RubbleDB: CPU-Efficient
Replication with NVMe-oF

Haoyu Lit, Sheng Jiang?, Chen Chen?, Ashwini Raina?, Xingyu Zhu?,
Changxu Luo?, Asaf Cidon?

IColumbia University, “Princeton University

CPU: the bottleneck in key-value stores

Compactions in log-structured merge trees (LSM) is CPU expensive

!
z
E

@ COLUMBIA UNIVERSITY *Workload: YCSB 100% insert, 10GB DB size
IN THE CITY OF NEW YORK

L1 S

CPU: the bottleneck in key-value stores

Compactions in log-structured merge trees (LSM) is CPU expensive

ears[K] — | |

!
z
:

@ COLUMBIA UNIVERSITY *Workload: YCSB 100% insert, 10GB DB size
IN THE CITY OF NEW YORK

L1 S

CPU: the bottleneck in key-value stores

Compactions in log-structured merge trees (LSM) is CPU expensive

wrooff] — [EIRIEIH

L
3
:

@ COLUMBIA UNIVERSITY *Workload: YCSB 100% insert, 10GB DB size
IN THE CITY OF NEW YORK

L1 S

CPU: the bottleneck in key-value stores

Compactions in log-structured merge trees (LSM) is CPU expensive

Flush

KVPairs —_ ‘K‘K‘K

LO SST SST

4
:

@ COLUMBIA UNIVERSITY *Workload: YCSB 100% insert, 10GB DB size
IN THE CITY OF NEW YORK

CPU: the bottleneck in key-value stores

Compactions in log-structured merge trees (LSM) is CPU expensive

Flush

KVPairs —_ ‘K‘K‘K

:

@ COLUMBIA UNIVERSITY *Workload: YCSB 100% insert, 10GB DB size
IN THE CITY OF NEW YORK

CPU: the bottleneck in key-value stores

Compactions in log-structured merge trees (LSM) is CPU expensive

Flush

KVPairs —_ ‘K‘K‘K

LO

:

@ COLUMBIA UNIVERSITY *Workload: YCSB 100% insert, 10GB DB size
IN THE CITY OF NEW YORK

CPU: the bottleneck in key-value stores

Compactions in log-structured merge trees (LSM) is CPU expensive
 Up to 72% of the total CPU time™!

KVPairs —_ ‘K‘K‘K

LO

i

Flush

L2

@ COLUMBIA UNIVERSITY *Workload: YCSB 100% insert, 10GB DB size
IN THE CITY OF NEW YORK

Compactions in replicated LSM trees

Redundant compactions happen in each replica
* e.g.,CockroachDB, ZippyDB, Cassandra, and etc.

Server 1 Server 2 Server R
LO SST LO SST LO SST

Primary Secondary 1 Secondary R-1

Compactions in replicated LSM trees

Redundant compactions happen in each replica
* e.g.,CockroachDB, ZippyDB, Cassandra, and etc.

KV Pair

1 Server 1 Server 2 Server R

[1 [1 [1

LO SST LO SST LO SST

:
:

Primary

:
:

Secondary 1

:
:

Secondary R-1

Compactions in replicated LSM trees

Redundant compactions happen in each replica
* e.g.,CockroachDB, ZippyDB, Cassandra, and etc.

KV Pair KV Pair KV Pair
1 Server 1 1 Server 2 1 Server R
| vemrable | | emmasle |

LO SST LO SST LO SST

Primary Secondary 1 Secondary R-1

10

Compactions in replicated LSM trees

Redundant compactions happen in each replica
* e.g.,CockroachDB, ZippyDB, Cassandra, and etc.

KV Pair KV Pair KV Pair

1 Server 1 1 Server 2

LO LO

Secondary 1 Secondary R-1

11

Compactions in replicated LSM trees

Redundant compactions happen in each replica
* e.g.,CockroachDB, ZippyDB, Cassandra, and etc.

Can we remove redundant compactions?

Primary Secondary 1 Secondary R-1

@2 COLUMBIA UNIVERSITY 5
IN THE CITY OF NEW YORK

This Talk
Redundant compactions can be eliminated

RubbleDB makes it practical to share compaction
results with NVMe-oF

How to remove redundant compactions?

Server 1

[1

LO SST

:
:

Primary

&2 COLUMBIA UNIVERSITY

IN THE CITY OF NEW YORK

Server 2

[1

LO SST

:
:

Secondary 1

Server R

[1

LO SST

:
:

Secondary R-1

14

How to remove redundant compactions?

