

Calcspar: A Contract-Aware LSM Store for Cloud Storage
with Low Latency Spikes

Yuanhui Zhou1, Jian Zhou1�, Shuning Chen2, Peng Xu3�, Peng Wu1,
Yanguang Wang2, Xian Liu2, Ling Zhan4, Jiguang Wan1

1 WNLO, Huazhong University of Science and Technology, Wuhan, Hubei, China
2 PingCAP, China

3 Research Center for Graph Computing, Zhejiang Lab, Hangzhou, Zhejiang, China
4 Division of Information Science and Technology, Wenhua University, Wuhan, China

�Corresponding author {jianzhou@hust.edu.cn, xup@zhejianglab.com}

Abstract
Cloud storage is gaining popularity because of features such
as pay-as-you-go that significantly reduces storage costs.
However, the community has not sufficiently explored its con-
tract model and latency characteristics. As LSM-Tree-based
key-value stores (LSM stores) become the building block
for numerous cloud applications, how cloud storage would
impact the performance of key-value accesses is vital. This
study reveals the significant latency variances of Amazon
Elastic Block Store (EBS) under various I/O pressures, which
challenges LSM store read performance on cloud storage. To
reduce the corresponding tail latency, we propose Calcspar, a
contract-aware LSM store for cloud storage, which efficiently
addresses the challenges by regulating the rate of I/O requests
to cloud storage and absorbing surplus I/O requests with the
data cache. We specifically developed a fluctuation-aware
cache to lower the high latency brought on by workload fluc-
tuations. Additionally, we build a congestion-aware IOPS al-
locator to reduce the impact of LSM store internal operations
on read latency. We evaluated Calcspar on EBS with different
real-world workloads and compared it to the cutting-edge
LSM stores. The results show that Calcspar can significantly
reduce tail latency while maintaining regular read and write
performance, keeping the 99th percentile latency under 550µs
and reducing average latency by 66%.

1 Introduction
In recent years, the trend that many businesses and organi-
zations shift their data to the cloud has fueled the growth of
cloud storage [21, 34]. This is due to the advanced features
and cost-effectiveness of cloud storage. For example, Amazon
Web Services (AWS), the world’s most broadly adopted cloud
platform, provides various storage services with high scalabil-
ity and reliability on a pay-as-you-go basis [8] (e.g., Elastic
Block Store, EBS), making them more appealing. Another im-
portant trend is that LSM-Tree-based key-value stores (LSM
stores), such as RocksDB [5], LevelDB [1], Bigtable [14], Dy-

namo [17] and TiDB [19], are becoming the building block for
many cloud applications. However, none of the existing LSM
stores is optimized for cloud storage to eliminate long-tail la-
tency. Notably, it is challenging to balance the estimated peak
performance with the budget for cloud storage performance
(e.g., IOPS). Although many cloud storage providers adver-
tise elastic storage volumes that can accommodate changing
performance needs, these volumes’ scaling capabilities fail to
adapt to an inevitable traffic fluctuation. For instance, AWS
EBS only supports increasing the purchased IOPS, which
would take hours or even days to complete [2]. Hence, it
is impractical to rely solely on elastic volumes for timely
adjustments in the face of short-term workload changes.

To understand how cloud storage would respond to traffic
fluctuation, we have explored the latency characteristics of
AWS EBS volumes. Results show that EBS guarantees a
service agreement called Service Level Agreement (SLA)
in which the processing latency of each request falls within
an appropriate threshold if the accesses do not exceed the
paid IOPS. We observe that the processing latency of each
consecutive request dramatically increases when the demands
in a time window exceed the IOPS agreement. Besides, the
cloud storage’s contract model shows that the higher the paid
IOPS, the lower the latency. However, such an agreement is
constrained by IOPS budgets, and naturally, performance in
terms of latency will suffer if the IOPS is overdrawn.

