
This paper is included in the Proceedings of the
2023 USENIX Annual Technical Conference.

July 10–12, 2023 • Boston, MA, USA
978-1-939133-35-9

Open access to the Proceedings of the
2023 USENIX Annual Technical Conference

is sponsored by

zpoline: a system call hook mechanism
based on binary rewriting

Kenichi Yasukata, Hajime Tazaki, and Pierre-Louis Aublin, IIJ Research Laboratory;
Kenta Ishiguro, Hosei University

https://www.usenix.org/conference/atc23/presentation/yasukata

zpoline: a system call hook mechanism based on binary rewriting

Kenichi Yasukata1, Hajime Tazaki1, Pierre-Louis Aublin1, and Kenta Ishiguro2

1IIJ Research Laboratory
2Hosei University

Abstract
This paper presents zpoline, a system call hook mechanism
for x86-64 CPUs. zpoline employs binary rewriting and of-
fers seven advantages: 1) low hook overhead, 2) exhaustive
hooking, 3) it does not overwrite instructions that should not
be modified, 4) no kernel change and no additional kernel
module are needed, 5) source code of the user-space program
is not required, 6) it does not rely on specially-modified stan-
dard libraries, and 7) it can be used for system call emulation.
None of previous mechanisms achieve them simultaneously.

The main challenge, this work addresses, is that it is hard
to replace syscall/sysenter with jmp/call for jumping to
an arbitrary hook function because syscall and sysenter
are two-byte instructions, and usually more bytes are required
to specify an arbitrary hook function address.

zpoline resolves this issue with a novel binary rewriting
strategy and special trampoline code; in a nutshell, it replaces
syscall/sysenter with a two-byte callq *%rax instruc-
tion and instantiates the trampoline code at virtual address 0.
We confirmed zpoline is functional on the major UNIX-like
systems: Linux, FreeBSD, NetBSD, and DragonFly BSD. Our
experiments show that zpoline achieves 28.1~761.0 times
lower overhead compared to existing mechanisms which en-
sure exhaustive hooking without overwriting instructions sup-
posed not to be modified, and Redis and a user-space network
stack bonded by zpoline experience only a 5.2% performance
reduction compared to the minimum overhead case while the
existing mechanisms degrade 72.3~98.8% of performance.

1 Introduction

System calls are the primary interface for user-space programs
to communicate with Operating System (OS) kernels. Since
user-space programs almost always go through system calls
to perform important actions, system call hooks can be the
vantage point to trace and change their behavior. Therefore,
there are many use cases, such as tracing tools [6, 19], sand-
boxes [18,25], OS emulation layers [1,8], and binary compat-
ibility supports of new OS subsystems [22, 29, 30, 33, 36, 37].

Motivating use case. Past studies demonstrated that user-
space OS subsystems [10,13,17,23,24,27], backed by kernel-
bypass frameworks [15, 34, 38], are highly performant. In
principle, system call hooks enable us to transparently apply
user-space OS subsystems to the legacy software artifacts
through the POSIX standard (as demonstrated in § 3.3), and
the transparency is an important factor for the applicability of
user-space OS subsystems.

Problem and related work. However, in UNIX-like sys-
tems on x86-64 CPUs, the representative platforms for server
systems, there is no perfect system call hook mechanism.

1. Existing kernel supports (e.g., ptrace (§ 3.1.1) and
Syscall User Dispatch (SUD) [20] (§ 3.1.3)) and the
legacy binary rewriting technique using int3 signaling
(§ 3.1.2) cause unacceptable performance degrada-
tion to hook-applied user-space programs (§ 3.3).

2. Other binary rewriting mechanisms (e.g., instruction pun-
ning [7], E9Patch [9], and the technique applied in X-
Containers [36]) (explained in § 2.1) and function call
replacement (e.g., LD_PRELOAD (§ 3.1.4)) cannot ex-
haustively hook system calls. Thus, they cannot be used
for systems requiring reliability.

3. Another type of binary rewriting technique (e.g., De-
tours [14]) overwrites instructions that are supposed
not to be modified (explained in § 2.1).

4. Solutions based on specific changes to the kernel or
additional kernel modules such as Dune [3], which are
not merged to the mainline, substantially diminish the
portability of applications relying on them.

