
SingularFS: A Billion-Scale Distributed File System
Using a Single Metadata Server

Hao Guo, Youyou Lu, Wenhao Lv, Xiaojian Liao, Shaoxun Zeng, Jiwu Shu

Tsinghua University

 Background & Motivation

 Design

 Evaluation

 Conclusion

Outline

2

Billion-Scale Distributed File Systems

 Billion-scale distributed file systems dominate modern datacenters
 Cloud service vendors, small-scale clusters (within billion-scale)
 Hyperscale clusters: Alibaba (billion-scale on average)

3

Billion-Scale Distributed File Systems

 Billion-scale distributed file systems dominate modern datacenters
 Cloud service vendors, small-scale clusters (within billion-scale)
 Hyperscale clusters: Alibaba (billion-scale on average)

 Using a single metadata server is desirable and possible
 Easy implementation
 TCO reduction
 Capacity: 1TB / 256B (typical inode size) = 4.29 billions

 But what about performance?

4

Performance Opportunities

5

 New hardware provides performance opportunities for metadata
 Metadata is typically small (e.g., 256B for inode, 263B for directory entry)

 New hardware shows high small-granularity IOPS

New Hardware Compared Hardware

Network

Storage

RDMA NIC
112Mops/s (64B)

Persistent Memory
29.1Mops/s (read)
8.75Mops/s (write)

Ethernet NIC
1.48Mops/s (64B)

NVMe TLC SSD
1.10Mops/s (read)
0.20Mops/s (write)

 Huge gap between existing solutions and theoretical performance

Analysis of Existing Solutions

6
Theoretical performance: 3 PM writes (2 inodes, 1 dirent) + 1 network RPC.

Setup: 4 PM DIMMs, 1 RDMA NIC

0

4

8

12

Private Shared

Throughput of File Create

Theoretical Performance NOVA Ext4-DAX InfiniFS CephFS

8.7x 39.1x

Th
ro

ug
hp

ut
 (M

op
s/

s)

Challenges

7

1. Crash consistency overhead

f1 f2

/

Create {f2} in / WAL f1 f1 f2 f2 f2

/

Write-ahead logging Log-structured

Double write
In-order checkpoint

Garbage collection
(GC) overhead

2. Concurrency control in a shared directory
 High lock contention caused by concurrent update of shared parent’s metadata

Challenges

8

f1 f3

A

f2

Server Thread

Concurrent file create in a shared directory

3. NUMA scalability
 Existing solutions randomly scatter metadata to different NUMA nodes

Challenges

9

f1 f2

B f3

NUMA 0 NUMA 1AA

B

Metadata Server

f2 f1

B f3

A

NUMA locality can’t be ensured for file create / delete

B

f1

B

f1

 Background & Motivation

 Design

 Evaluation

 Conclusion

Outline

10

SingularFS Architecture

11

Clients
SingularFS

library

Hybrid Inode Partition

Servers

NUMA 0 NUMA 1
Ordered Indexes

NUMA 0
Ordered Indexes

A billion-scale distributed file system using a single metadata server

Optimizations
 Metadata Storage
 Metadata Operations

Metadata Storage
 Hybrid Inode Partition

Metadata Operations
 Hierarchical Concurrency

Control
 Log-free Metadata

Operations

Directory Tree/

Hierarchical Concurrency Control

Log-free Metadata Operations

Non-transactional KV Store

Server Threads

Key Designs

12

 Crash consistency overhead
 1. Log-free Metadata Operations

 Concurrency control in a shared directory
 2. Hierarchical Concurrency Control

 NUMA scalability
 3. Hybrid Inode Partition

1. Log-free Metadata Operations

13

Crash consistency guarantee for different metadata write operations

Type Operations
Modified Inodes

Target Parent Others

Single-Node open/close
read/write/… •

Double-Node mkdir/rmdir
create/delete • •

Rename rename • • •

1. Log-free Metadata Operations

14

Crash consistency guarantee for different metadata write operations

Type Operations
Modified Inodes

Target Parent Others

Single-Node open/close
read/write/… •

Double-Node mkdir/rmdir
create/delete • •

Rename rename • • •Rarely happens, use journaling

Non-transactional key-value (KV) operations
without additional crash consistency cost

 KV pair: <parent_ID+name> → <inode>
 ls operation:

 Prefix matching with key <parent_ID>
 Extract the keys for name, values for ID and type

1. Log-free Metadata Operations

15

Step 1. Use KV Store to co-locate directory entries (dirents) and inodes

A

B

Directory tree

Key Value
1/ B B’s access meta
1/ f1 f1’s inode

1 A’s timestamps
2 B’s timestamps

KV Store (partial) Directory entry in ls

inode ID
inode type

inode name/

f1
ID = 2

Note: access meta and timestamps will be discussed later in Hybrid Inode Partition.

