order of write requests in RubbleDB

68

SecondaryPrimary

MemTable 1

A B

MemTable 2

Thread 1 Thread 2

C

MemTable 1

A1

B1

Thread 1 Thread 2

C2

1. Thread 1 runs first 3. Thread 2 runs first

2. Tag each req with
the MemTable ID A1 B1 C2

Tag != MemTable ID

Goal: MemTables with a same ID should store the same data

Partial order of write requests in RubbleDB

69

SecondaryPrimary

MemTable 1

A B

MemTable 2

Thread 1 Thread 2

C

MemTable 1

A1

B1

Thread 1 Thread 2

1. Thread 1 runs first 3. Thread 2 runs first

2. Tag each req with
the MemTable ID A1 B1 C2

Req Buffer

4. Buffer request C2

C2

Goal: MemTables with a same ID should store the same data

Partial order of write requests in RubbleDB

70

SecondaryPrimary

MemTable 1

A B

MemTable 2

Thread 1 Thread 2

C

MemTable 1

A1 B1

Thread 1 Thread 2

1. Thread 1 runs first 3. Thread 2 runs first

2. Tag each req with
the MemTable ID A1 B1 C2

Req Buffer

4. Buffer request C2

C2

Goal: MemTables with a same ID should store the same data

Partial order of write requests in RubbleDB

71

SecondaryPrimary

MemTable 1

A B

MemTable 2

Thread 1 Thread 2

C

MemTable 1

A1

MemTable 2

Thread 1 Thread 2

1. Thread 1 runs first 3. Thread 2 runs first

5. Poll the buffer
when switching
MemTable

2. Tag each req with
the MemTable ID A1 B1 C2

Req Buffer

4. Buffer request C2

B1

C2

Goal: MemTables with a same ID should store the same data

Partial order of write requests in RubbleDB

72

SecondaryPrimary

MemTable 1

A B

MemTable 2

Thread 1 Thread 2

C

MemTable 1

A1

MemTable 2

Thread 1 Thread 2

1. Thread 1 runs first 3. Thread 2 runs first

5. Poll the buffer
when switching
MemTable

2. Tag each req with
the MemTable ID A1 B1 C2

Req Buffer

4. Buffer request C2

B1 C2

Goal: MemTables with a same ID should store the same data

Partial order of write requests in RubbleDB

73

SecondaryPrimary

SST 1

MemTable 2

A, B

Thread 1 Thread 2

C

MemTable 1

A1

MemTable 2

Thread 1 Thread 2

SST 1

A, B

1. Thread 1 runs first 3. Thread 2 runs first

6. Ship the SST file

5. Poll the buffer
when switching
MemTable

2. Tag each req with
the MemTable ID C2

Req Buffer

4. Buffer request C2

B1 C2

SST 1

A, B

Goal: MemTables with a same ID should store the same data

Partial order of write requests in RubbleDB

74

SecondaryPrimary

SST 1

MemTable 2

A, B

Thread 1 Thread 2

C

MemTable 2

Thread 1 Thread 2

SST 1

A, B

1. Thread 1 runs first 3. Thread 2 runs first

6. Ship the SST file

5. Poll the buffer
when switching
MemTable

2. Tag each req with
the MemTable ID C2

Req Buffer

4. Buffer request C2

SST 1

A, B

C2

Evaluation

• How much can RubbleDB improve the end-to-end performance?

• What is the trade-off behind the improvement?

• How do different storage types affect RubbleDB?

• How fast can RubbleDB recover from failures?

75

In the paper

Evaluation setup

Testbed: CloudLab r6525
• CPU: Two 32-core AMD 7543 at 2.8GHz
• Disk: One 1.6TB NVMe SSD
• NIC: Dual-port Mellanox ConnectX-6 100Gb

Benchmark:
• YCSB load and A-G workloads
• Five Twitter cluster traces

Baseline:
• Replicated RocksDB with compactions in secondaries

76

Throughput under different workloads

77

Throughput under different workloads

78

Up to 1.9x for write-only workload

Throughput under different workloads

79

Same performance for read-only
workload

Throughput under different workloads

80

1.0-1.4x under mixed workloads

40 45 50 55 60 65 70 75 80
Request Rate (Ko /s)

