
Prefix Siphoning:
Exploiting LSM-Tree Range Filters For
Information Disclosure

Adi Kaufman, Moshik Hershcovitch, Adam Morrison1 1,2 1

1 2

Key-Value store

Value

Key-value stores serve as storage engines for many data store systems, like:

• Object storage systems

• Database systems

• Storage Systems

Key value storage engines

request

Data Store
System

Other
subsystems

response

System logic

Key-Value store

Value

Key-value store abstraction

<“ATC_2023”: “BOSTON”>

<“ATC_2023”: “BOSTON”>Put(key,value)

Get(key)
(point query)

<“ATC_2023”>

RangeQ(key1,key2)
<“ATC_2021” – “ATC_2023”>

<“ATC_2023”: “BOSTON”>
<“ATC_2022”: “CARLSBAD”>
<“ATC_2021”: “VIRTUAL“>

A key-value store exposes a dictionary-like abstraction:

System stores ACLs (access control lists) as value metadata in key-value stores

Checks ACL, blocks requests from directly accessing unauthorized data

Key-Value store

Value
+ ACL

Key-value store as security components

Request
Check
ACL

un-authorized access
fail

Permission denied

System logic

System logic
Authorized

Data Store
System

A timing attack exploits differences in query response times
to glean information about stored data

Timing attacks on key-value stores

Data Store
System

get(…)

get(…)

= 50𝜇𝑠

= 5 𝜇𝑠

Existing timing attacks on key-value stores target stored values

and exploit external mechanisms:

● Memory deduplication [Schwarzl et al., NDSS 2022]
● Memory Compression [Schwarzl et al., IEEE S&P 2023]

Key-Value store

Value

Current timing attacks target values

= 50𝜇𝑠

= 5𝜇𝑠

Motivation: Key disclosure is also a threat

Keys may be explicitly secret

Keys may be implicitly considered secret

Key-Value store

Value
+ ACL

Key-Value store

Value

Key-Value store

Value
+ ACL

Explicitly secret keys

Example: DB systems with key-value storage engine
(E.g., CockroachDB, YugabyteDB, MyRocks, …)

Value: Table row
Key: Subset of cells (e.g., primary DB key)

Þ Key disclosure = DB data disclosure Table: Patient_Records

Name ID Age Hospital

Bar 11467123 37 Mt. Sinai

Miguel 34562788 23 Mt. Sinai

Lin 25262934 18 Mt. Sinai

Dan 45876521 29 Mt. Sinai

...

Primary key

Key-Value store

Value
+ ACL

Keys implicitly considered secret (Hard to guess)

Use case: object identifiers
Key-value store maps object IDs to object locations
• Finding object IDs can be exploited for further attacks
• Not hypothetical: e.g., scanners for unprotected Amazon S3 objects1

Object Storage

1Cloud Misconfig Exposes 3TB of

Contribution: Prefix siphoning
Key disclosure timing attack

Exploits range filters: an internal key-value store mechanism

Attack Template

A general template for
key disclosure attacks
and the characterization
of vulnerable filters
properties

Proof of concepts (PoCs)

Demonstrate the attack
against RocksDB with 2
different range filter types

Key-Value store

Value
+ ACL

Attacker can cause system to point query its key-value storage engine
Þ Henceforth, just “query the key-value store”
No access to hardware, only response time measurement

Threat model

Request(X)
Check
ACL

un-authorized access
fail

No permission

Data Store
System

System logic

System logic
authorized

f(X)

Focus: LSM-trees
Focus on systems using LSM-tree based key value store
● E.g., RocksDB, LevelDB
LSM-tree uses a mix of in-memory and on-disk storage for (write) performance
Data stored in a series of Sorted Structures/Static Tables (SSTable)

SSTable
1

SSTable
1

SSTable
2

SSTable
m

Level 0

Level n

MemTable
Main Memory

Secondary Storage

LSM-tree

Filters in LSM-trees
Focus on systems using LSM-tree based key value store
● E.g., RocksDB, LevelDB
LSM-tree uses a mix of in-memory and on-disk storage for (write) performance
Data stored in a series of Sorted Structures/Static Tables (SSTable)

LSM-Trees use in-memory
filters to avoid unnecessary
I/Os

SSTable
1

SSTable
1

SSTable
2

SSTable
m

Level 0

Level n

MemTable Filter 1 Filter m Main Memory
Secondary Storage

LSM-tree

Filter: Data structure for approximately maintaining a set of keys

𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 (FPR) = !"
!"#$%

What is a filter?

