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Abstract
As a complement to data deduplication, delta compression fur-
ther reduces the data volume by compressing non-duplicate
data chunks relative to their similar chunks (base chunks).
However, existing post-deduplication delta compression ap-
proaches for backup storage either suffer from the low sim-
ilarity between many detected chunks or miss some poten-
tial similar chunks, or suffer from low (backup and restore)
throughput due to extra I/Os for reading base chunks or add
additional service-disruptive operations to backup systems.

In this paper, we propose LoopDelta to address the above-
mentioned problems by an enhanced embedding delta comp-
ression scheme in deduplication in a non-intrusive way. The
enhanced delta compression scheme combines four key tech-
niques: (1) dual-locality-based similarity tracking to detect
potential similar chunks by exploiting both logical and phy-
sical locality, (2) locality-aware prefetching to prefetch base
chunks to avoid extra I/Os for reading base chunks on the
write path, (3) cache-aware filter to avoid extra I/Os for base
chunks on the read path, and (4) inversed delta compression to
perform delta compression for data chunks that are otherwise
forbidden to serve as base chunks by rewriting techniques
designed to improve restore performance.

Experimental results indicate that LoopDelta increases the
compression ratio by 1.24∼10.97 times on top of deduplica-
tion, without notably affecting the backup throughput, and it
improves the restore performance by 1.2∼3.57 times.

1 Introduction
Data deduplication has been widely used in computer systems
to improve storage space and network bandwidth efficien-
cy [26, 29, 36, 53]. Typically, it removes duplicate data at the
chunk granularity (e.g., 8KB size) but fails to eliminate redun-
dancy among (highly) similar but non-duplicate data chunks.
Delta compression has been employed to further remove re-
dundant data from post-deduplication non-duplicate but simi-
lar chunks, by compressing non-duplicate data chunks relative
to their similar chunks (base chunks) [18,19,21,37,47,48,55].

In this paper, we focus on adding delta compression to in-

line backup storage which usually adopts only deduplication
for data reduction. Some efforts have been made to achieve
this. Shilane et al. [38] suggested that delta compression
achieves more than 2× additional compression on top of
deduplication, but it incurs extra I/Os for reading base chunks
from storage, which significantly reduce backup throughput.
One solution to this problem is to replace the hard disk drive
(HDD) with other media with higher random I/O performance,
such as solid state drive (SSD). However, this method is not
cost-effective because HDD remains significantly cheaper
than SSD. So, this paper focuses on HDD-based backup sys-
tems.

Zou et al. [55] proposed MeGA to perform delta comp-
ression for data chunks whose base chunks can be detected
in the last and the current backups on top of deduplication.
MeGA is developed based on the assumption that, after each
backup, the system will reorganize both the data chunks and
the base chunks of the delta-compressed chunks of this back-
up into a delta-friendly data layout. However, this assumption
has a nontrivial impact on both the users and the backup sys-
tems, i.e., the backup operations for users are suspended in the
reorganization process, and the backup system must perform
service-disruptive reorganizations frequently and completes
them promptly after each user’s backup. This paper focus-
es on adding delta compression seamlessly to deduplication
systems in a non-intrusive and non-service-disruptive manner.

Existing schemes that add delta compression to deduplica-
tion systems face many challenges. The first challenge is a low
compression ratio. The base chunks required for delta comp-
ression are detected by indexing the sketches of chunks, and
the compression ratio mainly relies on the strategies adopted
to index the sketches [6, 11, 24, 32, 37]. Usually, sketches are
weak hashes of the chunk data and can be used to detect simi-
lar chunks [4, 6, 11, 21]. Full indexing (indexing the sketches
of all data chunks in storage) is the simplest indexing strategy.
Our study in Section 3.1 suggests that when similar chunks
appear within the same backup, this technique may decrease
the compression ratio due to the selection of suboptimal base
chunks.
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Besides full indexing, the existing sketch indexing tech-
niques can be classified into two categories: the logical-
locality-based indexing [42, 55] and the physical-locality-
based indexing [37, 38], which have complementary capabili-
ties of detecting similar chunks. The former can detect most
of the highly similar chunks by leveraging the logical locality
between two adjacent backups but may miss some potential
similar chunks; the latter can detect most of the potentially
similar chunks by exploiting the physical locality preserved
in storage units called containers but suffers from the low
similarity of detected chunks. Our analyses in Section 3.1
indicate that the desirable properties of the two techniques
can be combined by exploiting both the logical and physical
locality.

The second challenge of adding delta compression to de-
duplication systems is extra I/Os for reading base chunks
during backup, which prevent delta compression from being
used in high-performance inline backup systems [37, 38]. A
typical deduplication-based backup system organizes data
chunks into containers each of which consists of hundreds
or thousands of data chunks as the storage units [17, 53]. For
such a system, a routine operation during deduplication is to
prefetch metadata from containers being deduplicated against
to accelerate duplicate detection. Our study in Section 3.2
demonstrates that containers holding potential similar chunks
detected by using both the logical and physical locality can be
prefetched by piggybacking on the routine operations without
extra I/Os.

The third challenge is extra I/Os for reading base chunks
during restore, which reduce restore performance significant-
ly. More specifically, when delta compression is applied, data
chunks may refer to previously written deltas, and the base
chunks of these deltas may require extra I/Os during restore.
To address this issue, it is necessary to identify such previous-
ly written deltas and avoid referring to them. Our analyses in
Section 3.2 suggest that existing approaches to identify such
deltas either are vulnerable to garbage collection (GC) or re-
quire extra I/Os. Our analyses also suggest that the previously
written deltas whose base chunks require extra I/Os during
restore can be predicted during backup by using the metadata
prefetched by the routine operations during deduplication.

The fourth challenge is the potential to miss base chunks
when rewriting techniques are applied. Backup systems often
adopt rewriting techniques to identify infrequently reused
containers and give up deduplicating against them to alleviate
chunk fragmentation [14, 16]. To cooperate with rewriting
techniques, data chunks in infrequently reused containers
cannot serve as base chunks for delta compression, resulting
in a compression loss. Our analyses in Section 3.3 suggest
that if the target of delta compression is changed to previously
written chunks, rather than data chunks in the ongoing backup
as in the traditional delta compression method, to generate
additional encoded copies of the previously written chunks,
the un-encoded copies of previously written chunks can be

eliminated during GC to achieve data reduction, which is
equivalent to the effect of delta compression.

With the above observations, we propose LoopDelta based
on the deduplication strategy that groups data chunks into
containers and prefetches metadata from them for duplicate
detection during deduplication [17, 53]. By combining the
following four key techniques, LoopDelta embeds delta comp-
ression in inline deduplication non-intrusively.