* Only perform compactions in the primary

Server 1 Server 2 Server R
| emmasle | | vemrable |
LO SST LO SST

Secondary 1 Secondary R-1

15

How to remove redundant compactions?

* Only perform compactions in the primary

Server 1 Server 2 Server R

Secondary 1 Secondary R-1

16

How to remove redundant compactions?

* Only perform compactions in the primary
* Ship compacted SST files to each secondary

Server 1 Server 2 Server R
| emmasle | | vemrable |

Secondary 1 Secondary R-1

17

How to remove redundant compactions?

* Only perform compactions in the primary
* Ship compacted SST files to each secondary

* Delete input files in secondaries

Server 1

LO

L1

L2

SST

Server 2

SST

SST

Secondary 1

SST

Server R

LO SST SST
L1

L2 SST SST SST

Secondary R-1

18

How to remove redundant compactions?

* Only perform compactions in the primary
* Ship compacted SST files to each secondary
* Delete input files in secondaries

Server 1 Server 2 Server R

LO SST SST LO SST SST

L1 L1

L2 SST SST SST L2 SST SST SST
Primary Secondary 1 Secondary R-1

19

Challenges of sharing SST files

() ()
| CPU | | CPU |

| Disk | | NIC | { NIC] | Disk |

Primary Secondary

Challenges of sharing SST files

* Heavy network traffic
 Luckily datacenter network is often underutilizedIi2!

[Disk) [NIC) { NIC)

Primary Secondary

| Disk |

Challenges of sharing SST files

* Heavy network traffic
 Luckily datacenter network is often underutilizedIi2!

* CPU involvement on the secondary
 After receiving the data, the secondary writes it to the local disk

| cpU | { CPU | open

write()
[Disk) [NIC) { NIC)

Primary Secondary

close()

[Dék]

An attractive opportunity: NVMe-oF

* Non-Volatile Memory Express over Fabric
* Mount a remote disk as a local file system over RDMA or TCP

llllllllllll

[Disk1] {pisk2 —{ NIC]

IIIIIIIIIIIIII

{ NIC |

{ CPU |

[Dis'kZ]

Secondary

An attractive opportunity: NVMe-oF

* Non-Volatile Memory Express over Fabric
* Mount a remote disk as a local file system over RDMA or TCP

» Zero CPU involvement on remote target
 Commodity NICs support NVMe-oF target offloading

| cpU | { CPU |

(Disk1] pisk2 —{ NIC } { NIC Disk 2

v

IIIIIIIIIIIII

Primary Secondary

The challenge: NVMe-oF bypasses the
remote filesystem

Secondaries cannot see incoming SST files

| cpU | — CPU |

[/mnt/1] [/mnt/2]

| |
[Disk 1] | NIC] | NIC | [Disk 2 |

Primary Secondary

The challenge: NVMe-oF bypasses the
remote filesystem

Secondaries cannot see incoming SST files

| CIIJU | — CPU |
[/mrl1t/1] [/mrl\t/2] [/mr|1t/2]
(o) £ (NI (I} (o)

Primary Secondary

The challenge: NVMe-oF bypasses the
remote filesystem

Secondaries cannot see incoming SST files

S touch /mnt/2/a.sst

{ CPU | — CPU |
|
[/mrl1t/1] [/mrl\t/2] [/mr|1t/2]
(o) £ (NI (I} (o)

Primary Secondary

The challenge: NVMe-oF bypasses the
remote filesystem

Secondaries cannot see incoming SST files

S touch /mnt/2/a.sst

{ CPU | — CPU |
|
[/mrl1t/1] [/mnt/2] [/mr|1t/2]
(o) £ (NI (o)

Primary Secondary

The challenge: NVMe-oF bypasses the
remote filesystem

Secondaries cannot see incoming SST files

S touch /mnt/2/a.sst

{ CPU | — CPU |
I
[/mrl1t/1] [/mnt/2] [/mr|1t/2]
[Disk 1] 02:—>[NIC | Teo { NIC | { o2 |

Primary Secondary

The challenge: NVMe-oF bypasses the
remote filesystem

Secondaries cannot see incoming SST files

S touch /mnt/2/a.sst

{ CPU | — CPU |
I
[/mrl1t/1] [/mnt/2] ’P[/mr|1t/2]
[Disk 1] 02:—>[NIC | Teo { NIC | { o2 |

Primary Secondary

The challenge: NVMe-oF bypasses the
remote filesystem

Secondaries cannot see incoming SST files

S touch /mnt/2/a.sst Sls /mnt/2/a.sst

No such file or directory
{ CIIJU } — CPU |
[/mrl1t/1] [/mnt/2] ’P[/mr|1t/2]
(pisk1]) o2 i NIC) e NIC) { o2 |

Primary Secondary

The challenge: NVMe-oF bypasses the
remote filesystem

Secondaries cannot see incoming SST files and may overwrite them!