5. Approaches requiring recompilation of the source code
of a user-space program, typically seen in Unikernel [26]
systems [5, 21], are unusable in many cases because
users often do not have access to the source code.

6. The approach, which links application binaries with a
standard library (e.g., libc) specially modified for replac-
ing the invocations of system calls with function calls
of specific OS subsystems [22, 29, 30, 33, 37], narrows
down the range of choice for applicable standard

USENIX Association 2023 USENIX Annual Technical Conference 293

library implementations, moreover, cannot hook sys-
tem calls which are invoked from the outside of stan-
dard libraries.

7. Although BSD Packet Filter (BPF) [28] and its extended
version, eBPF, allow users to apply hooks to the kernel-
space functions, they cannot be used for changing and
emulating the behavior of system calls without modi-
fying the kernel source code.

In summary, every existing system call hook mechanism has
a significant downside. Due to the lack of an ideal system
call hook mechanism, there have been no practical means
of transparently applying user-space OS subsystems to ex-
isting user-space programs. Consequently, the applicability
of user-space OS subsystems has been significantly limited,
regardless of their great advantages.

Contributions. To solve this problem, we present a novel
system call hook mechanism for x86-64 CPUs named zpoline
that is free from all drawbacks mentioned above (§ 2). We
demonstrate the benefits of zpoline through microbenchmarks
(§ 3.2) and experiments transparently applying user-space OS
subsystems to user-space programs (§ 3.3).

2 zpoline

zpoline is based on binary rewriting; it replaces syscall and
sysenter, which are two-byte instructions (0x0f 0x05 and
0x0f 0x34 in opcode respectively) that trigger a system call,
to jump to an arbitrary hook function address.

2.1 Challenge and Goal
The challenge of this work is that the two-byte space, orig-
inally occupied by a syscall/sysenter instruction, is too
small to locate a jmp/call instruction along with an arbi-
trary destination address; typically, two bytes are occupied
by the opcode of jmp/call and eight bytes are necessary
for a 64-bit absolute address, or another possibility is one
byte for a jmp/call instruction and four bytes of a 32-bit
relative address. Due to this issue, existing binary rewriting
techniques give up the replacement in some cases and fail
to ensure exhaustive hooking [7, 9, 36], exceed the two-byte
space originally occupied by syscall/sysenter to put the
code bigger than two bytes while a jump to the exceeded part
causes unexpected behavior [14], or take the int3 signaling
approach (§ 3.1.2) that imposes a significant overhead (§ 3.2).
The goal of zpoline is to be free from these drawbacks.

2.2 Design
The overview of zpoline is shown in Figure 1.

System call and calling convention. zpoline employs
the calling convention of system calls. In UNIX-like sys-
tems on x86-64 CPUs, when a user-space program executes

Virtual Memory

0x0nop
nop
nop

0x1
0x2

nop
nop

nop
nop

__NR_read : 0x0
__NR_write : 0x1
__NR_open : 0x2
__NR_close : 0x3

...
max syscall nr : N

0x3

movq $syscall_nr, %rax
...

syscall/sysenter

movq $syscall_nr, %rax
...

callq *%rax

Rewriting phase
replace syscall/sysenter with callq *%rax

read
movq $0x0, %rax

callq *%rax

write
movq $0x1, %rax

callq *%rax

jump to
system call

hook

open
movq $0x2, %rax

callq *%rax

close
movq $0x3, %rax

callq *%rax

...
...

address

system call
numbers

N

...

system call
hook

return to
caller

... user-space
program

rewritten
user-space

program

movq $N %rax

callq *%rax

...
fa

ll
th

ro
ug

h
no

ps

Figure 1: zpoline overview. The trampoline code is shaded.

syscall/sysenter, the context is switched into the kernel,
then, a pre-configured system call handler is invoked. To re-
quest the kernel to execute a particular system call, a user-
space program sets a system call number (e.g., 0 is read, 1 is
write, and 2 is open in Linux on x86-64 CPUs) to the rax
register before triggering a system call, and in the kernel, the
system call handler executes one of the system calls according
to the value of the rax register.