ID = 1

1. Log-free Metadata Operations

16

Double-Node operations

What happens after Step 1?
 Single-Node operations: Crash consistency is guaranteed with KV Store
 Double-Node operations: Directory entries are embedded in KV pairs

Base
Transaction

Create / Delete
the target inode

Update parent’s
directory entry

Update parent’s
ctime & mtime

Using
KV Store

Transaction

One KV operation
Edit the inode + Update dirent

One KV operation
Update parent’s ctime & mtime

Note: In POSIX semantics, ctime is the metadata change time, not the create time.

1. Log-free Metadata Operations

17

Double-Node operations

What happens after Step 1?
 Single-Node operations: Crash consistency is guaranteed with KV Store
 Double-Node operations: Directory entries are embedded in KV pairs

Base
Transaction

Create / Delete
the target inode

Update parent’s
directory entry

Update parent’s
ctime & mtime

Using
KV Store

Transaction

One KV operation
Edit the inode + Update dirent

One KV operation
Update parent’s ctime & mtime

How to eliminate the transaction of the two KV operations?

Note: In POSIX semantics, ctime is the metadata change time, not the create time.

Step 2. Ordered metadata update
 Insert the target inode with its born

time (btime)
 Update the parent’s ctime & mtime

to the target inode’s btime

1. Log-free Metadata Operations

18

Transaction is needed for inserting inode and updating timestamps

Parent’s ctime is not smaller than the born / death time of child inodes

A

/

ctime = 4
mtime = 3

btime = 5

A

/

ctime = 5
mtime = 5

btime = 5

Operation: create /A/f1 at t = 5

f1 f1

1. Log-free Metadata Operations

19

Transaction is needed for inserting inode and updating timestamps

Parent’s ctime is not smaller than the born / death time of child inodes

A

/

ctime = 4
mtime = 3

btime = 5

A

/

ctime = 5
mtime = 5

btime = 5

Operation: create /A/f1 at t = 5

f1 f1

Step 2. Ordered metadata update
 Insert the target inode with its born

time (btime)
 System crashes
 Update parent’s ctime & mtime with

max(child inodes’ btime)

Using
KV Store

Transaction

One KV operation
Edit the inode + Update dirent

One KV operation
Update parent’s ctime & mtime

1. Log-free Metadata Operations

20

Double-Node operations

What happens after Step 2?
 Single-Node operations: Crash consistency is guaranteed with KV Store
 Double-Node operations: Transactions are eliminated

One KV operation
Edit the inode + Update dirent

One KV operation
Update parent’s ctime & mtimeLog-free

Using
KV Store

Transaction

One KV operation
Edit the inode + Update dirent

One KV operation
Update parent’s ctime & mtime

1. Log-free Metadata Operations

21

Double-Node operations

What happens after Step 2?
 Single-Node operations: Crash consistency is guaranteed with KV Store
 Double-Node operations: Transactions are eliminated

One KV operation
Edit the inode + Update dirent

One KV operation
Update parent’s ctime & mtime

Most metadata operations are transformed to
non-transactional KV operations

Log-free

2. Hierarchical Concurrency Control

22

Minimize the critical area of operations in a shared directory
Double-Node operations in a shared directory

Base
Serialized

Create / Delete
the target inode

Update parent’s
directory entry

Update parent’s
ctime & mtime

Using
KV Store

Conflicting transactions

One KV operation
Edit the inode + Update dirent

One KV operation
Update parent’s ctime & mtime

Concurrent

Log-free
Concurrent

One KV operation
Edit the inode + Update dirent

One KV operation
Update parent’s ctime & mtime

Serialized

2. Hierarchical Concurrency Control

23

Minimize the critical area of operations in a shared directory
Double-Node operations in a shared directory