S touch /mnt/2/a.sst S Is /mnt/2/a.sst S touch /mnt/2/b.log =
No such file or W —
{ CPU | —{ cpU |
|
[/mnt/l] [/mnt/2] ’P[/mnt/2]
| |

NVMe-oF

(o) o (e (e (o)

Primary Secondary

The challenge: NVMe-oF bypasses the
remote filesystem

Secondaries cannot see incoming SST files and may overwrite them!

S touch /mnt/2/a.sst ills /mEt{.Iz/a-SSJ. t S touch /mnt/2/b.log
o such file or directory —
{ CPU | - — cpu |
|
[/mnt/l] [/mnt/2] ’P[/mnt/2]l_gﬁ
| |

NVMe-oF

(Disk1) {prT12 i—~{ NIC] —{NIC] - D2 |

Primary Secondary

RubbleDB’s approach: SST pre-allocation

Secondary

&2 COLUMBIA UNIVERSITY

IN THE CITY OF NEW YORK

34

RubbleDB’s approach: SST pre-allocation

| cpU

Secondary

1. Create an SST pool
before mounting

RubbleDB’s approach: SST pre-allocation

2. Mount secondary’s
disk by NVMe-oF

1. Create an SST pool
before mounting

— =

———

NVMe-oF

Primary Secondary

&2 COLUMBIA UNIVERSITY y

IN THE CITY OF NEW YORK

RubbleDB’s approach: SST pre-allocation

2. Mount secondary’s
disk by NVMe-oF

1. Create an SST pool
before mounting

— =

———

EELEE |[rw

NVMe-oF

Primary Secondary

&2 COLUMBIA UNIVERSITY .

IN THE CITY OF NEW YORK

RubbleDB’s approach: SST pre-allocation

2. Mount secondary’s
disk by NVMe-oF

1. Create an SST pool
before mounting

— =

———

228208 WUEE BB .- B

NVMe-oF

Primary Secondary

&2 COLUMBIA UNIVERSITY .

IN THE CITY OF NEW YORK

RubbleDB’s approach: SST pre-allocation

2. Mount secondary’s [
disk by NVMe-oF

— =

J

3. Manage the SST [

file usage in the pool

by a bitmap
e e

* .

| | cpU
|
Jor o J
|
NVMe-oF Disk 2
U J
Secondary

1. Create an SST pool
before mounting

RubbleDB’s approach: SST pre-allocation

2. Mount secondary’s [CPU]

disk by NVMe-oF

— =

3. Manage the SST [

file usage in the pool
by a bitmap
e e

_
4. Overwrite an

unused SST from the
pool with direct I/0

* .

J

CPU
m
|

Disk 2
J
Secondary

1. Create an SST pool
before mounting

RubbleDB’s approach: SST pre-allocation

2. Mount secondary’s [CPU]

disk by NVMe-oF

— =

3. Manage the SST [

file usage in the pool
by a bitmap
e e

_
4. Overwrite an

unused SST from the
pool with direct I/0

* .

J

CPU
m
|

Disk 2
J
Secondary

1. Create an SST pool
before mounting

e

RubbleDB’s approach: SST pre-allocation

2. Mount secondary’s [CPU]

disk by NVMe-oF

— =

3. Manage the SST [

file usage in the pool
by a bitmap
e e

_
4. Overwrite an

unused SST from the
pool with direct I/0

* .

J

CPU
m
|

Disk 2
J
Secondary

1. Create an SST pool
before mounting

e

RubbleDB’s approach: SST pre-allocation

2. Mount secondary’s [CPU] [

disk by NVMe-oF

— =

CPU

J

file usage in the pool

3. Manage the SST
R/W
by a bitmap
e e

- —
4. Overwrite an

unused SST from the
pool with direct I/0

J

Disk 2

* .