• Dual-locality Similarity Tracking. LoopDelta tracks
data chunks and base chunks of delta-compressed chunks
of the immediate predecessor backup to capture high-
ly similar chunks by leveraging the logical locality and
tracks the containers holding the aforementioned da-
ta chunks to capture similar chunks stored in these
containers by exploiting the physical locality.
• Locality-aware Prefetching. LoopDelta prefetches

base chunks by piggybacking on routine operations to
prefetch metadata during deduplication, thereby avoid-
ing extra I/Os for reading base chunks on the write path.
• Cache-aware Filter. LoopDelta identifies the previous-

ly written deltas whose base chunks require extra I/Os du-
ring restore with the assistance of the recently prefetched
metadata during deduplication and avoids referring to
such deltas, thereby eliminating extra I/Os for reading
base chunks on the read path.
• Inversed Delta Compression. For data chunks whose

detected similar chunks are forbidden to serve as
base chunks by rewriting techniques, LoopDelta delta-
encodes the detected similar chunks relative to these data
chunks while deferring the removal of the data of these
delta encoded chunks to the GC process.

Experimental results based on real-world datasets indicate
that LoopDelta significantly increases both the compression
ratio and restore performance on top of deduplication, without
notably affecting backup throughput.

2 Background
2.1 Data Deduplication
Deduplication and Restore Processes. Typically, a backup
stream is divided into data chunks, which are fingerprint-
ed with a secure hash (e.g., SHA1) [12, 31, 33, 35, 46, 49].
Each fingerprint is queried in a fingerprint index to determine
whether the system already stores a copy of the fingerprinted
data chunk. If true, the system does not store the data chunk
but refers it to the previously written copy. Meanwhile, con-
secutive unique data chunks are grouped into a large I/O unit,
called a container, and written to HDDs.

When a backup completes, a recipe recording the finger-
print sequence of the backup stream is stored for the future
restoration [16]. When a stored backup is requested, the re-
store process accesses data chunks one by one according to
their order in the recipe to reconstruct the original data. In this
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process, a restore cache is maintained in memory [7]. The
read unit in this process is a container.
Redundancy Locality in Backup Workloads. Backup
workloads typically consist of a series of copies of primary da-
ta [3,28,41,43]. Redundancy locality in the backup workloads
refers to the repeating patterns of the redundant data among
consecutive backups [16]. The repeating pattern before de-
duplication is called logical locality, which is preserved in the
recipe and sequence of consecutive data chunks before dedup-
lication. That repeating pattern after deduplication is called
physical locality (also called spatial locality [53]), which is
preserved in containers.

Both categories of the locality have been widely exploited
to improve deduplication performance [9, 17, 23, 27, 44, 53].
For example, a fingerprint index mapping fingerprints to the
physical locations of the chunks is required for detecting
duplicates. However, storing the index in HDDs would re-
sult in low backup throughput, while putting it in memory
would limit system scalability. Zhu et al. [53] put the in-
dex in HDDs and alleviate the indexing bottleneck by using
physical-locality-based caching. Lillibridge et al. [23] and
Guo et al. [17] put the index in memory and reduced its mem-
ory footprint by using logical-locality-based sampling and
physical-locality-based sampling.
Chunk Fragmentation and Rewriting. Deduplication ren-
ders data chunks of a backup stream to be physically scattered,
and this is known as chunk fragmentation [14, 22, 30, 56].
Chunk fragmentation decreases the locality and efficiency
of the techniques exploiting this locality. For example, it
decreases restore performance and backup throughput of
container-based backup systems [2, 22]. Backup systems of-
ten adopt rewriting approaches to identify infrequently reused
containers and give up deduplicating against them to allevi-
ate fragmentation [7, 8, 15, 20, 22, 39]. Here, the infrequently
reused containers are previously written containers that con-
tain only a few data chunks referenced by the current backup.
The data chunks that refer to previously written data chunks
stored in infrequently reused containers are called fragmented
chunks, which will be stored (rewritten) along with unique
data chunks to improve the locality of the current backup.

Among rewriting approaches, Capping [22] processes the
backup stream in non-overlapping segments, each of which
contains a sequence of consecutive data chunks. Within a
segment, data chunks can refer to at most T old (previously
written) containers. If the number of old containers exceeds
T , only the most referenced T containers can be referenced,
and data chunks referring to other old containers are rewritten
to reduce fragmentation. The value T , also called capping
level, is a configurable parameter that trades deduplication for
restore performance.

2.2 Post-deduplication Delta Compression
Post-deduplication delta compression consists of three stages:
(1) resemblance detection (finding similar candidates), (2)

reading the base chunks, and (3) delta encoding.
Resemblance Detection. For data chunks not removed by de-
duplication, a sketch calculation approach calculates sketches
for data chunks [32,51,54]. Sketches are usually weak hashes
of the chunk data [4, 6, 11, 21]. Two chunks are considered
similar if they have the same sketches. The sketch indexing
strategy has a critical impact on resemblance detection effi-
ciency, which will be discussed in Section 3.1.
Reading the Base Chunks. Reading the base chunks for an
HDD-based system is the performance bottleneck. Shilane
et al. [37, 38] indicated that I/O overheads required to read
back the base chunks decrease the backup throughput to an
unacceptable level. MeGA [55] monitors the containers hold-
ing the base chunks and does not perform delta compression
for the data chunks whose base chunks are stored in rarely
referenced containers to reduce I/Os for reading base chunks.
Besides, PFC-delta [52] prefetches base chunks by piggyback-
ing on the routine I/Os during deduplication.
Delta Encoding. Xdelta [25] is a popular delta encoding
technique that employs hashing and indexing to identify and
eliminate repeated strings between the target and base chunks.
Edelta [45] simplifies this process by replacing some of the
hashing and indexing operations with fast byte-wise compar-
isons through exploiting fine-grained locality between similar
chunks.

2.3 Garbage Collection
Garbage collection (GC) removes invalid chunks (chunks not
referenced by any unexpired backups) from the system to
consolidate free space [5, 14, 17, 40, 56]. Duplicate chunks
will be removed in the GC process [2, 10]. To improve write
performance, a deduplication-based backup system might
choose to write (rewrite) occasional duplicate chunks while
deferring deduplication to a GC process [2].

GC first traverses live backups and marks the live chunks.
For a data chunk with multiple physical instances, GC marks
one (often the most recently written one) of them as the live
chunk [10]. Then, it copies live chunks from partially-invalid
containers to form new containers. Then, previous containers
whose live chunks are copied out of are reclaimed.

3 Observations and Motivations
3.1 Analysis of Sketch Indexing Efficiency
Besides the full indexing technique, existing sketch indexing
techniques can be divided into two categories: logical-locality-
based indexing techniques and physical-locality-based index-
ing techniques. This section analyzes the efficiency of these
two categories of indexing techniques as well as the full in-
dexing technique.