Query (X)
Filter

False
positiveNO X in set

X is in set

“miss” (true
negative)

“hit”

Filters in LSM-trees

Main
Memory Secondary

Storage

Query (X) X is in filter
“hit”

SSTable
X is in SSTtable Return Value

False positive Return
Not Found

“miss”

Filter

Range filter: supports both range and point queries with false positives
Range query: Is there a key in the dataset between X to Y?

Insight: Range query support can affect point query implementation
Þ Vulnerability to timing attack

Range filters

Filter
False
positiveNo k in [X,Y] exists in set

k in [X,Y] exists in set

“miss”

“hit”
Query (X:Y)

(true
negative)

Prefix siphoning
General template for timing attacks on systems using LSM-trees with
vulnerable range filters

Can reveal key prefixes or full keys

Uses point queries

Leverages key prefix information stored by the range filter

get(X)

Vulnerable range filter characterization
Common characterization for timing attack on filters

Measurable response time difference

Non-negligible FPR (false positive rate)

Data Store
System

get(ATC_2023)

get(ATC_2030)

= 50𝜇𝑠

= 5𝜇𝑠

Vulnerable range filter characterization
Common characterization for timing attack on filters

Measurable response time difference

Non-negligible FPR (false positive rate)

Þ Brute force attack
Query with random keys
Fast response -> no storage access-> “miss”
Slow response -> storage access -> “hit” -> key exists!

Data Store
System

get(ATC_2023)

get(ATC_2030)

= 50𝜇𝑠

= 5𝜇𝑠

Infeasible!

Vulnerable range filter characterization
Common characterization for timing attack on filters

Measurable response time difference

Non-negligible FPR (false positive rate)

Characterization specific to range filters

A false positive key shares a prefix with a key in the dataset (w.h.p.)

FindFPK(): Finds a random false positive key in O(1) queries

IdPrefix(FP): Returns the shared prefix in O(|key|) queries

Prefix siphoning template

Step 0

Preliminary:
Learn to distinguish
positive from negative
keys

Query with random keys
● FPR ensures some “hit” response
Build a distribution of response times
Þ Bimodal with peaks corresponding to average

“fast” and “slow” response times
Slow -> storage access -> “hit”
Fast -> no storage access -> “miss”

Data Store
System

get(ATC_2023)

get(ATC_2030)

= 50𝜇𝑠

= 5𝜇𝑠

Find the prefixes of the FP key
• Call IdPrefix(FP) per FP key

Prefix siphoning template

Step 1

Step 2

Step 3

Find initial FP keys
• Call FindFPK() multiple timesStep 0

Preliminary:
Learn to distinguish
positive from negative
keys

Extract key prefixes

If system has different responses:
“miss”:
“unauthorized hit”:

Find the prefixes of the FP key
• Call IdPrefix(FP) per FP key

Full key extraction

Step 1

Step 2

Step 3

Find initial FP keys
• Call FindFPK() multiple time

Extract full key
• Scan all suffixes per step-2 prefix

Not Found
Permission Denied

Prefix siphoning instantiations

SuRF Prefix Bloom Filter

Default range filter in RocksDBSuccinct Range Filter [SIGMOD 2018]

Pruned trie
Stores only the shared prefixes + one extra byte

U

S

E

R

S

X

F

U

N

I

L

Full trie SuRF Base

U

S

E

RF N

Data Store Keys
1 USEFUL
2 USENIX
3 USERS

SuRF – Succinct Range Filter [SIGMOD 2018]

Pruned trie

Does USENET exist in dataset?
Appears as “hit” in the pruned trie
“hit” -> False positive

SuRF false positives -> vulnerability

U

S

E

RF N

SuRF Base

Point Query

USENET

Data Store Keys
1 USEFUL
2 USENIX
3 USERS

Pruned trie

Insight: A “hit” indicates the queried key K shares a
common prefix with a key K* in the dataset