Binary rewriting. To hook system calls, zpoline replaces
syscall/sysenter with callq *%rax which is repre-
sented by two bytes 0xff 0xd0 in opcode. Since the instruc-
tion sizes of syscall/sysenter and callq *%rax are the
same two bytes, the replacement does not break the neighbor
instructions. What callq *%rax does is to push the current
instruction pointer (the caller’s address) to the stack, and jump
to the address stored in the rax register. Our insight is that,
according to the calling convention, the rax register always
has a system call number. Therefore, the consequence of
callq *%rax is the jump to a virtual address between 0 and
the maximum system call number which is more or less 5001.

Trampoline code. To redirect the execution to a user-
defined hook function, zpoline instantiates the trampoline
code at virtual address 0; in the trampoline code, the virtual
address range between 0 and the maximum system call num-
ber is filled with the single-byte nop instruction (0x90), and
at the next to the last nop instruction, a piece of code to jump
to a particular hook function is located.

1In Linux 5.15, the maximum system call number of the x86-64 ABI,
seen in unistd_64.h, is 448.

294 2023 USENIX Annual Technical Conference USENIX Association

Execution flow. After the trampoline code instantia-
tion and binary rewriting are completed, the rewritten part
(callq *%rax) will jump to one of the nops in the trampo-
line code while pushing the caller’s address on the stack.
The execution slides down the subsequent nops; after exe-
cuting the last nop, it jumps to the hook function. Here, the
hook function will have the same register state as the kernel-
space system call handler. The return of the hook function
jumps back to the caller address that is pushed on the stack
by callq *%rax.

Security notes. We note that, like other system call hook
mechanisms based on binary rewriting, zpoline itself does
not offer security enhancement. On the other hand, if users
wish to improve the security of zpoline-applied systems, they
can employ existing mechanisms; for instance, seccomp [2]
can filter the execution of kernel-space system calls triggered
by a zpoline-applied user-space program, and CPU supports
such as Memory Protection Keys (MPK) [16] can isolate the
implementation of a hook function.

2.3 Implementation

Our current prototype focuses on Linux. The core imple-
mentation of zpoline consists of trampoline code instantia-
tion and binary rewriting. We implement these in a shared
library called libzpoline.so and a special loader named
zpoline_loader; we assume a user uses either2. They per-
form the setup procedure of zpoline (§ 2.3.1) before the main
function of a user-space program starts.

2.3.1 Setup Procedure

The trampoline code setup procedure first allocates memory
at virtual address 0 by using the mmap system call3. Afterward,
it fills the allocated memory region with the content described
in § 2.2. The binary rewriting procedure initially obtains the
memory mapping information from procfs. Then, it traverses
CPU instructions on the executable memory regions, and
replaces syscall/sysenter with callq *%rax (§ 2.2). The
memory regions for the trampoline code and the code binary
of the user-space program are configured to be writable during
this setup phase, and they are restored to be non-writable
before the setup procedure exits. After the setup completes,
the main function of the user-space program starts as usual,
but, all system calls are hooked by zpoline. We note that this
implementation does not change the binary files of user-space

2libzpoline.so assumes to be loaded through LD_PRELOAD and
used when the application binary is dynamically linked. LD_PRELOAD
allows libzpoline.so to run the setup procedure before the main function
of the user-space program starts. zpoline_loader is complementary and
assumes to be used when the application binary is statically linked and the
LD_PRELOAD feature does not work.

3In Linux, by default, the memory mapping to virtual address 0 is only
allowed for the root user, but it can be permitted for all non-root users by
setting 0 to /proc/sys/vm/mmap_min_addr (confirmed in Linux 5.15).

programs since binary rewriting is done on the code binary
loaded onto the memory.

2.3.2 Hook Function Development

zpoline users can implement an arbitrary system call hook
function as part of libzpoline.so or zpoline_loader.
However, there is an issue that the hook function falls
into an infinite loop when it calls a function that origi-
nally executes syscall/sysenter because the replaced code
(callq *%rax) brings the execution back to the hook func-
tion. Users encounter this issue especially when they use
libzpoline.so because the default dynamic linker/loader
automatically associates library calls used in the hook func-
tion with the libraries whose syscall/sysenter instructions
are replaced with callq *%rax.

Use of dlmopen. We avoid this issue by using dlmopen,
an extended version of dlopen. dlopen loads a library file
onto the memory of a user-space process. On top of this basic
feature, dlmopen allows users to specify a namespace where
the library is loaded, and it conducts the association in the
same namespace. Thus, dlmopen enables us to avoid the au-
tomatic undesired association by loading the hook function in
a new namespace. To use dlmopen, we assume a zpoline user
builds the core of the hook implementation as an indepen-
dent shared library. During the setup phase, libzpoline.so
loads the library using dlmopen, and obtains the pointer to
the core implementation of the hook function by using dlsym.
The hook function, implemented in libzpoline.so, calls it
through the obtained pointer.