3.1.1 Logical-locality-based Sketch Indexing
Substantial similar chunks for delta-compressing a backup
can be detected from data chunks of its immediate predeces-
sor backup and similar chunks of this backup. This is because
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Figure 1: Chunks B′, C′, and D′ are respectively similar to
chunks B, C, and D. For backup 3, A and B′ inherit from
backup 1, while C′ and D′ inherit from backup 2. When dete-
cting similar chunks for data chunks of backup 3, the logical-
locality-based indexing techniques will miss B in backup 1,
which is actually similar to B′.

each backup is often a modified copy of the last backup. Based
on similar observations, MeGA [55] and HARD [42] index
sketches of the data chunks and base chunks of the delta-
compressed chunks of the last backup for resemblance detec-
tion. These sketch indexing techniques essentially exploit the
logical locality between two adjacent backups.

An advantage of these indexing techniques is the high sim-
ilarity of base chunks. In most cases, the best base chunk for
the delta compression of a data chunk is its previous copy in
the last backup because similar chunks are usually stemming
from small edits to the last backup. A disadvantage of these
indexing techniques is that they may miss some potential
similar chunks. We observe that data chunks of a backup can
inherit from multiple previous backup versions, for example,
when data rollback occurs. This means that similar chunks
may exist across backup versions. These similar chunks do
not have a direct relationship to the immediate predecessor
backup and thus cannot be detected by logical-locality-based
indexing techniques. Figure 1 gives an example to illustrate
how this problem may arise.

3.1.2 Physical-locality-based Sketch Indexing

Stream-Informed delta compression (SIDC) [38] is a physical-
locality-based sketch technique that detects similar chunks
by exploiting the physical locality among backups. Since
physical locality is preserved in containers, SIDC is built
on container-based deduplication systems. When a duplicate
chunk is detected, the container holding the most recently
written instance of this duplicate is selected for deduplicating
against, and sketches of all data chunks in this container are
indexed for matching similar chunks.

An advantage of this indexing technique is that it can detect
most similar chunks including the ones missed by logical-
locality-based indexing techniques. For data chunks that are
inherited from versions older than the immediate predecessor
backup, their sketches would be indexed if they are stored in
the containers that would be deduplicated against, even if they
do not have a direct relationship to the last backup. As shown
in Figure 1, when the system deduplicates chunks in backup
3, container 1 is selected for deduplicating against because it
holds the previously written copy of chunk A. Therefore, the
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Figure 2: A in backup N is a self-referenced duplicate chunk,
and the rest are self-referenced similar chunks. B1, C1, and D1
are similar to B2, C2, and D2, respectively. The first four data
chunks are stored in container X . When deduplicating the
second A, the system will select container X for deduplicating
against because this container holds the previous-written copy
of A. Then, sketches of data chunks in container X are indexed
and B1, C1, and D1 are detected as the base chunks for delta-
compressing B2, C2, and D2.

sketches of B in this container will be indexed and detected
as a similar chunk of B′.

A backup may contain duplicates and similar chunks in
itself, where the former are referred to as self-referenced du-
plicate chunks and the latter as self-referenced similar chunks.
Compared with self-referenced similar chunks, similar chunks
detected from the previous backups tend to share more re-
dundancy with unique chunks of the on-going backup. This
is because the latter are much more likely to result from
the former after they are slightly modified. Consequently,
the physical-locality-based sketch indexing technique can
be suboptimal for datasets containing self-referenced dupli-
cate and self-referenced similar chunks. This is because self-
referenced duplicate chunks may cause the newly-written
containers holding data chunks of the on-going backup to
be selected for deduplicating against, which further causes
the self-referenced similar chunks to be matched as the base
chunks for delta compression. Figure 2 presents a simplified
example to illustrate how the problem may arise.

3.1.3 Full Sketch Index

The full sketch indexing technique indexes sketches of all
data chunks in the backup system and it is often serves as
an upper bound for compression ratio evaluations when delta
compression is involved [42, 52, 55]. Since the size of sketch
indexes grows with the number of backup versions, it is chal-
lenging to organize the sketch indexes. Maintaining them in
memory would limit system scalability, while putting them in
HDDs would greatly reduce query throughput.

Another problem facing this technique is that it can be sub-
optimal for datasets containing self-referenced similar chunks.
This technique indexes sketches of all data chunks in the sys-
tem, including self-referenced similar chunks. Thus, when
self-referenced similar chunks are ingested, the sketches of
the best base chunk candidates for delta compression in pre-
vious backups may be replaced by those of self-referenced
similar chunks, causing self-referenced similar chunks to be
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Figure 3: Percentage of potential similar chunks detected
by MeGA, SIDC, Greedy, and the approach exploiting both
logical and physical locality on four datasets.
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Figure 4: Average DCE of MeGA, SIDC, Greedy, and the
approach exploiting both logical and physical locality on the
RDB and WEB datasets.

matched as base chunks for delta compression.

3.1.4 Combining the Best of Both Worlds
Figures 3 and 4 respectively show the percentage and the av-
erage delta compression efficiency (DCE) [51,54] of detected
similar chunks of existing sketch indexing techniques includ-
ing MeGA, SIDC, and the full indexing (Greedy) for datasets
whose characteristics are detailed in Table 1 in Section 5.1.
Multi-version inheritance is common in RDB and SYN data-
sets, and the WEB dataset contains substantial self-referenced
duplicates and similar chunks. DCE, which is calculated as
1− chunk size a f ter delta compression

chunk size be f ore delta compression , measures the similarity of
the detected similar chunks. A larger value of DCE indicates
higher similarity.

The results in the two figures agree with the earlier analysis
in this section, i.e., the logical-locality-based technique can
detect most highly similar chunks but may miss potential
similar chunks, while the physical-locality-based technique
can detect most potential similar chunks but suffers from low
similarity. We found that the two categories of techniques
have complementary capabilities for detecting similar chunks.
This motivates us to propose a dual-locality-based sketch
indexing approach to combine the advantages of both logical
and physical locality. The dual-locality-based approach can
not only detect most potentially similar chunks but also ensure
high similarity between detected chunks, as shown in Figures
3 and 4. Since the full indexing technique can be suboptimal
for datasets containing self-referenced similar chunks, the
dual-locality-based approach can achieve higher DCE than
the full indexing on such datasets.

3.2 Avoiding I/Os for Reading Base Chunks
Extra I/O overheads for reading base chunks on both the write
and read paths prevent delta compression from being used

in high-performance backup systems. In this subsection, we
discuss and analyze the possible approaches to reducing or
eliminating I/O overheads for reading base chunks to make
delta compression feasible and practical for backup systems.

3.2.1 On the Write Path
For container-based deduplication systems, such as Data Do-
main backup systems [53], a routine operation during dedup-
lication is to access containers for prefetching metadata to
accelerate duplicate detection, which provides an opportunity
to eliminate I/Os for reading base chunks. If the containers
holding similar chunks will be accessed for prefetching meta-
data during deduplication, base chunks can be prefetched by
piggybacking on the routine operations during deduplication
without requiring extra I/Os.