Primary —

5. I shipped file 2

Secondary

1. Create an SST pool
before mounting

e

RubbleDB’s approach: SST pre-allocation

2. Mount secondary’s [P] [] 1. Create an SST pool
disk by NVMe-oF C U CPU before mounting
1] [—
3. Manage the SST
file usage in the pool R/W
by a bitmap
e e
TR— — R
: . % . 6. Read the incoming
: DISk 2 : NVMe-oF DISk 2 SST with direct 1/0
- — . .
4. Overwrite an : : >
unused SST from the
pool with direct /0 | %, oL e o J
Primary — Secondary

5. I shipped file 2

RubbleDB’s approach: SST pre-allocation

2. Mount secondary’s [CPU]

disk by NVMe-oF

CPU] 1. Create an SST pool

before mounting

ﬁ

- -
3. Manage the SST

file usage in the pool [

by a bitmap

N I
mh) s
] 6. Read the incoming
3 Disk 2 SST with direct I/O
_ E

4. Overwrite an
unused SST from the

pool with direct I/O

mm

Secondary

5. I shipped file 2

Shared SSTs causes replica inconsistency

Primary’ and secondaries’ internal states are actually different

Shared SSTs causes replica inconsistency

Primary’ and secondaries’ internal states are actually different

MemTable 1 MemTable 1

Primary Secondary

Shared SSTs causes replica inconsistency

Primary’ and secondaries’ internal states are actually different

MemTable 1 MemTable 1

Primary Secondary

Shared SSTs causes replica inconsistency

Primary’ and secondaries’ internal states are actually different
Thread 1 Thread 2 Thread 1 Thread 2

MemTable 1 MemTable 1

Primary Secondary

Shared SSTs causes replica inconsistency

Primary’ and secondaries’ internal states are actually different
Thread 1 Thread 2 Thread 1 Thread 2

L L
L1 L1

MemTable 1 MemTable 1

Primary Secondary

Shared SSTs causes replica inconsistency

Primary’ and secondaries’ internal states are actually different

Thread1 Thread 2 Thread1 Thread 2
1. Thread 1 runs first D D
— -
MemTable 1 MemTable 1

Primary Secondary

Shared SSTs causes replica inconsistency

Primary’ and secondaries’ internal states are actually different
Thread 1 Thread 2 Thread 1 Thread 2

1. Thread 1 runs first D

i

MemTable 1 MemTable 1

Primary Secondary

Shared SSTs causes replica inconsistency

Primary’ and secondaries’ internal states are actually different
Thread 1 Thread 2 Thread 1 Thread 2

1. Thread 1 runs first

i

MemTable 1 MemTable 2 MemTable 1

Primary Secondary

Shared SSTs causes replica inconsistency

Primary’ and secondaries’ internal states are actually different
Thread 1 Thread 2 Thread 1 Thread 2

1. Thread 1 runs first D D

i

MemTable 1 MemTable 2 MemTable 1

Primary Secondary

Shared SSTs causes replica inconsistency

Primary’ and secondaries’ internal states are actually different
Thread 1 Thread 2 Thread 1 Thread 2

1. Thread 1 runs first D D 2. Thread 2 runs first

e e

MemTable 1 MemTable 2 MemTable 1

Primary Secondary

Shared SSTs causes replica inconsistency

Primary’ and secondaries’ internal states are actually different
Thread 1 Thread 2 Thread 1 Thread 2

1. Thread 1 runs first D 2. Thread 2 runs first

e e

HEpSEeREE

MemTable 1 MemTable 2 MemTable 1

Primary Secondary

Shared SSTs causes replica inconsistency

Primary’ and secondaries’ internal states are actually different
Thread 1 Thread 2 Thread 1 Thread 2

1. Thread 1 runs first 2. Thread 2 runs first

— = b

(01 CfF O C1

MemTable 1 MemTable 2 MemTable 1 MemTable 2

Primary Secondary

Shared SSTs causes replica inconsistency

Primary’ and secondaries’ internal states are actually different
Thread 1 Thread 2 Thread 1 Thread 2

1. Thread 1 runs first 2. Thread 2 runs first

— = b

L O EE

MemTable 1 MemTable 2 MemTable 1 MemTable 2

— ‘

3. Flush MemTable 1 SST1

Primary Secondary

Shared SSTs causes replica inconsistency

Primary’ and secondaries’ internal states are actually different
Thread 1 Thread 2 Thread 1 Thread 2