2.3.3 NULL Access Termination

Typically, a memory access to virtual address 0, namely the
NULL pointer access, causes a page fault because of the
lack of physical memory mapping at virtual address 0, and
it results in the termination of the user-space program. The
NULL access termination is important for stopping buggy
programs. On the other hand, the use of virtual address 0
in zpoline brings about the issue that the NULL access of a
user-space program does not cause a fault. To cope with this
issue, zpoline employs a set of techniques.

Terminate NULL read and write. To terminate NULL
read and write, zpoline configures the trampoline code to be
the eXecute-Only Memory (XOM)4; a user-space program,
that attempted a read/write access to XOM, will be terminated
by the kernel because of a fault.

Terminate NULL execution. To trap unintentional
NULL execution, zpoline collects the virtual addresses of
syscall/sysenter which are replaced during the setup
phase of zpoline (§ 2.3.1), and it checks, at the entry point

4In Linux running on a CPU supporting the Memory Protection Keys
(MPK) [16] feature, the mprotect system call configures XOM when only
PROT_EXEC is set in the access flag; if MPK is not supported by the CPU,
mprotect does not configure XOM.

USENIX Association 2023 USENIX Annual Technical Conference 295

of the hook function, if the caller of the hook function is one
of the replaced virtual addresses or not. If it is not, zpoline
terminates the user-space program because it is not the jump
from the replaced callq *%rax, meaning an unintentional
jump to NULL. To maintain the replaced virtual addresses
while achieving a low-overhead NULL execution check, we
use a bitmap that covers the entire 256 TB (48-bit) virtual
address range that is typical in x86-64 CPUs. This bitmap
allows us to conduct the NULL execution check with a few
bit operations, and this cost is evaluated in § 3.2. The bitmap
occupies 32 TB of virtual address space, however, its physi-
cal memory consumption is substantially smaller because the
virtual address pages, whose all bits are clear, do not need to
have underlying physical memory pages5. We note that if a
user prefers to avoid occupying 32 TB of virtual address for
the bitmap, we can alternatively use a hash table at the cost
of the higher overhead of the NULL execution check.

2.4 Limitations

Here, we discuss the limitations of zpoline.
syscall/sysenter loaded at runtime. The current

prototype of zpoline cannot hook syscall/sysenter loaded
or crafted after the completion of the setup (§ 2.3.1). We
can resolve this issue by borrowing the idea of online binary
rewriting presented in the X-Containers [36] work that traps
an invocation of a system call and rewrites, on the fly, the
syscall/sysenter instruction that triggered the system call.

vDSO (virtual dynamic shared object). Kernels provide
user-space programs with several system calls by directly ex-
posing the code for them through vDSO. Like other system
call hook mechanisms, zpoline cannot hook vDSO-based sys-
tem calls by default; however, we can enable zpoline to hook
them by disabling vDSO6.

Unusable virtual address 0. zpoline is not applicable if
memory at virtual address 0 is unusable; for instance, the
virtual address 0 is already used for other purposes, or the
kernel does not allow the mapping at virtual address 0.

Other OSes. We confirmed that zpoline is functional on
FreeBSD 13.0, NetBSD 9.2, and DragonFly BSD 6.07. We
could not use zpoline on OpenBSD 7.0 because the minimum
mappable virtual address is hard-coded as the page size. In
Windows, VirtualAlloc is conceptually equivalent to mmap.
On Windows 10, VirtualAlloc fails when the specified vir-
tual address is lower than 0x10000, therefore, we could not
apply zpoline. But, Windows offers a compatibility layer for
Linux called Windows Subsystem for Linux (WSL). We con-
firmed that zpoline works on WSL2 while it did not on WSL1

5In many cases, most of syscall/sysenter instructions come from libc
and ld.so. We found the bitmap uses 22 and 5 physical 4 KB pages to maintain
544 and 50 of syscall/sysenter in libc and ld.so respectively (glibc-2.35).