Base
Serialized

Create / Delete
the target inode

Update parent’s
directory entry

Update parent’s
ctime & mtime

Using
KV Store

Conflicting transactions

One KV operation
Edit the inode + Update dirent

One KV operation
Update parent’s ctime & mtime

Concurrent

Log-free
Concurrent

One KV operation
Edit the inode + Update dirent

One KV operation
Update parent’s ctime & mtime

Serialized

One 16B atomic operation
Update parent’s ctime & mtime

Minimized critical area

SingularFS

Critical area of operations in a shared directory
is minimized to one 16B atomic operation

2. Hierarchical Concurrency Control

24

Double-Node operations need the parent directory’s write lock

Treat these ops specially as they only update the parent’s timestamps

Operations related to an inode
 Updater: timestamp update operations
 Writer: other update operations
 Reader: metadata read operations

1st layer: Writer with other ops
 Based on the target inode’s rwlock

2nd layer: Updater with Reader
 Updater-Updater: 16B atomic operations
 Updater-Reader: OCC based on timestamps

Writer

Write lock

Read lock

Updater Updater

Reader

16B atomic
operations

OCC based on
timestamps

 Acquire the target inode’s write lock (Writer of the target inode)
 Acquire the parent directory’s read lock (Updater of the parent directory)

 Update the timestamps using 16B atomic CAS
 Insert the metadata KV pairs concurrently

2. Hierarchical Concurrency Control

25

Example 1. Concurrent file create in a shared directory

Operation: thread 1 create /A/f1, thread 2 create /A/f2 concurrently

A R

W

R

W

ctime
mtime

f1 f2

16B CAS
16B CAS

A R

W

R

W

ctime
mtime

f1 f2

A R

W

R

W

ctime
mtime

f1 f2

R read lock
W write lock

 Acquire the target inode’s write lock (Writer of the target inode)
 Acquire the parent directory’s read lock (Updater of the parent directory)

 Update the timestamps using 16B atomic CAS
 Insert the metadata KV pairs concurrently

2. Hierarchical Concurrency Control

26

Example 1. Concurrent file create in a shared directory

Operation: thread 1 create /A/f1, thread 2 create /A/f2 concurrently

A R

W

R

W

ctime
mtime

f1 f2

16B CAS
16B CAS

A R

W

R

W

ctime
mtime

f1 f2

A R

W

R

W

ctime
mtime

f1 f2

R read lock
W write lock

Readers may get corrupted metadata
because of concurrent Updaters…

2. Hierarchical Concurrency Control

27

Example 2. Concurrent directory stat with other operations
 Acquire the target inode’s read lock (Reader of the target directory)
 OCC using the target inode’s ctime as the version number

Operation: thread 1 stat directory A

R read lock
W write lock

A Rctime

ctime

Global

Thread 1 A ctime’

Equal?

A Rctime

ctime

Global

Thread 1 A

A Rctime

ctime

Global

Thread 1

OCC needs a version number for ensuring data consistency

Inode’s ctime has the same semantic as a version number

BB

3. Hybrid Inode Partition

28

NUMA-locality of Double-Node file operations can’t be ensured

Group the involved metadata into the same NUMA node

f1 f2

B

AA
Access

metadata

timestamps

f3

NUMA 0 NUMA 1
AA

B

Metadata Server

3. Hybrid Inode Partition

29

NUMA-locality of Double-Node file operations can’t be ensured

Group the involved metadata into the same NUMA node

NUMA 0 NUMA 1

B

f1 f2

B

BB

A

f3

A

AA

Metadata Server

3. Hybrid Inode Partition

30

Lock contention inside the tree index limits metadata performance

Partition the intra-NUMA tree index into multiple sub-indexes

 Point query (common):
 Hash the key to a sub-index
 Directly get the result

 Range scan (in ls):
 Scan all the indexes
 Combine all the results

Point query Range scan

 Background & Motivation

 Design

 Evaluation

 Conclusion

Outline

31

Experimental Setup

32

Hardware Platform
 1 server + 2 clients, 2 NUMA nodes per machine

CPU Intel Xeon, 56 cores (server), 72 cores (client)

Memory Samsung DDR4 3200MHz 32GB * 16

Storage Intel Optane DCPMM Gen2 128GB * 8

Network Mellanox ConnectX-6 200Gbps * 2

Benchmark
 Metadata performance: mdtest benchmark
 End-to-end performance: Filebench Fileserver & Varmail

Compared Systems
 Local PM file systems: Ext4-DAX, NOVA [FAST ’16]
 Distributed file systems: InfiniFS [FAST ’22], CephFS [OSDI ’06]