0
20
40
60
80

100
120
140

99
%
 L
at
en
c%
 (s
)

Baseline U date
RubbleDB U date
Baseline Read
RubbleDB Read

Tail latency comparison

81

Fewer compactions lead to
fewer write stalls in
RubbleDB

YCSB Workload A (50% read and 50% update), 30GB DB size,
and three-way replication

40 45 50 55 60 65 70 75 80
Request Rate (Ko /s)

0
20
40
60
80

100
120
140

99
%
 L
at
en
c%
 (s
)

Baseline U date
RubbleDB U date
Baseline Read
RubbleDB Read

Tail latency comparison

82

Up to 92.1% lower update tail latency

Up to 93.4% lower read tail latency

Fewer compactions lead to
fewer write stalls in
RubbleDB

YCSB Workload A (50% read and 50% update), 30GB DB size,
and three-way replication

40 45 50 55 60 65 70 75 80
Request Rate (Ko /s)

0
20
40
60
80

100
120
140

99
%
 L
at
en
c%
 (s
)

Baseline U date
RubbleDB U date
Baseline Read
RubbleDB Read

Tail latency comparison

83

Up to 92.1% lower update tail latency

Up to 93.4% lower read tail latency

Fewer compactions lead to
fewer write stalls in
RubbleDB

YCSB Workload A (50% read and 50% update), 30GB DB size,
and three-way replication

40 45 50 55 60 65 70 75 80
Request Rate (Ko /s)

0
20
40
60
80

100
120
140

99
%
 L
at
en
c%
 (s
)

Baseline U date
RubbleDB U date
Baseline Read
RubbleDB Read

Tail latency comparison

84

Fewer compactions lead to
fewer write stalls in
RubbleDB

YCSB Workload A (50% read and 50% update), 30GB DB size,
and three-way replication

�� � � ��
��������������������

�
	

�
�

�
�

��
�
��
��

��
��

���
�

Zoom in

40 45 50 55 60 65 70 75 80
Request Rate (Ko /s)

0
20
40
60
80

100
120
140

99
%
 L
at
en
c%
 (s
)

Baseline U date
RubbleDB U date
Baseline Read
RubbleDB Read

Tail latency comparison

85

Fewer compactions lead to
fewer write stalls in
RubbleDB

YCSB Workload A (50% read and 50% update), 30GB DB size,
and three-way replication

�� � � ��
��������������������

�
	

�
�

�
�

��
�
��
��

��
��

���
�

Zoom in

14.2% degradation

Cluster-wide CPU, disk, and network stats

86

• RubbleDB trades network for CPU and disk
• New network traffic for shipping SST files
• No compaction CPU and read I/O on secondaries

YCSB load, 30GB DB size, and three-way replication

Cluster-wide CPU, disk, and network stats

87

• RubbleDB trades network for CPU and disk
• New network traffic for shipping SST files
• No compaction CPU and read I/O on secondaries

66.3% less

YCSB load, 30GB DB size, and three-way replication

Cluster-wide CPU, disk, and network stats

88

• RubbleDB trades network for CPU and disk
• New network traffic for shipping SST files
• No compaction CPU and read I/O on secondaries

66.3% less
144GB less

YCSB load, 30GB DB size, and three-way replication

Cluster-wide CPU, disk, and network stats

89

• RubbleDB trades network for CPU and disk
• New network traffic for shipping SST files
• No compaction CPU and read I/O on secondaries

66.3% less
144GB less

211GB more

YCSB load, 30GB DB size, and three-way replication

Conclusions

• NVMe-oF is an attractive opportunity for replicated storage
systems

• RubbleDB trades network for CPU and disk read I/O by shipping
compactions results to secondaries

• Try RubbleDB at https://github.com/lei-houjyu/RubbleDB

90

Thank you!
haoyu.li@columbia.edu

https://github.com/lei-houjyu/RubbleDB

Backup Slides

91

Cluster topology

• K replication groups spread on R servers
• Saving compactions in secondaries gives the primary more CPU

92

Server 1

Group 1 (P)

Group K (S)

Group 2 (S)

Server 2

Group 1 (S)

Group K (S)

Group 2 (P)

Server R

Group 1 (S)

Group K (P)

Group 2 (S)