6Linux disables vDSO when the kernel boot option specifies vdso=0.
7In FreeBSD and NetBSD, users can use sysctl to permit memory

mapping at virtual address 0. DragonFly BSD allows it by default.

whose mmap to virtual address 0 returns successfully but actu-
ally does not conduct the memory mapping. On macOS, the
virtual address 0 of a user-space program is used by a special
segment named __PAGEZERO, therefore, we could not apply
zpoline on macOS.

Other CPU architectures. zpoline is not compatible with
CPU architectures which assume the instructions to be aligned
by architecture-specific sizes on the memory and consider a
jump to an unaligned virtual address as an invalid operation
(e.g., ARM); this is because, when zpoline is applied, the
execution can jump to an unaligned virtual address between
0 and the maximum system call number (§ 2.2)8. However,
we believe zpoline is applicable to a large number of servers
because x86-64 CPUs are very popular.

3 Evaluation

This section evaluates zpoline through a comparison with
existing hook mechanisms (§ 3.1). Particularly, we quantify
the hook overhead of zpoline (§ 3.2) and the performance
penalty experienced by application programs and user-space
OS subsystems bonded by zpoline (§ 3.3).

Experiment setup. For the experiments, we use two ma-
chines; each has two 16-core Intel Xeon Gold 6326 CPUs
clocked at 2.90 GHz and 128 GB of DRAM. The two ma-
chines are directly connected via Mellanox ConnectX-5
100 Gbps NICs. In the experiments in § 3.3, we use one
of the two as the server machine, and the other as the client
machine. Both machines run Linux 5.15.

3.1 Comparison
We compare zpoline with ptrace (§ 3.1.1), int3 signaling
(§ 3.1.2), SUD (§ 3.1.3), and LD_PRELOAD (§ 3.1.4). Here,
we describe the mechanisms and properties of them.

3.1.1 ptrace

UNIX(-like) OSes offer the ptrace system call that enables
a tracer process to hook system calls attempted by a tracee
process. Since ptrace is a kernel feature, it can hook system
calls exhaustively. However, its hook overhead is enormous
due to the context switch between the tracer and tracee; the
tracer sleeps while the tracee is running, and the tracee sleeps
during the tracer runs its hook function. Therefore, at every
system call invocation, the tracee experiences a long latency
that includes the wake-up time of the tracer, the execution
time of the hook function, and the wake-up time of the tracee.
This latency results in significant performance degradation
of the user-space program running on the tracee.

8Besides the issue of the instruction alignment, binary rewriting tech-
niques need to pay attention to architecture-specific factors; for example, on
ARM CPUs, the simple replacement from SVC to BL overwrites/breaks the
return address saved in a specific register [31].

296 2023 USENIX Annual Technical Conference USENIX Association

3.1.2 int3 Signaling

int3 is a one-byte instruction (0xcc) that invokes a software
interrupt. On Linux, the kernel handles it and raises SIGTRAP
to the user-space process that executed int3. The int3 sig-
naling technique exploits this behavior to hook system calls; it
replaces syscall/sysenter with int3 and employs the sig-
nal handler for SIGTRAP as the hook function. Since int3 is
one byte, it can replace an arbitrary instruction without break-
ing the neighbor instructions. This technique is traditionally
used in debuggers to implement breakpoints. However, signal
handling incurs a large overhead because it involves context
manipulation by the kernel.

3.1.3 Syscall User Dispatch (SUD)

Syscall User Dispatch (SUD) [20] was added in Linux 5.11,
and it offers a way to redirect system calls to arbitrary user-
space code. For the SUD feature, the kernel implements a
hook point at the entry point of system calls. A user-space
process can activate SUD via the prctl interface. When SUD
is activated, the hook point raises SIGSYS to the user-space
process. This mechanism allows a user-space program to
leverage the SIGSYS signal handler as the system call hook.
However, similarly to the int3 signaling technique, SUD
imposes a significant performance penalty on the user-space
program due to the overhead of the signal handling.

3.1.4 Function Call Replacement by LD_PRELOAD

The dynamic linker/loader (ld.so) offers the LD_PRELOAD
feature that allows users to specify shared objects to be loaded
before the main part of a program starts, and it can be used
for selectively overriding function calls implemented in other
shared objects. Users can employ this mechanism to replace
the system call wrapper functions, which are typically imple-
mented in standard libraries, with arbitrary function calls. The
performance penalty of LD_PRELOAD is very small because
the hooks are applied through function pointer replacement.

