
1

Zhuque: Failure is Not an Option, it’s an
Exception

George Hodgkins*, Yi Xu*, Steven Swanson, Joseph Izraelevitz

*co-first authors

University of Colorado, Boulder

University of California, San Diego

2

● Our implementation, Zhuque, requires little or
no modification to native applications

Overview

2

$ CRASH_RESISTANT=1 ./mycomputation

Whole Process Persistence

● Simple PMEM programming model for
systems with flush-on-fail support (eADR, GPF)

● >3x mean speedup over prior works, after
removing their cache flushes

CPU

Cache

PMEMDRAM

3

Persistent Memories (PMEMs)

PMEM

● Byte-addressable interface.

● Persistent across power failures.

● DRAM-class latency and bandwidth.

Application

Cache

DRAMPMEM

CPU

Operating System

4

The challenge

Cache

DRAMPMEM

Cache

Applications need to explicitly evict cachelines
to provide crash consistency.

● The cache has been volatile.

● Cached updates will be dropped
after a power loss.

5

The consequences

Explicit cache flushes

DRAMPMEM

Cache● Explicit flushes amplify writes to PMEM

● Correctly placing flushes requires extra
programming effort

● Required memory barriers incur
pipeline stalls and synchronization
overhead

6

Persistent Memory Programming

Application

PMEM Programming systems

Cache

DRAMPMEM

PMEM programming systems

● Tools to make PMEM programming
easier and faster.

● Most are based on a "failure-atomic
section“ model.

● After a crash, each section’s writes
are either all persistent, or none are.

7

Persistent Memory Programming

Application

PMEM Programming systems

Cache

DRAMPMEM

1. Transaction-based.
2. FASE-based.
3. Whole system persistence (WSP).

PMEM Programming systems

8

1: Transactional Models

void transfer (src_account, dest_account, amount)
{
 src_account.lock();
 dest_account.lock();

 src_account.balance -= amount;
 dest_account.balance += amount;

 dest_account.unlock();
 src_account.unlock();
}

Bank transaction example

Often use locks to mark
transactions, since transactions
restrict locking semantics

Lock acquire/release must nest
perfectly, and PMEM can only be
accessed when all locks are held

Transactional

code

All writes to PMEM are performed
as traditional ACID transactions.

9

Transaction Limitations

Locking the next item in a pointer
chain before releasing the previous
one violates transactional locking.

This pattern is common in
multithreaded graph applications
with fine-grained synchronization.

Not perfectly nested

10

2: FASE Models

FASE

Allows arbitrary locking schemes.
A FASE is a failure-atomic operation
protected by its outermost locks.

Supports any locking
scheme; compatible
with legacy code.

Requires runtime tracking of
dependencies between threads.

11

3: Whole system persistence

Whole System Persistence
Application

Operating System

Cache

DRAMPMEM

● Everywhere DRAM would normally
be used, it is replaced with PMEM.

● Only explicitly flush the cache if a
failure occurs (flush-on-fail).

12

Flush-on-Fail Hardware

Cache

DRAMPMEM

Flush-on-fail

CPU● Manufacturers have developed
systems with flush-on-fail support (CXL
GPF, NVDIMM eADR)

● These systems guarantee that the
caches will be flushed by a low-level
interrupt if a power failure occurs.

● Caches are effectively persistent.

13

Limitations of Whole System Persistence

WSP limitations

Application

Operating System

Cache

DRAMPMEM

● Only preserves memory contents;
applications are responsible for
implementing recovery

● The whole system doesn’t need to
be persistent – just important
applications.

14

Whole Process Persistence

Application

Whole Process Persistence (Zhuque)

Cache

DRAMPMEM

Whole Process Persistence

● Transform all memory allocated by a
process into PMEM

● If a power failure occurs, the process is
signaled by the OS at time of recovery

● Execution continues from the point
interrupted by failure

15

Whole Process Persistence

Application

Whole Process Persistence (Zhuque)

Cache

DRAMPMEM

Whole Process Persistence

● Easy to use:
○ No restrictions on locking or I/O
○ Binary and source-compatible with

native applications

● Low overhead:
○ No explicit cache flushes
○ No write amplification

16

Zhuque

Zhuque

$ CRASH_RESISTANT=1 ./mycomputation

● Modified version of libc which
implements WPP

● Intercepts and transforms API calls for
memory, thread, and file management

● Transparent to the application – just set
an environment variable

17

During normal execution

Zhuque

● Dynamic memory: return PMEM for
anonymous mmap().

● (Initialized) static memory: transform
private, writable file mappings to PMEM.