Metadata Latency

33

0

5

10

15

20

File Create File Stat File Delete
SingularFS NOVA Ext4-DAX InfiniFS CephFS

727 701
Av

g.
 L

at
en

cy
 (u

s)

2.5x 2.8x

Metadata Latency

34

0

5

10

15

20

File Create File Stat File Delete
SingularFS NOVA Ext4-DAX InfiniFS CephFS

727 701
Av

g.
 L

at
en

cy
 (u

s)

2.5x 2.8xSingularFS shows comparable latency with local PM file
systems and lower latency than distributed file systems

0

1

2

3

4

5

File Create File Stat File Delete
SingularFS NOVA Ext4-DAX InfiniFS CephFS

Metadata Throughput

35

3.1x

1.9x

Pe
r-

N
U

M
A

Th
ro

ug
hp

ut
 (M

op
s/

s)

9.4

9.5x

SingularFS has higher throughput than local PM file systems

0

1

2

3

4

5

File Create File Stat File Delete
SingularFS NOVA Ext4-DAX InfiniFS CephFS

Metadata Throughput

36

22.5x
23.6x

7.5x

SingularFS has about an order of magnitude higher throughput than DFS

Pe
r-

N
U

M
A

Th
ro

ug
hp

ut
 (M

op
s/

s)

9.4

Operations in a Shared Directory

37

Pe
r-

N
U

M
A

Th
ro

ug
hp

ut
 (M

op
s/

s)

0

0.5

1

1.5

2

2.5

0 14 28 42 56

SingularFS NOVA Ext4-DAX InfiniFS CephFS

7.7x

0 14 28 42 56

(a) File Create

5.6x

SingularFS shows high throughput in a shared directory

Client Threads

(b) File Delete

Billion-Scale Directory Tree

38

Pe
r-

N
U

M
A

Th
ro

ug
hp

ut
 (M

op
s/

s)

0

2

4

6

8

10

0 500 1000

SingularFS NOVA Ext4-DAX

41.6x

0 500 1000

(a) File Create

9.8x

SingularFS efficiently supports billion-scale directory tree

File Number (Million)

(b) File Stat

 Background & Motivation

 Design

 Evaluation

 Conclusion

Outline

39

Conclusion

40

 Goal
 Exploit the performance of a single metadata server to support billions of files

 Key Techniques of SingularFS
 Log-free metadata operations
 Hierarchical concurrency control
 Hybrid inode partition

 Results
 SingularFS shows comparable latency with local PM file systems

 SingularFS has high throughput in both private and shared directories

Other Details

41

Design & Implementation
 Lazy recovery to reduce recovery overheads

 Log-free directory operations after introducing inode partition

Evaluation
 End-to-end benchmark

 Rename, crash recovery, billion-scale directory tree, …

Please check our paper for more details!

SingularFS: A Billion-Scale Distributed File System
Using a Single Metadata Server

Hao Guo, Youyou Lu, Wenhao Lv, Xiaojian Liao, Shaoxun Zeng, Jiwu Shu

Contact: gh23@mails.tsinghua.edu.cn

Thanks & Q/A

	SingularFS: A Billion-Scale Distributed File System Using a Single Metadata Server
	Outline
	Billion-Scale Distributed File Systems
	Billion-Scale Distributed File Systems
	Performance Opportunities
	Analysis of Existing Solutions
	Challenges
	Challenges
	Challenges
	Outline
	SingularFS Architecture
	Key Designs
	1. Log-free Metadata Operations
	1. Log-free Metadata Operations
	1. Log-free Metadata Operations
	1. Log-free Metadata Operations
	1. Log-free Metadata Operations
	1. Log-free Metadata Operations
	1. Log-free Metadata Operations
	1. Log-free Metadata Operations
	1. Log-free Metadata Operations
	2. Hierarchical Concurrency Control
	2. Hierarchical Concurrency Control
	2. Hierarchical Concurrency Control
	2. Hierarchical Concurrency Control
	2. Hierarchical Concurrency Control
	2. Hierarchical Concurrency Control
	3. Hybrid Inode Partition
	3. Hybrid Inode Partition
	3. Hybrid Inode Partition
	Outline
	Experimental Setup
	Metadata Latency
	Metadata Latency
	Metadata Throughput
	Metadata Throughput
	Operations in a Shared Directory
	Billion-Scale Directory Tree
	Outline
	Conclusion
	Other Details
	SingularFS: A Billion-Scale Distributed File System �Using a Single Metadata Server