1. Thread 1 runs first 2. Thread 2 runs first

e e

HEEREEEEN

MemTable 2 MemTable 1 MemTable 2

3. Flush MemTable 1 SST1

Primary Secondary

Shared SSTs causes replica inconsistency

Primary’ and secondaries’ internal states are actually different

Thread1 Thread 2 Thread1 Thread 2
1. Thread 1 runs first 2. Thread 2 runs first
— - b
MemTable 2 MemTable 1 MemTable 2
3. Flush MemTable 1 SST1 SST1

Primary Secondary

Shared SSTs causes replica inconsistency

Primary’and secondaries’ internal states are actually different

Thread1 Thread 2

Thread1 Thread 2

HEEREEEEN

|
|
|
|
|
|
|
MemTable 2 : MemTable1 MemTable 2
|
|
|
|
|

SST1

Primary Secondary
@2 COLUMBIA UNIVERSITY »

IN THE CITY OF NEW YORK

Shared SSTs causes replica inconsistency

Primary’and secondaries’ internal states are actually different

Thread1 Thread 2

Thread1 Thread 2

[1] [1]

|
|
|
|
|
|
|
MemTable 2 : MemTable 2
|
|
|
|
|

SST1

Primary Secondary
@2 COLUMBIA UNIVERSITY .

IN THE CITY OF NEW YORK

Shared SSTs causes replica inconsistency

Primary’and secondaries’ internal states are actually different

Thread1 Thread 2

Thread1 Thread 2

[1] [1]

|
|
|
|
|
l
|
I A Cis lost!
MemTable 2 I MemTable 2
|
|
|
|
|

SST1

Primary Secondary
@2 COLUMBIA UNIVERSITY -

IN THE CITY OF NEW YORK

Partial order of write requests in RubbleDB

Goal: MemTables with a same ID should store the same data

Partial order of write requests in RubbleDB

Goal: MemTables with a same ID should store the same data
Thread 1 Thread 2

1. Thread 1 runs first

i

MemTable 1 MemTable

Primary Secondary

Partial order of write requests in RubbleDB

Goal: MemTables with a same ID should store the same data
Thread 1 Thread 2

1. Thread 1 runs first

i

2. Tag each req with
the MemTable ID ‘ 1

] [L]

—_—

MemTable 1 MemTable

Primary Secondary

Partial order of write requests in RubbleDB

Goal: MemTables with a same ID should store the same data
Thread 1 Thread 2 Thread 1 Thread 2

1. Thread 1 runs first D

2. Tag each req with
the MemTable ID ‘ 1

-]
] LI [

—_—

MemTable 1 MemTable MemTable 1

Primary Secondary

Partial order of write requests in RubbleDB

Goal: MemTables with a same ID should store the same data

Thread 1 Thread 2 Thread 1 Thread 2
1. Thread 1 runs first 3. Thread 2 runs first
\ /
2. Tag each req with I= MemTable ID
the MemTable ID ‘ 1| 1 ‘ ‘ 1 r<

MemTable 1 MemTable MemTable 1

Primary Secondary

Partial order of write requests in RubbleDB

Goal: MemTables with a same ID should store the same data

Thread 1 Thread 2 Thread 1 Thread 2
1. Thread 1 runs first 3. Thread 2 runs first
T /
2. Tag each req with
the MemTable ID ‘ 1] 1 ‘ ‘ 1 ‘
MemTablel MemTable MemTable 1 4. Buffer request C;

N
Req Buffer

Primary Secondary

Partial order of write requests in RubbleDB

Goal: MemTables with a same ID should store the same data

Thread 1 Thread 2 Thread 1 Thread 2
1. Thread 1 runs first 3. Thread 2 runs first
T /
2. Tag each req with
the MemTable ID ‘ 1] 1 ‘ ‘ 11 1 ‘
MemTablel MemTable MemTable 1 4. Buffer request C;

N
Req Buffer

Primary Secondary

Partial order of write requests in RubbleDB

Goal: MemTables with a same ID should store the same data

- O O Y Y I

|
|
|
|
|
|
|
MemTable1 MemTable 2 : MemTable1 MemTable
|
|
|
|
|

‘ 2 ‘ \
Req Buffer

Primary Secondary
@2 COLUMBIA UNIVERSITY .