The latency spike caused by limited IOPS in cloud stor-
age severely impacts the performance of latency-sensitive
applications on top of LSM stores. We take one of the most
widely deployed LSM store implementations, RocksDB, as
an example. The RocksDB first writes the in-memory table
(memtable) to respond quickly with reasonably low latency.
Until the in-memory table is full, RocksDB then persists the
table to the storage volume in large chunk writes (e.g., SSTa-
bles), thus aggregating the random writes into sequential ones.
Such a write scheme reduces the number of write requests and
achieves high write throughput. It then employs internal com-
paction mechanisms to merge and resort the incoming data

with multiple levels of on-disk tables. Although the internal
compaction operation ensures the orderliness of data in each
level to improve the lookup performance, a read operation
still needs to traverse multiple levels, resulting in read ampli-
fication. As the IOPS on a cloud storage volume is limited,
the read performance of RocksDB is significantly throttled.

There are several challenges to avoid read latency spikes
in LSM stores. First, the read request performance fluctuates
significantly because the cloud storage volume isn’t flexible
enough to timely keep up with the changing workload. The
fluctuating workload causes the number of read I/Os of an
LSM store to access cloud storage volumes to vary signifi-
cantly. The request latency increases when the I/O number
exceeds the paid IOPS of the cloud storage volume. Second,
the read amplification in an LSM store further strengthens the
workloads fluctuations. Multi-level data layouts inevitably
cause read amplification problems, such as those found at
the LSM-Tree L0 level requires traversing multiple tables, so
reading a single key-value pair may generate multiple I/Os.
Third, the speed limit mechanism of cloud storage volume
conflicts with LSM stores’ internal multi-thread concurrency
mechanism, and requests among multiple threads congestion
on the cloud storage volume leads to an increase in latency
multiples. Fourth, LSM stores’ internally inherent mecha-
nisms amplify the damage on the read latency of cloud storage
volumes. Irregular flush operations or indeterminate size com-
paction operations cause a sudden increase in the number of
I/Os accessing the cloud storage volume, resulting in high tail
latency. Finally, the tradeoff between cost and performance
increases the cost exponentially to get better tail latency, re-
sulting in significant resource waste and limited throughput
improvement.

One natural solution to the above challenges is contracting
a higher IOPS budget with cloud storage volumes, ensuring
that the LSM store’s I/O number do not exceed the paid IOPS
to maintain optimal latency. However, this raises the costs.
Also, the peak IOPS demand in real production environments
is difficult to predict. Instead, we aim to explore the best
performance of an LSM store under a specific IOPS budget.

This paper presents Calcspar, a cloud storage volume
contract-aware LSM store based on Amazon’s EBS with re-
duced latency spikes, and it tolerates both external workload
fluctuations and internal operation contentions. Calcspar first
employs fluctuation-aware caching, which combines hotspot-
aware proactive prefetching and shift-aware passive caching,
to adapt to changing workloads. The prefetching strategy iden-
tifies hotspots for high load periods and proactively fetches
them during low load periods, thus smoothing out the external
load changes. Then, during the high load periods, the passive
caching leverages the temporal locality to extrude the stale
prefetched data and adapt to hotspot shifts without issuing
extra requests. Calcspar then leverages a congestion-aware
IOPS allocator to assign priority for different internal requests
and avoid elevated latency due to limited IOPS budgets. The

allocator employs a multi-queues throttling structure to pre-
vent thread congestion. The opportunistic compaction then
assigns write requests in different LSM levels into different
priority queues, thus balancing the read amplification and
write throttling. The contributions of this paper include:

1) We conducted an in-depth analysis of the performance
of cloud storage volumes, which first illustrates the un-
written contract between latency and load pressures.

2) We propose a rate-limiting performance model for cloud
storage volumes based on the observations, experimen-
tally validate the model and reveal opportunities to obtain
optimal latency.

3) Our proposed Calcspar is better suitable for AWS cloud
storage volumes where IOPS budgets are vital to the
performance and significantly reduced the tail latency of
LSM-Tree.

The rest of this paper is organized as follows. Section 2
takes Amazon’s EBS as the example to models the perfor-
mance characteristics of cloud storage volumes. The chal-
lenges of reducing the latency for an LSM store on cloud
storage are discussed in section 3. Calcspar designs are then
introduced in section 4 to address these challenges and they
are evaluated in section 5. Finally, the related work and con-
clusions are presented in sections 7 and 8, respectively.