Fortunately, if similar data chunks are detected by exploit-
ing both logical and physical locality, as suggested in Sec-
tion 3.1.4, due to redundancy locality, most of the containers
holding potential similar data chunks would be prefetched
during the metadata prefetching process in data deduplication.
As a result, potential similar chunks can be prefetched, i.e.,
piggybacked on the retrieval of the metadata to serve as po-
tential base chunks, thereby avoiding extra I/Os for reading
base chunks on the write path. Zhang et al. [50] employed
a similar base-chunk prefetching technique based on differ-
ent observations, but their approach can only be applied to
specific backup datasets (i.e., packed datasets containing sub-
stantial small files) and detects similar chunks only when
rewriting is applied. In contrast, our approach can be applied
to all backup datasets and can work without rewriting.

3.2.2 On the Read Path
During restore, base chunks of deltas also need to be read from
storage for delta decoding. If base chunks are prefetched along
with metadata during deduplication, they would be prefetched
along with other chunks (or deltas) during restore, without
requiring extra I/Os. However, when a data chunk refers to
an old (previously written) delta, the base chunk of this delta
may require extra I/Os during restore and decrease restore
performance. Data chunks that refer to old deltas whose base
chunks trigger read operations during restore are referred to
as base-fragmented chunks, which should be rewritten for
improved restore performance.

Existing approaches either are vulnerable to GC or require
extra I/Os. SDC [52] can identify base-fragmented chunks
by simulating the data restore process using container IDs
during backup. However, it requires knowledge of the con-
tainer IDs of the base chunks of referenced old deltas, which
is difficult to obtain. Storing container IDs of base chunks
along with deltas in containers is vulnerable to GC because
base chunks can move around due to GC. Storing fingerprints
of base chunks and obtaining their container IDs through the
fingerprint index and cache may incur a large number of extra
I/Os. Rewriting techniques, which are employed to identify
fragmented chunks for deduplication systems, face the same
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problem in identifying base-fragmented chunks because they
also need the container IDs of base chunks for calculating the
containers’ reuse ratios.

When excluding base chunks, the order in which data
chunks are processed during backup is the same as that during
restore. Thus, if the base chunk of a referenced old delta can
be directly found in the restore cache during restore and thus
does not require extra I/O, its fingerprint would also be di-
rectly found in the prefetched metadata during deduplication.
That is, base-fragmented chunks can be identified with the
assistance of the prefetched metadata during deduplication.

3.3 Fine-grained Redundancy Prohibited by
Rewriting

The rewriting technique declares infrequently reused
containers, which should not “share” redundant data with the
current backup to alleviate chunk fragmentation. To this end,
fragmented chunks need to be rewritten. To cooperate with
rewriting, data chunks in the infrequently reused containers
also cannot serve as base chunks for delta compression. How-
ever, existing rewriting techniques only consider duplicate
chunks when identifying infrequently reused containers, with-
out the consideration of similar chunks. In practice, infre-
quently reused containers may contain many similar chunks.
This will lead to a significant compression loss if these similar
chunks cannot serve as base chunks for delta compression.

Actually, delta compression can be considered a process
involving two steps. Specifically, the first step is to generate
a delta for the target chunk, which leads to two versions of
the target chunk: an encoded delta and an un-encoded one.
The second step is to remove the un-encoded target chunk.
If the target of delta compression is changed to previously
written chunks, rather than data chunks in the ongoing backup
as in the traditional delta compression method, there will be
two versions of a previously written chunk. If the un-encoded
one can be removed during GC, delta compression benefits
will be obtained from the data chunks in infrequently reused
containers without affecting the efficiency of rewriting.

4 Design and Implementation
4.1 LoopDelta Overview
LoopDelta is built on a typical deduplication strategy that
groups data chunks into containers and accesses containers
to prefetch metadata during deduplication to accelerate dupli-
cate detection. It aims to embed delta compression in inline
deduplication for highly efficient data reduction. The key idea
behind LoopDelta is the combined use of the following four
key techniques:

• Dual-locality-based Similarity Tracking. By exploit-
ing both the logical and physical locality based on the
observations in Section 3.1, dual-locality-based similari-
ty tracking identifies the containers that hold potential
similar chunks, as detailed in Section 4.2.

Figure 5: An overview of LoopDelta. The dashed arrows
point to key data structures residing in DRAM required for
the corresponding LoopDelta stages.

• Locality-aware Prefetching. For containers holding po-
tential similar chunks declared by the dual-locality-based
similarity tracking, when they are accessed during de-
duplication to prefetch metadata, data chunks are also
prefetched, i.e., piggybacked on the retrieval of the meta-
data to serve as potential base chunks, thereby avoiding
extra I/Os for reading base chunks during backup, as
detailed in Section 4.3.
• Cache-aware Filter. LoopDelta identifies base-

fragmented chunks with the assistance of recently
prefetched metadata during deduplication and rewrites
them to prevent extra I/Os for base chunks during
restore, as detailed in Section 4.4.
• Inversed Delta Compression. For data chunks whose

similar chunks are prefetched from infrequently reused
containers, LoopDelta delta-encodes the prefetched simi-
lar chunks relative to these data chunks while deferring
the removal of the data of these delta encoded chunks to
GC, as detailed in Section 4.5.

The overall workflow of the LoopDelta is illustrated in
Figure 5, which includes four key stages. In stage (1), the
backup stream is chunked and fingerprinted. Then, duplicate
chunks are identified by indexing fingerprints in stage (2). In
stage (2), potential base chunks and their sketches are loaded
into the potential base chunk cache.

In stage (3), a rewriting approach is adopted to identify
infrequently reused containers and fragmented chunks. This
stage can be skipped to disable rewriting. Note that base-
fragmented chunks are also identified in stages (2) and (3),
as detailed in Section 4.4. In stage (4), for all unique, frag-
mented, and base-fragmented chunks, LoopDelta detects their
similar chunks from the potential base chunk cache and per-
forms delta compression for them if their base chunks exist.
Finally, unremoved unique chunks and deltas are appended
to a container.

In LoopDelta, a container consists of a metadata section and
a data section, the same as that in [17, 53]. Data chunks and
deltas are stored in the data section, while their metadata such
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as fingerprints, chunk length, and positions in the container
are stored in the metadata section. We use a bitmap to specify
which ones in the container are stored as deltas. For deltas, the
metadata of their base chunks is also stored in the metadata
section. For data chunks, their sketches are stored along with
data chunks in the data section.

4.2 Dual-locality-based Similarity Tracking
The dual-locality-based similarity tracking is designed to i-
dentify similar chunks for delta-compressing the next backup.
To capture similar chunks with logical locality, it tracks da-
ta chunks and base chunks of delta-compressed chunks of
the ongoing backup. Meanwhile, to capture similar chunks
with physical locality, it tracks data chunks stored in the same
containers as the aforementioned data chunks.