IN THE CITY OF NEW YORK

Thread1 Thread 2 Thread1 Thread 2

Partial order of write requests in RubbleDB

Goal: MemTables with a same ID should store the same data

Thread1 Thread 2
wewenmoen |1 [1 [

| Thread 1 Thread 2
|
|
|
]
|
|
MemTable1 MemTable 2 : MemTable1 MemTable
|
|
|
|
|

Req Buffer

Primary Secondary
@2 COLUMBIA UNIVERSITY .

IN THE CITY OF NEW YORK

Partial order of write requests in RubbleDB

Goal: MemTables with a same ID should store the same data

‘1 1‘ ‘2

MemTable 1 MemTable

\
SST1 Req Buffer

Primary Secondary
@2 COLUMBIA UNIVERSITY .

IN THE CITY OF NEW YORK

Thread1 Thread 2

|

|

e '
|

_ '
I

EEg

|

|

|

|

|

|

|

Thread1 Thread 2

MemTable 2

SST1

Partial order of write requests in RubbleDB

Goal: MemTables with a same ID should store the same data

Thread1 Thread 2 I
|
|
|
_ '
| BN
2l |
MemTable 2 : MemTable_
|
|
|
|
|

Thread1 Thread 2

[
SST1 Req Buffer

Primary Secondary
@2 COLUMBIA UNIVERSITY)

IN THE CITY OF NEW YORK

SST1

Evaluation

 How much can RubbleDB improve the end-to-end performance?

* What is the trade-off behind the improvement?

Evaluation setup

Testbed: CloudLab r6525
e CPU: Two 32-core AMD 7543 at 2.8GHz
e Disk: One 1.6TB NVMe SSD
* NIC: Dual-port Mellanox ConnectX-6 100Gb

Benchmark:
* YCSB load and A-G workloads
* Five Twitter cluster traces

Baseline:
* Replicated RocksDB with compactions in secondaries

Throughput under different workloads

=
N
o
/S)
N
N
i

1.0x Bl Baseline |
W RubbleDB

=
o
o

1.2X

Throughput per Core (Kop/s)

Q
5
o
e
(@)
>
o
0- lE 0-
lorad A B C D E F G C2 Cl5 C19 (C27 C(C31
YCSB Workload Twitter Cluster Trace

&2 COLUMBIA UNIVERSITY .

IN THE CITY OF NEW YORK

Throughput under different workloads

=
N
o
/S)
N
N
i

1.0x B Baseline
I RubbleDB

1001 1.2x
80+ I

Up to 1.9x for write-only workload

Throughput per Core (Kop/s)
(@)
o

0-]
lorad A B C D E F G C2 Cl5 C19 (C27 C(C31
YCSB Workload Twitter Cluster Trace

&2 COLUMBIA UNIVERSITY .

IN THE CITY OF NEW YORK

Throughput under different workloads

=
N
o
/S)
N
N
i

Bl Baseline

100 1.2x I RubbleDB

Same performance for read-only
workload

Throughput per Core (Kop/s)

0-]
lorad A B C D E F G C2 Cl5 C19 (C27 C(C31
YCSB Workload Twitter Cluster Trace

&2 COLUMBIA UNIVERSITY .

IN THE CITY OF NEW YORK

Throughput under different workloads

120 @ 225 |
o | B Baseline
100 1.2x Q 200 W RubbleDB

Throughput per Core (Kop/s)

O"cad A B C D E F G C2 C15 C19 C27 C31
YCSB Workload Twitter Cluster Trace

&2 COLUMBIA UNIVERSITY “

IN THE CITY OF NEW YORK

Tail latency comparison

140+
120+
100+
80
60
40+
20

99% Latency (s)

Fewer compactions lead to

fewer write stalls Iin
RubbleDB

—+— Baseline Update
RubbleDB Update

—+— Baseline Read

—&— RubbleDB Read

40 45 50 55 60 65 70 75 80
Request Rate (Kop/s)

YCSB Workload A (50% read and 50% update), 30GB DB size,
and three-way replication

81

Tail latency comparison

140+
120+
100+
80
60
40+
20

99% Latency (s)

—+— Baseline Update
RubbleDB Update

—+— Baseline Read

—&— RubbleDB Read

Fewer compactions lead to

fewer write stalls Iin
RubbleDB

Up to 92.1% lower update tail latency

| Up to 93.4% lower read tail latency
|

40 45 50 55 60 65 70 75 80
Request Rate (Kop/s)

YCSB Workload A (50% read and 50% update), 30GB DB size,
and three-way replication