● Save architectural state (register file, etc)
to PMEM on kernel entry.

18

At a crash

Zhuque

19

At a crash

ZhuqueApplication/OS

Firmware

Cache

DRAMPMEM

1

20

At a crash

Zhuque

PC

SP

etc.

Application/OS

Firmware

Cache

DRAMPMEM

1

● We need to save volatile architectural
state: register file, FP/vector context, etc

21

At a crash

ZhuqueApplication/OS

Firmware

Cache

DRAMPMEM

2
● We need to save volatile architectural

state: register file, FP/vector context, etc

● On x86, the firmware interrupt that flushes
the caches saves this state to memory…

PC

SP

etc.

22

At a crash

ZhuqueApplication/OS

Firmware

Cache

DRAMPMEM

2
● We need to save volatile architectural

state: register file, FP/vector context, etcPC

SP

etc.
● On x86, the firmware interrupt that flushes

the caches saves this state to memory…
but not to PMEM

3

23

At a crash

ZhuqueApplication/OS

Firmware

Cache

DRAMPMEM

2
● We need to save volatile architectural

state: register file, FP/vector context, etcPC

SP

etc.
● On x86, the firmware interrupt that flushes

the caches saves this state to memory…
but not to PMEM

3
● Saving to PMEM should work, but we

cannot replace firmware without the
platform manufacturer’s signing key

24

At recovery

Whole Process Persistence

1. Restore the address space.

2. Restore OS-specific state: Zhuque tracks
threads and file descriptors and recreates
them at restart.

3. Restore the architectural state (including
stack pointer and program counter). This is
equivalent to restarting execution.

4. If the application provided a failure
handler, run it before continuing
execution.

25

Zhuque -- Requirement to applications

● Threading, FDs, virtual memory must be managed through libc (no inline syscalls)

● Applications must check error returns from system calls which interact with
components outside the process

26

Performance - memcached 1.2.5

Zhuque outperforms prior work, with flushes and fences removed, on old memcached

UP IS BETTER

Y-AXIS RANGE: 0-20 M/s

 = improvement over prior work

27

Performance - memcached 1.2.5

Zhuque outperforms prior work, with flushes and fences removed, on old memcached

UP IS BETTER

Y-AXIS RANGE: 0-20 M/s

 = overhead vs. native

28

Performance - memcached 1.6.10

Unlike prior work, Zhuque can run a new version of Memcached and take advantage of better scaling

UP IS BETTER

Y-AXIS RANGE: 0-100 M/s

= improvement vs old Memcached

29

Performance - memcached 1.6.10

Unlike prior work, Zhuque can run a new version of Memcached and take advantage of better scaling

UP IS BETTER

Y-AXIS RANGE: 0-100 M/s

= overhead vs. native

30

Performance – CPython / Pyperformance

Zhuque can run unmodified Python programs with minimal overhead

LOWER IS

BETTER

31

Summary of Contributions

● Introduced the Whole Process Persistence programming model for flush-on-fail systems
● Built and tested a libc-based prototype implementation, called Zhuque
● We found that Zhuque outperforms state-of-the-art PMEM programming libraries,

without cache flushes
● We found that Zhuque can run a wider range of applications than prior work, without

modifying or recompiling them

Contributions

	Slide 1: Zhuque: Failure is Not an Option, it’s an Exception
	Slide 2: Overview
	Slide 3: Persistent Memories (PMEMs)
	Slide 4: The challenge
	Slide 5: The consequences
	Slide 6: Persistent Memory Programming
	Slide 7: Persistent Memory Programming
	Slide 8: 1: Transactional Models
	Slide 9: Transaction Limitations
	Slide 10: 2: FASE Models
	Slide 11: 3: Whole system persistence
	Slide 12: Flush-on-Fail Hardware
	Slide 13: Limitations of Whole System Persistence
	Slide 14: Whole Process Persistence
	Slide 15: Whole Process Persistence
	Slide 16: Zhuque
	Slide 17: During normal execution
	Slide 18: At a crash
	Slide 19: At a crash
	Slide 20: At a crash
	Slide 21: At a crash
	Slide 22: At a crash
	Slide 23: At a crash
	Slide 24: At recovery
	Slide 25: Zhuque -- Requirement to applications
	Slide 26: Performance - memcached 1.2.5
	Slide 27: Performance - memcached 1.2.5
	Slide 28: Performance - memcached 1.6.10
	Slide 29: Performance - memcached 1.6.10
	Slide 30: Performance – CPython / Pyperformance
	Slide 31: Summary of Contributions

