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● Our implementation, Zhuque, requires little or 
no modification to native applications

Overview
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$ CRASH_RESISTANT=1 ./mycomputation

Whole Process Persistence

● Simple PMEM programming model for 
systems with flush-on-fail support (eADR, GPF)

● >3x mean speedup over prior works, after 
removing their cache flushes
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Persistent Memories (PMEMs)

PMEM

● Byte-addressable interface.

● Persistent across power failures. 

● DRAM-class latency and bandwidth.

Application

Cache

DRAMPMEM

CPU

Operating System
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The challenge

Cache

DRAMPMEM

Cache

Applications need to explicitly evict cachelines 
to provide crash consistency.

● The cache has been volatile.

● Cached updates will be dropped 
after a power loss.
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The consequences

Explicit cache flushes

DRAMPMEM

Cache● Explicit flushes amplify writes to PMEM

● Correctly placing flushes requires extra 
programming effort

● Required memory barriers incur 
pipeline stalls and synchronization 
overhead



6

Persistent Memory Programming

Application

PMEM Programming systems

Cache

DRAMPMEM

PMEM programming systems

● Tools to make PMEM programming 
easier and faster.

● Most are based on a "failure-atomic 
section“ model.

● After a crash, each section’s writes 
are either all persistent, or none are.
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Persistent Memory Programming

Application

PMEM Programming systems

Cache

DRAMPMEM

1. Transaction-based.
2. FASE-based.
3. Whole system persistence (WSP).

PMEM Programming systems
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1: Transactional Models

void transfer (src_account, dest_account, amount)
{
 src_account.lock();
 dest_account.lock();

 src_account.balance -= amount;
 dest_account.balance += amount;

 dest_account.unlock();
 src_account.unlock();
}
 

Bank transaction example

Often use locks to mark 
transactions, since transactions 
restrict locking semantics

Lock acquire/release must nest 
perfectly, and PMEM can only be 
accessed when all locks are held

Transactional 

code

All writes to PMEM are performed 
as traditional ACID transactions.
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Transaction Limitations

Locking the next item in a pointer 
chain before releasing the previous 
one violates transactional locking.

This pattern is common in 
multithreaded graph applications 
with fine-grained synchronization.

Not perfectly nested
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2: FASE Models

FASE

Allows arbitrary locking schemes.
A FASE is a failure-atomic operation 
protected by its outermost locks.

Supports any locking 
scheme; compatible 
with legacy code.

Requires runtime tracking of 
dependencies between threads.
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3: Whole system persistence

Whole System Persistence
Application

Operating System

Cache

DRAMPMEM

● Everywhere DRAM would normally 
be used, it is replaced with PMEM.

● Only explicitly flush the cache if a 
failure occurs (flush-on-fail).
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Flush-on-Fail Hardware

Cache

DRAMPMEM

Flush-on-fail

CPU● Manufacturers have developed 
systems with flush-on-fail support (CXL 
GPF, NVDIMM eADR)

● These systems guarantee that the
caches will be flushed by a low-level 
interrupt if a power failure occurs.

● Caches are effectively persistent.
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Limitations of Whole System Persistence

WSP limitations

Application

Operating System

Cache

DRAMPMEM

● Only preserves memory contents; 
applications are responsible for 
implementing recovery

● The whole system doesn’t need to 
be persistent – just important 
applications.
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Whole Process Persistence

Application

Whole Process Persistence (Zhuque)

Cache

DRAMPMEM

Whole Process Persistence

● Transform all memory allocated by a 
process into PMEM

● If a power failure occurs, the process is 
signaled by the OS at time of recovery

● Execution continues from the point 
interrupted by failure



15

Whole Process Persistence

Application

Whole Process Persistence (Zhuque)

Cache

DRAMPMEM

Whole Process Persistence

● Easy to use:
○ No restrictions on locking or I/O
○ Binary and source-compatible with 

native applications

● Low overhead:
○ No explicit cache flushes
○ No write amplification



16

Zhuque

Zhuque

$ CRASH_RESISTANT=1 ./mycomputation

● Modified version of libc which 
implements WPP

● Intercepts and transforms API calls for 
memory, thread, and file management

● Transparent to the application – just set 
an environment variable
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During normal execution

Zhuque

● Dynamic memory: return PMEM for 
anonymous mmap().

● (Initialized) static memory: transform 
private, writable file mappings to PMEM.

● Save architectural state (register file, etc) 
to PMEM on kernel entry.
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At a crash

Zhuque



19

At a crash

ZhuqueApplication/OS

Firmware

Cache

DRAMPMEM

1
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At a crash

Zhuque

PC

SP

etc.

Application/OS

Firmware

Cache

DRAMPMEM

1

● We need to save volatile architectural 
state: register file, FP/vector context, etc
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At a crash

ZhuqueApplication/OS

Firmware

Cache

DRAMPMEM

2
● We need to save volatile architectural 

state: register file, FP/vector context, etc

● On x86, the firmware interrupt that flushes 
the caches saves this state to memory…

PC

SP

etc.



22

At a crash

ZhuqueApplication/OS

Firmware

Cache

DRAMPMEM

2
● We need to save volatile architectural 

state: register file, FP/vector context, etcPC

SP

etc.
● On x86, the firmware interrupt that flushes 

the caches saves this state to memory… 
but not to PMEM

3
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At a crash

ZhuqueApplication/OS

Firmware

Cache

DRAMPMEM

2
● We need to save volatile architectural 

state: register file, FP/vector context, etcPC

SP

etc.
● On x86, the firmware interrupt that flushes 

the caches saves this state to memory… 
but not to PMEM

3
● Saving to PMEM should work, but we 

cannot replace firmware without the 
platform manufacturer’s signing key
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At recovery

Whole Process Persistence

1. Restore the address space.

2. Restore OS-specific state: Zhuque tracks 
threads and file descriptors and recreates 
them at restart.

3. Restore the architectural state (including 
stack pointer and program counter). This is 
equivalent to restarting execution.

4. If the application provided a failure 
handler, run it before continuing 
execution.
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Zhuque -- Requirement to applications

● Threading, FDs, virtual memory must be managed through libc (no inline syscalls)

● Applications must check error returns from system calls which interact with 
components outside the process
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Performance - memcached 1.2.5

Zhuque outperforms prior work, with flushes and fences removed, on old memcached

UP IS BETTER

Y-AXIS RANGE: 0-20 M/s

   = improvement over prior work
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Performance - memcached 1.2.5

Zhuque outperforms prior work, with flushes and fences removed, on old memcached

UP IS BETTER

Y-AXIS RANGE: 0-20 M/s

   = overhead vs. native
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Performance - memcached 1.6.10

Unlike prior work, Zhuque can run a new version of Memcached and take advantage of better scaling

UP IS BETTER

Y-AXIS RANGE: 0-100 M/s

= improvement vs old Memcached
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Performance - memcached 1.6.10

Unlike prior work, Zhuque can run a new version of Memcached and take advantage of better scaling

UP IS BETTER

Y-AXIS RANGE: 0-100 M/s

= overhead vs. native
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Performance – CPython / Pyperformance

Zhuque can run unmodified Python programs with minimal overhead

LOWER IS 

BETTER
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Summary of Contributions

● Introduced the Whole Process Persistence programming model for flush-on-fail systems
● Built and tested a libc-based prototype implementation, called Zhuque
● We found that Zhuque outperforms state-of-the-art PMEM programming libraries, 

without cache flushes
● We found that Zhuque can run a wider range of applications than prior work, without 

modifying or recompiling them

Contributions
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