82

Tail latency comparison

140+
120+
100+
80
60
40+
20

- *—‘—‘—‘—‘—H—w;——

99% Latency (s)

—+— Baseline Update
RubbleDB Update

—+— Baseline Read

—&— RubbleDB Read

SR B

Fewer compactions lead to
fewer write stalls in

RubbleDB
Up to 92.1% lower update tail latency
7
Up to 93.4% lower read tail latency

42

40 45 50 55 60 65 70 75 80
Request Rate (Kop/s)

YCSB Workload A (50% read and 50% update), 30GB DB size,
and three-way replication

83

Tail latency comparison

140

_.120;

v

= 100-

c

5 80

© 601

L 0.

5 40
20-
0

7/
—+— Baseline Update

RubbleDB Update 0

—+— Baseline Read m
—— RubbleDB Read ;5
U g
=4

g
© 37

—
X 21

(@)}
(@)} 1

Zoom in

40 45 50 55 60 65 70 75 80

Request Rate (Kop/s)

40

45 50 55
Request Rate (Kop/s)

YCSB Workload A (50% read and 50% update), 30GB DB size,

and three-way replication

60

84

Tail latency comparison

Zoom in

1401 —— Baseline Update 7
| RubbleDB Update 6

m 120 —+— Baseline Read -
;100' —— RubbleDB Read ;5

s @)
N 4_

g 80 <
T 60 © 3
X] o "
g 40 g 2
0 {| 4=t 0-

14.2% degradation

40 45 50 55 60 65 70 75 80
Request Rate (Kop/s)

40 45 50 55 60
Request Rate (Kop/s)

YCSB Workload A (50% read and 50% update), 30GB DB size,

and three-way replication

85

Cluster-wide CPU, disk, and network stats

 RubbleDB trades network for CPU and disk

* New network traffic for shipping SST files
 No compaction CPU and read |I/O on secondaries

Cluster-wide CPU, disk, and network stats

 RubbleDB trades network for CPU and disk

* New network traffic for shipping SST files
 No compaction CPU and read |I/O on secondaries

6000
EEE Compaction
50001 W Request
< 4000
()
£ 3000/
= 66.3
& 2000/
O
10001

0 Baseline RubbleDB
CPU

GQ COLUMBIA UNIVERSITY YCSB load, 30GB DB size, and three-way replication 87
IN THE CITY OF NEW YORK

Cluster-wide CPU, disk, and network stats

 RubbleDB trades network for CPU and disk

* New network traffic for shipping SST files
 No compaction CPU and read |I/O on secondaries

6000
EEE Compaction
50001 W Request
© 4000
£
= 3000+

} 66.5

0 Baseline RubbleDB 0 Baseline RubbleDB
CPU Disk

m—g COLUMBIA UNIVERSITY YCSB load, 30GB DB size, and three-way replication
IN THE CITY OF NEW YORK

= 2000
(@)
1000

Cluster-wide CPU, disk, and network stats

 RubbleDB trades network for CPU and disk

* New network traffic for shipping SST files
 No compaction CPU and read |I/O on secondaries

6000
mmE Compaction 500+ 500 W= NVMe-oF

5000 B Request) w gRPC
— — 400 C 400
2 4000 O kS
[} ~ Y—

300 © 300
£ 3000 Q =
Y

T _ v 200 5 200
5 2000 A E

1000 100- 2100{ 211GB more

- 0- , 0- ;
Baseline RubbleDB Baseline RubbleDB Baseline RubbleDB
CPU Disk Network
@_D COLUMBIA UNIVERSITY YCSB load, 30GB DB size, and three-way replication 89

IN THE CITY OF NEW YORK

Conclusions

* NVMe-oF is an attractive opportunity for replicated storage
systems

* RubbleDB trades network for CPU and disk read 1/0 by shipping
compactions results to secondaries

* Try RubbleDB at https://github.com/lei-houjyu/RubbleDB

Thank you!

haoyu.li@columbia.edu

https://github.com/lei-houjyu/RubbleDB

Backup Slides

Cluster topology

K replication groups spread on R servers
* Saving compactions in secondaries gives the primary more CPU

Server 1 Server 2 Server R

Grow1() |
Group 2 (S)) Group 2 (S)
Group K (S) Group K (S) Group K ()

&2 COLUMBIA UNIVERSITY

IN THE CITY OF NEW YORK

Group 2 (

92