2 Modeling Cloud Storage Performance

2.1 Contract Model of Cloud Storage

The cloud storage providers, such as AWS, offer a variety of
cost-efficient storage volumes for users to meet their distinct
needs and adapt to the changing market. Table 1 shows the
contract model of the cloud storage, which illustrates the price
and performance relationship of the corresponding volume
type. The pricing is based on block storage in the AWS ap-
northeast-2 region in July 2022 [3, 4]. The contract model
indicates that as the price of IOPS increases, the lower latency
of the corresponding type. Thus, it entails users choosing the
appropriate storage volume and IOPS budget based on their
needs. However, the paid IOPS only guarantees the number
of returned I/Os rather than the optimal latency. Also, EBS
performance scaling supports only increasing paid IOPS and
takes hours to days to take effect [2]. There’s no agreement on
how the request would be responded to when the loads exceed
the IOPS. Hence the corresponding latency characteristics are
widely ignored by existing LSM stores.

2.2 Unwritten Latency Performance

To unwrap the hidden latency characteristics and understand
how the above contract model would affect the performance

Table 1: EBS IOPS prices and latencies.
Type Init IOPS IOPS price ($) Latency (µs)
gp2 3×GB 0.038 ∼200
gp3 3000 0.0058 ∼300
io1 100 0.0666 ∼100
io2 100 0.067 ∼10

0 500
0

0.5

1

C
D

F
of

 I/
O

 la
te

nc
y (a) gp2

0 1000
0

0.5

1
(b) gp3

0 500
0

0.5

1
(c) io1

0 200 400
0

0.5

1
(d) io2

Latency (μs)

 I/O pressure below paid IOPS I/O pressure exceed paid IOPS

Figure 1: Latency CDF of different cloud storage.

of an LSM store, we first perform a series of experiments on
cloud storage volumes, then proposing a performance model.

Experiment #1: Cumulative Distribution Function (CDF)
of latency under vary I/O pressures. We measure the latency
of EBS volumes gp2, gp3, io1, and io2 with paid 3000 IOPS
for each by sending 4KB random read requests with varying
pressures. We employ fio [22] to tune the I/O pressure by con-
trolling the size of Submit IOPS, which is the number of I/Os
submitted to EBS per second. Yet, the cloud storage volume
won’t handle more than the paid IOPS. Figure 1 shows the
latency CDF results that support the following two findings.

Finding 1: When the I/O pressure exceeds the paid IOPS,
the latency increases deterministically and significantly. On
the contrary, their average latency performance is much better
when the Submit IOPS is under paid IOPS. For example, the
average latency of io2 even reached 100µs.

Finding 2: The IOPS budget is proportional to the cost
when considering Table 1. The slightly higher-cost io2 has
the best and most stable latency. The latency performance of
the cheapest gp3, which initially provides 3000 IOPS, is far
lower than the other three EBS types.

Experiment #2: Limited IOPS budgets. In this experiment,
we explore the latency CDF under different IOPS budgets.
We evaluate one io2 under two different pressures. Request
latency distributions are given in Figure 2. Results indicate
that regardless of the paid IOPS, the access latency when
the Submit IOPS exceeds the paid IOPS is more than 5×

10
2

10
3

10
4

Latency (μs)

0.0
0.2
0.4
0.6
0.8
1.0

C
D

F
of

 I/
O

 la
te

nc
y

270 μs

 1k-
 1k+
 5k-
 5k+
10k-
10k+
15k-
15k+

Figure 2: Latency CDF under different paid IOPS. “1k” means
io2’s paid IOPS. “+” indicates that the Submit IOPS exceeds
the paid IOPS; “-” means not exceed.

Figure 3: Latencies under rigorously controlled pressure. Re-
spond IOPS is the number of requests returned.

worse than the access latency when not exceeded. The 99th

percentile latency are below 270µs when the Submit IOPS
does not exceed the corresponding paid IOPS. However, when
the Submit IOPS exceeds the paid IOPS, the access latency
increases to 1000∼11000µs. These long-tail latencies degrade
the user experience.