Specifically, we define the reuse ratio of a container for
a backup as the fraction of data chunks in this container
referenced by this backup, the recorded chunk size

the container size , and use a con-
tainer reuse ratio monitor to keep track of the reuse ratio
of containers referenced by data chunks and base chunks of
delta-compressed chunks of the on-going backup. When the
backup completes, all containers holding potential similar
chunks are recorded in the container reuse ratio monitor and
are stored in a dense container list. Containers in this list
will be prefetched to provide potential similar chunks for
resemblance detection in the next backup.

Our approach for prefetching base chunks requires extra
transfer time, thereby decreasing backup throughput, as de-
tailed in the next subsection. To reduce this transfer time, only
containers holding a large number of potential similar chunks
can be recorded in the dense container list. Since containers
with a larger reuse ratio are likely to contain more potential
similar chunks for the next backup, we define a dense contain-
er threshold and only dense containers whose reuse ratios are
greater than this threshold are included in the dense container
list.

4.3 Locality-aware Prefetching
Locality-aware prefetching is designed to prefetch poten-
tial base chunks by piggybacking on routine operations for
prefetching metadata during deduplication. LoopDelta adopts
the duplicate detection strategy proposed by Zhu et al. [53],
which employs an on-disk fingerprint index combined with
an in-memory fingerprint cache and a Bloom filter for du-
plicate detection. Specifically, for each data chunk presented
for storage, its fingerprint is compared against a fingerprint
cache, and on a miss, a Bloom filter is checked to determine
whether the data chunk is likely to exist in the system. If true,
the on-disk fingerprint index is checked, and the metadata in
the corresponding container is prefetched into the fingerprint
cache. The fingerprints of the subsequent data chunks are like-
ly to be matched in the fingerprint cache due to redundancy
locality.

To prefetch potential base chunks by piggybacking on read

operations for prefetching metadata, the dense container list
of the last backup is loaded into memory to build a lookup
table at the beginning of a backup. For each container to be
accessed during deduplication, we check whether it exists in
the dense container list generated by the last backup. If true,
the whole container, including metadata and data chunks, is
prefetched for both deduplication and delta compression; oth-
erwise, only metadata are prefetched for deduplication. If the
whole container is prefetched, all data chunks in the container
as well as their sketches are inserted into the potential base
chunk cache for resemblance detection. In LoopDelta, only
non-delta-compressed chunks can serve as base chunks, as
suggested by [37]. Thus, deltas are not loaded into the poten-
tial base chunk cache. When eviction occurs, based on the
Least Recently Used (LRU) policy, data chunks and sketches
from a container are evicted from the potential base chunk
cache as a group.

Though locality-aware prefetching eliminates the seek and
rotational delays of I/Os for reading base chunks, it increa-
ses the transfer time for prefetching data chunks in dense
containers. The proposed dual-locality-based similarity track-
ing reduces this overhead by defining a dense container thres-
hold, as detailed in the last subsection. Prefetching potential
similar chunks according to a dense container list may be inef-
ficient as containers in the list might have been reclaimed by
GC, for which how to update the dense container list judicious-
ly to minimize the problem will be discussed in Section 4.6.
The previous technique for caching metadata on an SSD [1]
is orthogonal to LoopDelta and could be used in LoopDelta
to increase backup throughput.

4.4 Cache-aware Filter
Cache-aware filter is designed to identify base-fragmented
chunks, which will be rewritten to achieve better restore per-
formance. As introduced in Section 3.2.2, base-fragmented
chunks can be identified with the assistance of the prefetched
metadata during deduplication. Since the metadata prefetched
by the routine operations during deduplication are loaded
into the fingerprint cache, if the base chunk of a referenced
previously written delta can be directly found in the restore
cache during restore and thus does not require extra I/O, its
fingerprint would also be directly found in the fingerprint
cache in the fingerprint indexing stage.

When rewriting is applied, even if a base chunk’s finger-
print can be directly found in the fingerprint cache, this base
chunk can still trigger I/Os during restore. This is because a
container whose metadata are prefetched into the fingerprint
cache might be identified as an infrequently reused container
by the rewriting approach in the next stage, i.e., stage (3) in
Figure 5, so the data chunks it containers cannot serve as
base chunks. Accordingly, the cache-aware filter adopts a
two-step approach to identify base-fragmented chunks. First,
it identifies the base-fragmented chunks referring to deltas
whose base chunks do not exist in the fingerprint cache during
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fingerprint indexing. Then, it identifies the base-fragmented
chunks referencing to deltas whose base chunks exist in the
infrequently reused containers.

Specifically, in the fingerprint indexing stage, if a data
chunk (say, CK) refers to a previously-written delta (say,
Delta_old), the fingerprint of the delta’s base chunk is fetched
from the fingerprint cache and compared against the finger-
print cache. If the fingerprint does not exist in the fingerprint
cache,CK is identified as a base-fragmented chunk; otherwise,
the detected container ID (say, CID_base) of the base chunk
is associated with CK. In the stage of identifying infrequently
reused containers, if CK is identified as a fragmented chunk
by the rewriting approach, there is no need to identify whether
it is a base-fragmented chunk because it will be rewritten; oth-
erwise, if CK is not a fragmented chunk, we further check
whether the container whose ID is CID_base is selected to
avoid being deduplicated against by the rewriting approach. If
true, CK is identified as a base-fragmented chunk; otherwise,
CK is identified as a duplicate chunk.

4.5 Post-deduplication Delta Compression
Inversed Delta Compression. The data chunks in the infre-
quently reused containers cannot serve as base chunks for
delta compression; otherwise, the efficiency of the rewriting
technique would be reduced. Inversed delta compression is
designed to exploit the benefits of delta compression pro-
hibited by rewriting. For a new chunk (say, N) that has a
similar chunk (say, S) detected from the potential base chunk
cache, the traditional direct delta compression approach delta-
encodes N relative to S and generates a delta (say, Deltan,s).
Then, Deltan,s is stored instead of N to achieve data reduction.

On the contrary, inversed delta compression delta-encodes
S relative to N and generates a delta (say, Deltas,n), and then
stores Deltas,n along with N. Since inversed delta compre-
ssion generates an additional encoded S, the un-encoded S in
the infrequently reused container will be removed during the
next GC. It should be noted that delta-decoding a delta gene-
rated by inversed delta compression usually does not require
extra I/Os for reading the base chunk because the delta (e.g.,
Deltas,n) is stored together with the base chunk (e.g., N) in
the same container, except that GC may occasionally disperse
them to different containers.

Inversed delta compression increases the size of the data
to be stored because it needs to store additional deltas, there-
by increasing the I/O overheads for writing data relative to
direct delta compression. Since LoopDelta is I/O-intensive,
it only performs inversed delta compression for data chunks
whose base chunks are prefetched from infrequently reused
containers. Besides, inversed delta compression also causes
more duplicate chunks to be removed during GC, which will
be discussed in Section 4.6.
Delta Compression Workflow. For each unique, fragment-
ed, and base-fragmented chunk, LoopDelta detects its base
chunk from the potential base chunk cache and performs ei-

Table 1: Workload characteristics of the tested datasets.
Name Size Workload descriptions Key property

RDB 1080GB
200 backups of the redis key-value
store database.