This is the longest common prefix (LCP) K shares with any
key in the dataset

U

S

E

RF N

SuRF Base

Point Query

K USENET

Data Store Keys
1 USEFUL
2 (K*) USENIX
3 USERS

SuRF-Base vulnerability

Pruned trie

SuRF-Base attack: (1) Find FP keys

Query random keys until finding a false positive

Data Store Keys
1 USEFUL
2 USENIX
3 USERS

U

S

E

RF N

SuRF Base

Point Query

USENET

Pruned trie

Extract the FP key prefix:
● Truncate FP key, one byte at a time
● Query each such key until a filter “miss” is identified (based on timing)
● Prefix is the last “hit"

U

S

E

RF N

SuRF Base
Point
Queries

Filter
Result

1 USENET HIT
2 USENE HIT
3 USEN HIT
4 USE MISS

Prefix extracted: USEN

Data Store Keys
1 USEFUL
2 USENIX
3 USERS

SuRF-Base attack: (2) Identify prefixes

Pruned trie

Prefix extracted: USEN

Extracted Key: USENIX

Assuming system responds differently for “not found” and “unauthorized” keys

Query the data store with different suffixes
Can be done concurrently with brute force scanning

U

S

E

RF N

SuRF Base
Point
Queries

Datastore
Result

1 USENAA Not found
2 … Not found
3 USENIX Unauthorized

Data Store Keys
1 USEFUL
2 USENIX
3 USERS

SuRF-Base attack: (3) Extract full keys

Pruned trie

To improve FPR, store different information after prefix:
● SuRF-Real: n key bits
● SuRF-Hash: n bits of a Hash(key)

SuRF Base

U

S

E

RF N

SuRF Real

U

S

E

RF N

SuRF Hash

U

S

E

RF N

SU I H(USEFUL) H(USENIX) H(USERS)

SuRF variants

Target: SuRF-Real

System: RocksDB with SuRF authors’ code

Dataset: 50M random 64-bit keys

Background load: 32 threads constantly performing get()s

SuRF-Real attack demonstration

ABC

RocksDB

get(x)

Step 0 – Distinguish between a filter “hit” and “miss” -> 10M queries

Step 1 – Find initial FP keys -> 10M queries

Step 2 – Identify shared prefixes

Step 3 – Suffix scan for prefixes over 40 bits [not measuring time].
(Parallelized using 16 cores)

SuRF-Real attack demonstration

Step 0 – Identify false positive response time
• 97% of the queries took < 25𝜇𝑠

� �� ��� ��� 	�� 	��
��
��
��!���!����������� �!�����!�

�

	�

��

�

��

���

�
��

�
��

�"
��

�

����$!�����#���"

Step 0 – Identify false positive response time
• 97% of the queries took < 25𝜇𝑠

• Zoom in: > 25𝜇𝑠

	� �� �� ��� �	� ��� ���
����������������������������

�
��

���
���
	��
	��

��

��

��

�

��

��������
���

Step 0 – Distinguish false and true positive keys

	� �� �� ��� �	� ��� ���
����������������������������

�
��

���
���
	��
	��

��

��

��
��

 �

���������� �
��������
���� �

• 97% of the queries took < 25𝜇𝑠

• Zoom in: > 25𝜇𝑠

• 98% of the FP keys took > 50𝜇𝑠

• Major portion of queries > 50𝜇𝑠 are FP

Attack efficiency

<10M get() requests per extracted key

40,000x better than brute force

Repeated over different datasets

��� ��� ��� ��� 	�� 	��
��
�� ���
��#��� $�"#"���������"�

�

��

	�

�

��

��

�

�%
��
��
�#
��
�
$�
"#
"�
��
!��

&#
!�
�#
��
��
�'
���

���
��
�"
�

��#��"�#��
��#��"�#�	
��#��"�#�

Mitigations
Every mitigation is a trade-off

System-level:
● Query key-value store only for authorized keys
● Rate limiting

Key-value store:
● Separate filters for point/range queries

Resilient range filter:
● E.g., Rosetta [SIGMOD 2020]

L Re-architecting

L Memory waste

L Variable-length keys

L Throughput

Mitigations
Every mitigation is a trade-off

System-level:
● Query key-value store only for authorized keys
● Rate limiting

Key-value store:
● Separate filters for point/range queries

Resilient range filter:
● E.g., Rosetta [SIGMOD 2020]

L Re-architecting

L Memory waste

L Variable-length keys

L Throughput

Conclusion
Prefix siphoning:
General template for key disclosure timing attacks
against LSM-tree key-value stores with vulnerable range filters

Security vs. performance trade-off
Þ More security analysis of optimizations!

Research on secure range filters

