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Graph PaAern Mining is Ubiquitous

Social Network

Chemical Engineering

Bio-medicine

…

Finding subgraphs of interest (paAerns) in 
input graphs
e.g., Finding Triangles

ApplicaKons
Finance: Fraud detecKon
Web: Network moKfs discovery
Biology: Drug discovery
Society: Community detecKon

❖Real-world Graphs ❖Graph Pa6ern Mining 



Problem: Inherent Redundant ComputaKons
❖Redundancies are prevail in different paAerns 

•Prior works follow structural equality to merge same set formulas[1][2]

•A large number of redundant computaKons sKll exist (avg., 60%)
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Implicit redundancies occur during runDme and are hard to predict



New Opportunity: ComputaKon Similarity

•StaDc Similarity: finer-grained data reuse possibility at the operands level
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•Dynamic Similarity: which verKces are more likely to be requested during runKme

>85% computaKons include <15% high-degree verKcesInputs can also be shared

OpportuniKes for predicKng and reusing hard-traced redundancies during runKme

SpaDal perspecDve Temporal perspecDve

❖A deeper dive: Two types of computaKon similariKes
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New AbstracKon: Set Dataflow
❖Need an abstracKon to exploit the computaKon similarity

•Decouples set operands and set operators for fine-grained analysis
❖Set Dataflow: A directed graph indicaKng how sets are transferred

•Indicates data reuse for redundancy eliminaKon
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New AbstracKon: Set Dataflow
❖Need an abstracKon to exploit the computaKon similarity

•Decouples set operands and set operators for fine-grained analysis
❖Set Dataflow: A directed graph indicaKng how sets are transferred

•Indicates data reuse for redundancy eliminaKon
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Reduced Operators: 2* , 1* , 1* , 1*∩ N(v0) N(v1) N(v2)



Overview of Cyclosa
❖Cyclosa: A graph paAern mining framework based on the set dataflow

Input 
Pa6erns

Set Dataflow 
Analyzer

Dataflow Dataflow Dataflow Dataflow

Core 1 Core 2

Set Dataflow  
ExecuDon Engine

Set Management 
Substrate

Frontend Backend

Data graph properKes 

Redundancy- 
aware 

scheduling 

Execute

•How to obtain an efficient dataflow
•How to execute the set operaDons
•How to manage the sets data



Designing Set Dataflow Analyzer
❖Challenges: Embracing small search space and low redundancy

•Various search spaces for different matching orders

❖Main idea: Consider paAern and graph properKes at the same Kme

•Redundancy is hard to predict
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Redundancy-aware PaAern Analysis
❖Degree-first DFS Order: Raising the possibility of results reusing

❖Graph-aware Cost EsDmaDon: Minimizing total workloads

•High-degree verKces are more likely to be involved into redundancies

•Combines the degree and triangle count of data graph to improve precision
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Light-weight Set Dataflow ConstrucKon
❖Set Dataflow RepresentaDon: Decoupled computaKon and set data

Input OutputOperator
Generator

Combiner

Reducer

V

N(v0)

SI V0

V0 N(V0)

v1 ∈ N(v0) V1 R(0)

•Extracts basic compute units of graph paAern mining for expressiveness
•Input and output sets are individually idenKfied in the dataflow for data sharing

•Eliminates explicit redundancies by dataflow cuong

v3 ∈ N(v0) ∩ N(v1)

v2 ∈ N(v0) ∩ N(v1), v2 > v1

V1 N(V1)

V2R(1)V0 N(V0)

V3R(2)



Set-centric Dataflow ExecuKon
❖Set-centric: Put a set instead of a subgraph as the basic parallel unit

•Subgraphs are oblivious to the shared sets during runKme
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Oblivious to the shared sets Iden-fying a set computa-on with set IDs 



Set-centric Dataflow ExecuKon
❖Set-centric: Put a set instead of a subgraph as the basic parallel unit

•Subgraphs are oblivious to the shared sets during runKme

•Benefits from the set dataflow scheduling and maintains reusable set space
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Operator
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Restore

Iden-fying a set computa-on with set IDs 

Set Operators
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Set-centric Dataflow ExecuKon
❖Challenges: Oblivious to the subgraph structure

•Embracing correctness and efficiency is challenging
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❖SoluDon: Dual IDs that separate set IDs and scheduling IDs



Set-centric Dataflow ExecuKon
❖Challenges: Oblivious to the subgraph structure

•Embracing correctness and efficiency is challenging
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❖SoluDon: Dual IDs that separate set IDs and scheduling IDs



Redundancy-aware Set Management
❖AutomaKcally results caching for set computaKons
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•Challenges: Storing all results in limited memory space is impossible
•SoluDon: SelecKvely storing results with high reuse possibility



Redundancy-aware Set Management
❖Degree-guided Caching Mechanism

•Storing computed results from high-degree verKces first (previous observaKon)
•Priority decision based on the Combiner posiDon in the set dataflow
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Evaluated Benchmarks
❖Diverse graph paAerns

•Single vs. mulKple paAerns 

❖Real-world graphs
•Graphs with 100K to Billion edges

•Sparse vs. dense paAerns
•PaAerns with different sizes

❖State-of-the-arts systems
•GraphPi: Best search space

•SumPA: Most related

❖Experimental Plavorm
•2x14-core E5-2680v4 CPU 

•256GB RAM, 512GB SSD 

•64bit Ubuntu 18.04

(k-Cliques, Pseudo Cliques, k-MoKfs, …)



Performance Comparison
❖Comparison with state-of-the-arts

•Subgraph lisKng for single paAerns

•CounKng mulKple pseudo cliques

‣Yielding 1.19× to 16.28× 
speedup over GraphPi

‣Handles both explicit and 
implicit redundancies well

‣Yielding 4.01× ∼ 7.52× 
speedup over GraphPi
‣Redundancies among 
mulKple paAerns are well 
reduced by set dataflow



EvaluaKon of Results Caching
❖Efficiency of results caching

•Achieves avg. 2.53x beAer performance than non-caching
•Reduces more redundancies than exisKng systems, especially for implicit ones 
•Efficient in a limited memory space



EvaluaKon of Scaling Threads
❖Scalability on the number of threads

•Scaling well with # threads because of mulK-level parallelisms in the set dataflow

•Increasingly-saturated performance improvement due to memory access contenKon

hyper-threading



Overhead
❖Memory consumpKon

❖Dataflow construcKon Kme

•RelaKvely small memory footprint with a DFS-style execuKon mode
•Set space allocated for each node of the set dataflow is reused for computaKon
•Smart caching strategies explore the trade-off between capacity and reusability

•Limited construcKon overhead because graph paAerns are usually small



Conclusion
❖IdenKfying explicit and implicit redundancies in graph paAern mining

•OpportuniKes from staKc and dynamic computaKon similarity

❖We propose the concept of set dataflow to remove redundancies
•Cost-efficient and redundancy-aware set dataflow analysis
•Set-centric dataflow execuKon model
•Memory-friendly results caching and reusing mechanisms

❖Advanced performance improvement
•Outperforming state-of-the-arts by up to 16.28x