Multi-version
inheritance

WEB 330GB
120 days’ snapshots of the website:
news.sina.com. Snapshots of each
day are combined into a tar file.

Self-reference
duplicate and
similar chunks

CHM 284GB

100 versions of source codes of
Chromium project from v84.0.4110
to v86.0.4215. Each version is
combined into a tar file.

SYN 335GB
180 versions of synthetic datasets
generated by simulating file create
/delete/modify operations.

Multi-version
inheritance

ther direct or inversed delta compression according to whether
rewriting is disabled or not. If it is disabled, LoopDelta only
performs direct delta compression; otherwise, data chunks in
the potential base chunk cache are divided into two categories:
the ones prefetched from frequently reused containers and
those prefetched from infrequently reused containers. When
detecting base chunks, LoopDelta prefers the data chunks
prefetched from frequently reused containers. Only if no such
data chunk is detected, can data chunks prefetched from infre-
quently reused containers, if any, be selected as base chunks.

4.6 Garbage Collection
In the GC process, for a data chunk with multiple physical
instances, the system marks the most recently written one as
the live chunk. The delta-encoded chunks for inversed delta
compression are removed in this process. GC may reduce the
efficiency of locality-aware prefetching because containers
in the dense container list generated by the proposed dual-
locality-based similarity tracking in the last backup might
have been reclaimed. To solve the problem, we update the
dense container list to track potential base chunks after GC.
Note that each backup stream has only one list to be updated.
Thus, compared with GC, overheads for updating the dense
container lists are negligible.

Moreover, inversed delta compression causes more dupli-
cate chunks to be removed during GC, and the extra over-
head introduced by inversed delta compression are negligible.
This is because GC is time-consuming as it involves a large
number of I/Os and the deduplication phase is not the bottle-
neck [10, 14, 17, 40].

5 Performance Evaluation
5.1 Evaluation Setup
Experimental Platform. We perform our evaluation experi-
ments on a workstation running Ubuntu 18.04 with an Intel
Xeon(R) Silver 4215R CPU @ 3.20GHz, 32GB memory,
Samsung 860 PRO SSDs, and Seagate 7200RPM SATA III
HDDs.
System Configurations. For all approaches under evaluation,
deduplication is configured to use the Rabin-based chunking
algorithm [33,34] with the minimum, average, and maximum
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(b) LoopDelta with Capping

Figure 6: Percentage of missed similar chunks as the dense
container threshold varies from 0 through 0.9 on the four
datasets. The Capping’s capping level in this test is 15, namely,
a 20MB segment (a sequence of consecutive data chunks)
refers to at most 15 containers [22].

chunk sizes of 2KB, 8KB, and 64KB respectively for chunk-
ing and the SHA1 hash function for fingerprinting. The finger-
print cache has 256 slots to hold prefetched metadata. During
restore, the restore cache is configured as a 512-container-
sized (2GB) LRU cache.

For delta compression, we use Odess [54] for finding simi-
lar chunks and Xdelta [25] for delta encoding. For data chunks
neither deduplicated nor delta-compressed, we compress them
with a local compressor called ZSTD [13] before writing them
into a container, the same as in [32]. The the container size
is set to 4MB. To simulate backup and restore scenarios, an
HDD is used as the backup space to store ingested data, and
an SSD is used as the user space to store the original datasets.
Performance Metrics. We use three metrics to evaluate the
performance of LoopDelta. The compression ratio is used to
measure the total data reduction achieved by any compression
technologies, including deduplication, delta compression, and
local compression. It is calculated as original_bytes

post_compression_bytes , so
a compression ratio of greater than 1 means data reduction.

The speed factor (MB/container-read) is defined as the
mean data size restored per container read [7, 8, 22], which is
used to measure the restore performance. A larger speed fac-
tors indicates better restore performance. The backup through-
put is measured by the throughput at which the input data
are deduplicated, delta compressed, and written to the disk.
We run each experiment five times to obtain a stable and
average value of the backup throughput. Additionally, the
shown speed factor is the average of the last 20 backups and
the shown backup throughput is the average of the last 10
backups.
Evaluated Datasets. Four datasets, shown in Table 1 with
their key characteristics, are used for performance evaluation.
These datasets represent various typical workloads, including
database snapshots, website snapshots, an open-source code
project, and a synthetic dataset.

5.2 A Performance Study of LoopDelta
5.2.1 Dense Container Threshold
The dense container threshold can affect the number of de-
tected similar chunks because it prevents containers whose
reused ratios are smaller than it from being prefetched to

supply potential similar chunks. Figure 6(a) suggests that,
without rewriting, the percentage of similar chunks missed by
LoopDelta increases quickly with the dense container thres-
hold. One exception is the WEB dataset, where the percent-
age of missed similar chunks is low when the dense container
threshold is small than 0.6. This is because this dataset con-
tains substantial self-referenced duplicate chunks and most of
the containers’ reuse ratios are greater than 0.5.

Figure 6(b) suggests that Capping [22], a state-of-the-art
rewriting approach introduced in Section 2.1, significantly
decreases the percentage of missed similar chunks, especially
when the dense container threshold is smaller than 0.4. By in-
creasing the sequential layout of the current backup, rewriting
improves both the logical and physical locality for the current
and subsequent backups. This is why the percentage is low
when the dense container threshold is small than 0.4. As the
threshold increases beyond this, some containers holding data
chunks that are inherited from the last backup are prevented
from being prefetched for resemblance detection and thus the
percentage of missed similar chunks grows quickly. When
the dense container threshold is 0.3, LoopDelta only misses
1%-5% of similar chunks on the four datasets.

The dense container threshold can also affect backup
throughput because it is related to two categories of I/O
overheads: (1) transfer time for prefetching dense containers,
which decreases as the threshold increases because fewer
containers will be prefetched, and (2) container-writeback
time saved by delta compression, which decreases as the
threshold increases because fewer chunks will be delta com-
pressed.

Figure 7 suggests that, except for the SYN dataset, the back-
up throughput hits a maximum and then either decreases or
flattens out. This is because when the dense container thres-
hold is very low, almost all containers holding potential simi-
lar chunks will be prefetched, leading to significant extra trans-
fer time that exceeds the amount of container-writeback time
saved by delta compression and resulting in very low through-
put. This trend continues with the increase in dense container
threshold until the decrease in extra transfer time for prefetch-
ing is offset by the decrease in the container-writeback time
saved by delta compression. Beyond this point, the extra trans-
fer time for prefetching becomes either greater than or equal
to the decrease in container-writeback time saved by delta
compression, causing the throughput to decrease or remain
unchanged.