A function call hook is not a system call hook. However,
precisely, the function call replacement for a system call wrap-
per function is not the hook for a system call; in the first place,
the syscall and sysenter instructions are not directly as-
sociated with any function calls, and LD_PRELOAD cannot
hook a syscall/sysenter instruction which does not have
a dedicated and exported wrapper function.

The case where LD_PRELOAD fails to hook. glibc [11]
is a representative example where LD_PRELOAD cannot
apply system call hooks exhaustively. In many cases, glibc
does not use the well-known system call wrapper func-
tions to invoke system calls; instead, glibc directly embeds
syscall/sysenter in its internal functions which are marked
as invisible from the outside of glibc, and LD_PRELOAD can-
not apply hooks to syscall/sysenter instructions wrapped
by such internal function calls.

Mechanism Time [ns]
ptrace 31201
int3 signaling 1342
SUD 1156
zpoline 41
zpoline (no NULL execution check (§ 2.3.3)) 40
LD_PRELOAD 6

Table 1: The overhead for hooking a system call.

Potential but impractical approach. Although it is possi-
ble for users to apply hooks using LD_PRELOAD by entirely
replacing library calls that contain syscall/sysenter in-
structions, this approach does not scale because users must
give up the use of the original library call implementations;
in other words, they need to reimplement the equivalent func-
tionalities by themselves, however, it is not realistic to reim-
plement large part of glibc. Moreover, this reimplementation
approach cannot be applied if, unlike glibc, the source code
of a shared library file is not available.

Limitation of LD_PRELOAD. In short, LD_PRELOAD
cannot exhaustively hook system calls, thus, is not an appro-
priate option to apply user-space OS subsystems to existing
user-space programs; for instance, a file descriptor, which is
opened by a user-space OS subsystem, will be passed to a
kernel-space OS subsystem if a system call is not properly
hooked, and it leads to unexpected behavior of the system.

Similarity to binary rewriting techniques. We note that,
in our experiments, the cases of other binary rewriting tech-
niques [7, 9, 14, 36] are represented by the LD_PRELOAD
case because they share the same characteristics: their perfor-
mance overhead is very small, however, as described in § 2.1,
they cannot hook system calls exhaustively.

3.2 System Call Hook Overhead
We quantify the system call hook overhead by measuring the
time to hook getpid, one of the simplest system calls. Our
primary interest here is the hook overhead itself; to avoid
the overhead of the kernel-crossing system call, we use a
hook function that returns a dummy value without actually
executing the getpid system call. Table 1 shows the results.
First, the overhead of LD_PRELOAD is negligible as ex-
pected (§ 3.1.4). The overhead of zpoline is 6.8 times higher
than LD_PRELOAD, and this is primarily due to the nops
in the trampoline code (§ 2.2). The cost of the NULL exe-
cution check (§ 2.3.3) is 1 ns out of 41 ns. zpoline is 761.0,
32.7, and 28.1 times lighter than ptrace, int3 signaling, and
SUD respectively. The major overheads of int3 signaling
(§ 3.1.2) and SUD (§ 3.1.3) derive from the signal handling
for SIGTRAP and SIGSYS. ptrace exhibits the biggest over-
head due to the cost of scheduling between the tracer and
tracee processes (§ 3.1.1).

USENIX Association 2023 USENIX Annual Technical Conference 297

 0

 100

 200

 300

 0 1000 2000 3000 4000

T
im

e
[n

s]

nops [#]

Figure 2: The overhead to hook a system call depending on
the number of nops at the beginning of the trampoline code.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

p
trace

in
t3

 sig
n
alin

g

S
U

D

zp
o
lin

e

L
D

_
P

R
E

L
O

A
D

T
h
ro

u
g
h
p
u
t

[m
il

li
o
n
 r

eq
s/

se
c]

Simple HTTP Server

p
trace

in
t3

 sig
n
alin

g

S
U

D

zp
o
lin

e

L
D

_
P

R
E

L
O

A
D

kernel TCP/IP

Redis

Figure 3: Performance of applications running on lwIP and
DPDK with different system call hook mechanisms. For ref-
erence, the throughput of the Linux kernel TCP/IP stack is
shown by the non-dotted horizontal line.

nop overhead. In zpoline, nops in the trampoline code
increase the hook overhead. The number of nops depends on
the number of system calls implemented by the kernel (§ 2.2).
To see how the overhead grows, we run the same getpid test
above while changing the number of nop instructions in the
trampoline code. Figure 2 shows that the overhead linearly
increases according to the number of nops. However, in the
first place, the kernel development communities are very wary
to add system calls. Therefore, we believe the nop overhead
of zpoline will not increase drastically in the future. Moreover,
although 3.5 K nops are located, the overhead of zpoline is
still 113.4, 4.8, and 4.2 times lower than that of ptrace, int3
signaling, and SUD respectively.