Experiment #3: Elevated latency spike. To explore rea-
sons behind the latency spike under high I/O pressures, we
rigorously control the I/O send rate in a single thread for an
1000-IOPS io2 volumes. The latency of each request is shown
in Figure 3. In the 1st second, when the Submit IOPS does
not exceed the paid IOPS, the latency is lower than 200µs. In
2nd second, the Submit IOPS is 1600, the latencies of the first
1000 requests are identical to that of the first second. However,
the latencies of the rest 600 requests increase significantly
to about 1000µs, which renders 1/IOPS second. The Submit
IOPS in the 5th second is twice the paid IOPS, the first 1000
requests can get low latency while the latencies of the last
1000 requests equal 1/IOPS second again. Although the Sub-
mit IOPS drops to 1000, the latencies of subsequent requests
remain high. Until we pause the workload at the 14th second
and resume it at the 15th second, the latencies recuperate.

Speculative Reason #1: We speculate the reason behind
the observation is due to the speed-limiting mechanism inside
EBS, which handles the current excess I/O by overdrawing
the next 1 second of IOPS, and at the same time, the “punitive”
improvement latency is 1/IOPS to prevent the requests beyond
the payment from continuing to be responded.

For example, the last 600 I/O requests in the 2nd-second
overdraw 600 IOPS from the 3rd second. Hence, only the
remaining 400 (=1000− 600) can be served quickly in the
3rd second. The overdraft is paid off when no I/O request is
sent in the 14th second. Therefore, the latency returns to a
lower level in the following 15∼19 seconds

Since the resources of cloud services are on a pay-per-use
basis, cloud storage providers use this mechanism to maintain
SLAs to prevent users from constantly acquiring benefits
beyond what they paid. Meanwhile, by increasing the delay,
the operation continues from the user’s perspective; thus,
there is no opportunity for recalling the service.

Experiment #4: Thread congestion. The effect of the num-

https://github.com/google/leveldb
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/modify-volume-requirements.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/modify-volume-requirements.html
https://aws.amazon.com/cn/ebs/pricing
https://aws.amazon.com/cn/ebs/pricing
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-volume-types.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-volume-types.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-volume-types.html
https://github.com/facebook/rocksdb
https://github.com/facebook/rocksdb
https://rocksdb.org/blog/2017/12/18/17-auto-tuned-rate-limiter
https://rocksdb.org/blog/2017/12/18/17-auto-tuned-rate-limiter
https://rocksdb.org/blog/2017/12/18/17-auto-tuned-rate-limiter
https://www.alibabacloud.com/product/disk/
https://www.alibabacloud.com/product/disk/
https://aws.amazon.com/what-is-cloud-storage/
https://aws.amazon.com/what-is-cloud-storage/
https://cloud.google.com/
https://cloud.google.com/
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
https://github.com/axboe/fio
https://github.com/axboe/fio

https://azure.microsoft.com/en-us/products/storage/disks/
https://azure.microsoft.com/en-us/products/storage/disks/
https://www.researchandmarkets.com/reports/4306260/cloud-storagemarket-forecasts-from-2017-to-2022
https://www.researchandmarkets.com/reports/4306260/cloud-storagemarket-forecasts-from-2017-to-2022
https://www.researchandmarkets.com/reports/4306260/cloud-storagemarket-forecasts-from-2017-to-2022

	Introduction
	Modeling Cloud Storage Performance
	Contract Model of Cloud Storage
	Unwritten Latency Performance
	Latency Model of EBS

	Modeling RocksDB Performance
	RocksDB under IOPS Limitation
	Challenges in Avoiding Latency Spikes

	Calcspar Design
	IOPS Stabilizer for EBS
	Congestion-Aware IOPS Allocating
	Fluctuation-Aware Caching
	Opportunistic Compaction

	Evaluation
	Experimental Setup
	Overall Performance
	Congestion Mitigation Effectiveness
	Cache Effectiveness
	Impact of Opportunistic Compaction
	Sensitivity Analysis

	Discussion
	Related Work
	Conclusions