The SYN dataset contains only a few similar chunks that
can be delta-compressed, and thus the container-writeback
time saved by delta compression has a limited impact on
backup throughput. Consequently, the backup throughput in-
creases with the dense container threshold. Considering the
two metrics (backup throughput and compression ratio) as a
whole, in what follows, when rewriting (Capping) is applied,
the dense container threshold is set to 0.3 as suggested by
Figure 6(b) and discussed earlier.

USENIX Association 2023 USENIX Annual Technical Conference    141



0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
60

120

180

240

 

 

T
h

ro
u

g
h

p
u

t 
(M

B
/s

)

Dense container threshould

 LD   LD-Cap15

(a) RDB

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
60

120

180

Dense container threshould

 LD   LD-Cap15

(b) WEB

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
50

100

150

T
h

ro
u

g
h

p
u

t 
(M

B
/s

)

Dense container threshould

 LD   LD-Cap15

(c) CHRO

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
60

90

120

 
Dense container threshould

 LD   LD-Cap15

(d) SYN

Figure 7: Backup throughput as the dense container threshold varies from 0 through 0.9 on the four datasets. LD refers to
LoopDelta without rewriting and LD-Cap15 refers to LoopDelta with Capping of a capping level of 15.

Table 2: Compression ratio and speed factor for LoopDelta
(LD), with and without the cache-aware filter (CAF), and with
and without rewriting (Capping), for the four datasets.

Dataset Approach
Compression
ratio w/o GC Speed factor

RDB

LD w/o CAF 142.6 2.73
LD 139.2 (-2.4%) 2.81 (+2.9%)
LD-Cap15 w/o CAF 68.4 3.1
LD-Cap15 60.9 (-11%) 4.67 (+50.6%)

WEB

LD w/o CAF 112.2 2.81
LD 105.7 (-5.8%) 2.96 (+5.3%)
LD-Cap15 w/o CAF 51.2 6.84
LD-Cap15 46.9 (-8.4%) 7.64 (+11.7%)

CHRO

LD w/o CAF 70.7 2.66
LD 70.3 (-0.6%) 2.73 (2.6%)
LD-Cap15 w/o CAF 20.8 6.09
LD-Cap15 20.4 (-1.9%) 8.12 (+33.3%)

SYN

LD w/o CAF 33.9 0.84
LD 33.8 (-0.3%) 0.85 (+1.2%)
LD-Cap15 w/o CAF 17.1 1.38
LD-Cap15 15.4 (-9.9%) 2.04 (+47.8%)

5.2.2 Cache-aware Filter (CAF)

This subsection investigates the efficiency of the cache-aware
filter (CAF). Since base-fragmented chunks identified by CAF
will be rewritten, and rewritten data will be removed during
GC. We do not run GC to show the trade-off between the
decrease of compression ratio and the increase of speed factor
caused by CAF.

Table 2 suggests that CAF slightly increases the speed
factor (1.2%-5.3%, average of 3%) when rewriting is not
applied, and it significantly increases the speed factor when
rewriting is applied (by up to 50.6%, average of 35.9%), at
the expense of a modest decrease (0.3%-11%, average of
4.8%) in compression ratio. CAF reduces the compression
ratio because base-fragmented chunks are rewritten and not
removed from storage as GC is not run. The decrease in
compression ratio caused by CAF on the WEB and CHRO
datasets is relatively small compared to the other two datasets.
This is because these two datasets are tar-type files containing
substantial small files, so most of their rewritten chunks can
be delta-compressed.

A larger fingerprint cache can help to identify more base-
fragmented chunks at the cost of increased computational
overheads. Since the bottleneck of LoopDelta lies in I/O
overheads, the computational overhead of CAF has almost
no impact on backup throughput. We found that, most base-
fragmented chunks can be identified by the first few slots at
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Figure 8: Proportion of compression ratio achieved by direct
and inversed delta compression with different capping level
on the four datasets. The three bars on each dataset from left
to right represent the three capping levels of 10, 15, and 20,
respectively.
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Figure 9: Time cost of GC for LD-Cap10 with and without
inversed delta compression on the RDB and WEB datasets.

the front of the fingerprint cache due to locality, especially
when rewriting is applied. To reduce the computational over-
head, we suggest using the first 20 slots of the fingerprint
cache to identify base-fragmented chunks when rewriting is
applied and using the first 64 slots when rewriting is not ap-
plied. This strategy does not compromise restore performance
because base-fragmented chunks that are not identified will
still be recognized due to their container IDs not being found
in the fingerprint cache.

5.2.3 Inversed Delta Compression
This subsection investigates the efficiency of inversed delta
compression. Figure 8 suggests that the compression gains
achieved by inversed delta compression account for 2.2%-
16.4% of the combined compression gains by direct and in-
versed delta compression. For example, for LD-Cap10, the
compression ratio achieved by inversed delta compression
accounts for 15.3%, 5%, 16.4%, and 5.3% respectively of that
achieved jointly by direct and inversed delta compression on
the four datasets.

Inversed delta compression causes more data to be stored
because it needs to store the deltas of data chunks being delta-
encoded. For LD-Cap10, extra stored data caused by inversed
delta compression account for 2.1%, 0.8%, 2.7%, and 0.1% of
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Figure 10: Comparison of compression ratio achieved by the eleven approaches on the four datasets.

the total stored data on the four datasets respectively, which
are marginal. This is because the size of a delta is often much
smaller than that of a data chunk compressed with the local
compressor, e.g., the former is 1/26-1/10 of the latter in size
in our test.

Inversed delta compression also causes more data chunks
to be removed during GC. Figure 9 compares the time cost
of LD-Cap10 with and without inversed delta compression
on the RDB and WEB datasets. To accumulate more deltas
generated by inversed delta compression, we run GC after
every 5 backups from the 20th backup. The results in Figure
9 suggest that inversed delta compression has a negligible
impact on the time cost of GC because the bottleneck of GC
lies in marking and moving forward the live chunks, which
requires a large number of I/Os.

5.3 Comprehensive Evaluation of LoopDelta
In this section, we comprehensively evaluate the performance
of LoopDelta in terms of three key metrics: compression
ratio, speed factor, and backup throughput. Five data reduc-
tion approaches are also tested: Dedup, Dedup-Cap, MeGA,
SIDC, and Greedy. Specifically, Dedup is a deduplication
approach proposed by Zhu et al. [53] without rewriting, and
Dedup-Cap refers to Dedup with Capping. MeGA, SIDC, and
Greedy have been discussed in Section 3.1. Dedup-Cap# and
LD-Cap# represent Dedup-Cap and LD-Cap with a different
capping level of #.

MeGA’s restore performance and backup throughput are
not evaluated because it requires additional offline and service-
disruptive operations. In contrast, LoopDelta focuses on
adding delta compression to inline deduplication systems in a
non-service-disruptive manner. In evaluations of this section,
we use a 20-container-sized base-chunk cache for LD-Cap#,
and a 150-container-sized base-chunk cache for MeGA, SIDC,
Greedy, and LD. With rewriting (Capping), a 20-container-
sized cache can capture almost all similar chunks (not shown
due to space limit).
Compression Ratio. In this test, we run GC after each back-
up from the 20th backup. Figure 10 suggests that LD achieves
a compression ratio comparable to SIDC and Greedy and
higher than MeGA on the RDB, CHRO, and SYN datasets.
This means that LD can detect most potential similar chunks
by exploiting both logical and physical locality. On the WEB
dataset, LD achieves the highest compression ratio because it
can detect more highly similar chunks than the other approach-
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Figure 11: Comparison of speed factor achieved by the ten
approaches on the four datasets.

es on the datasets containing self-referenced similar chunks.
Specifically, LD outperforms MeGA, SIDC, and Greedy by
1.55×, 1.56×, and 1.5×, respectively, on the WEB dataset.
Furthermore, LD achieves significantly higher compression
ratios than Dedup, with improvements of 3.81× (RDB), 8.9×
(WEB), 10.97× (CHRO), and 1.27× (SYN).

Additionally, LD-Cap15 achieves 4.68× (RDB), 7.42×
(WEB), 10.51× (CHRO), and 1.24×(SYN) higher compre-
ssion ratio than Dedup-Cap15, respectively. Rewriting de-
creases the compression ratio of LD because a small number
of similar chunks are missed, as analyzed in Section 5.2.1.
One exception is the RDB dataset, where rewriting increases
the compression ratio. This is because rewriting causes the
rewritten chunks to be detected as base chunks. Compared
to the data chunks written much earlier, rewritten chunks are
more similar to the data chunks in the current backup. In
our tests, the average DCE of LD and LD-Cap15 are 0.9398
and 0.9591, respectively. Note that while the total amount of
redundancy eliminated by LD-Cap15 may not be significantly
more than that eliminated by LD, compressing even a small
amount of additional data can lead to a significant increase in
compression ratio when the compression ratio is very high.

Note that LD-Cap# may achieve smaller deduplication gain-
s and more delta compression gains than the other approaches.
This is because LD-Cap# rewrite fragmented chunks and
perform delta compression for them, which reduces dedup-
lication gains but increases delta compression gains.
Speed Factor. Figure 11 suggests that LD achieves the high-
est speed factor among all approaches without rewriting and
LD-Cap# also achieve a higher speed factor than Dedup-
Cap#. Specifically, LD achieves 3.48× (RDB), 3.47× (WEB),
3.57× (CHRO), and 1.24× (SYN) higher speed factor than
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Figure 12: Comparison of backup throughput achieved by the
ten approaches on the four datasets.

Dedup respectively, and LD-Cap15 achieves 1.68× (RDB),
2.65× (WEB), 3.17× (CHRO), and 1.2× (SYN) higher speed
factor than Dedup-Cap15 respectively.

Generally, approaches combining deduplication and delta
compression, i.e., SIDC, Greedy, and LD, achieve a higher
speed factor than Dedup, which only performs deduplication.
This is because delta compression has the potential to increase
restore performance, which mainly depends on the number of
read-in containers during restore. Delta compression decrea-
ses the number of written containers during backup and the
number of read-in containers during restore. However, if base
chunks require extra I/Os during restore, the improvement in
speed factor resulting from delta compression will decrease.
In LD, base chunks do not require extra I/Os during restore,
and this is ensured by CAF.

Greedy detects similar chunks without considering the po-
sitions of base chunks. Thus, base chunks in it may require
substantial I/Os during restore and this will lead to a lower
speed factor, e.g., on the WEB dataset. SIDC detects similar
chunks stored along with duplicate chunks, and thus, the base
chunks of the delta-compressed chunks in it do not require
extra I/Os during restore. However, SIDC fails to identify
base-fragmented chunks. This is why LD achieves a slightly
higher speed factor than SIDC on the RDB, CHRO, and SYN
datasets. LD also achieves a higher speed factor than SIDC
on the WEB dataset because it achieves higher compression
ratio than SIDC, which means fewer read-in containers during
restore.
Backup Throughput. Figure 12 suggests that LD and LD-
Cap# achieve lower backup throughput than Dedup and
Dedup-Cap# respectively on the RDB and SYN datasets and
higher backup throughput than them on the WEB and CHRO
datasets. Specifically, LD achieves 3.6% and 27.1% lower
backup throughput than Dedup on the RDB and SYN datasets,
and 24% and 10.5% higher backup throughput than Dedup
on the WEB and CHRO datasets. Meanwhile, LD-Cap15
achieves 16.5% and 16.3% lower backup throughput than
Dedup-Cap15 on the RDB and SYN datasets, and 13.9%
and 13.5% higher backup throughput than Dedup-Cap15 on
the WEB and CHRO datasets. Additionally, LD (LD-Cap15)
achieves 1.3×∼3.7× (2.3×∼9.9×) higher backup through-
put than SIDC and Greedy on the four datasets. This is be-

cause LoopDelta eliminates the seek and rotational delays of
I/Os for reading base chunks.

Compared with deduplication-based backup systems, post-
deduplication delta compression adds additional computation-
al overheads, but the backup throughput is mainly decided
by I/O overheads. In LoopDelta, multiple tasks in its work-
flow involve I/Os, including (1) looking up the fingerprint
index, (2) prefetching metadata, (3) prefetching potential base
chunks, (4) updating the fingerprint index, and (5) writing
back containers. For datasets with low redundancy, such as
the WEB and CHRO datasets, there are more unique chunks
that lead to more I/Os in tasks (4) and (5), making them
the performance bottleneck. Delta compression increases the
backup throughput on such datasets because it alleviates the
performance bottleneck by reducing I/Os in tasks (5). For
datasets with high redundancy, such as the RDB and SYN
datasets, there are more duplicate chunks that result in more
I/Os in tasks (1), (2), and (3), making them the performance
bottleneck. Delta compression decreases backup throughput
because it aggravates the performance bottleneck by increas-
ing I/Os in task (3).

To sum up, LoopDelta achieves a comparable or higher
compression ratio, higher restore performance, and higher
backup throughput than the other post-deduplication delta
compression approaches. It also increases the compression
ratio by 1.24∼10.97 times on top of deduplication, without
notably affecting backup throughput, and improves the restore
performance by 1.2∼3.57 times.

6 Conclusion
In this paper, we present LoopDelta to embed delta compre-
ssion in inline deduplication. The key idea of LoopDelta is
the combined use of four key techniques, i.e., dual-locality-
based similarity tracking to detect similar chunks, locality-
aware base prefetching to avoid extra I/Os for reading base
chunks on the write path, cache-aware filter to avoid extra
I/Os for reading base chunks on the read path, and inversed
delta compression to perform delta compression for similar
chunks prefetched from infrequently reused containers. The
experimental results indicate that LoopDelta significantly in-
creases compression ratio and improves restore speed over
deduplication, without notably affecting backup throughput.
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