3.3 User-space OS Subsystem Performance
This section evaluates how zpoline affects the performance of
application programs backed by user-space OS subsystems;
we employ zpoline and the existing hook mechanisms de-
scribed in § 3.1 to transparently apply a portable TCP/IP
stack, lwIP [10], backed by Data Plane Development Kit
(DPDK) [15], to a simple HTTP server and Redis [35]. Nor-
mally, kernel-bypassing lwIP achieves higher networking per-

formance than the kernel TCP/IP stack of Linux [4, 32]; for
reference, we run the same benchmarks using the kernel
TCP/IP stack of Linux and report its performance by non-
dotted horizontal lines in Figure 3. We note that the simple
HTTP server and Redis are chosen for the experiments be-
cause LD_PRELOAD could apply hooks to them, and as
explained in § 3.1.4, LD_PRELOAD can fail to hook system
calls in other systems.

Simple HTTP server. Commonly, a server program trig-
gers network-relevant system calls more frequently when its
application logic gets lighter because it can serve a lot of
requests in a short time. To stress the hook mechanisms with
lightweight application logic, we made a simple HTTP server
that replies a static 64-byte content; we run it on the server ma-
chine. As the benchmark client, we run wrk [12] on the client
machine; it sends requests through 32 persistent concurrent
connections. The results are shown in Figure 3 (left). First, the
LD_PRELOAD result represents the minimum overhead case
(§ 3.2), and it demonstrates the potential of lwIP on DPDK,
which is 5.2 times faster than the Linux kernel TCP/IP stack
whose throughput is shown by the non-dotted horizontal line
in Figure 3 (left). Comparison with the LD_PRELOAD case
sheds light on the overhead of each hook mechanism. The per-
centages of performance reduction in ptrace, int3 signaling,
and SUD compared to LD_PRELOAD are 98.9%, 85.3%, and
83.0% respectively. Contrarily, zpoline causes only 12.7% of
performance reduction. These results are explained by the
hook overheads shown in Table 1.

Redis. We evaluate how a real-world application per-
forms on zpoline. For benchmarking, we use Redis [35],
a widely used key-value store; we run a Redis server pro-
cess on the server machine. As the benchmark client, we use
redis-benchmark, which is distributed as part of the Redis
source, on the client machine; we run the GET 100% work-
load so that the Redis server will spend most of its time on
networking operations rather than disk operations. Requests
are sent over 32 persistent concurrent connections. Figure 3
(right) shows a similar trend to the simple HTTP server exper-
iment, and the overall results reflect the overheads shown in
Table 1. Compared to LD_PRELOAD, the throughput results
of ptrace, int3 signaling, and SUD are 98.8%, 75.0%, and
72.3% lower respectively. In contrast, zpoline imposes only
5.2% of throughput reduction.

4 Conclusion

This paper has presented zpoline, a system call hook mech-
anism for x86-64 CPUs, that can exhaustively hook system
calls at a low overhead without overwriting instructions that
are supposed not to be modified. zpoline is a practical means
of transparently applying user-space OS subsystems to exist-
ing user-space programs and contributes to the applicability
of user-space OS subsystems.

298 2023 USENIX Annual Technical Conference USENIX Association

Acknowledgments

We are grateful to anonymous USENIX ATC 2023 and 2022
reviewers and Pierre Olivier, our shepherd at USENIX ATC
2023, for their insightful comments.

References

[1] Bob Amstadt and Eric Youngdale. Wine. https://
www.winehq.org/, 1993.

[2] Andrea Arcangeli. seccomp. https://man7.org/
linux/man-pages/man2/seccomp.2.html, 2005.

[3] Adam Belay, Andrea Bittau, Ali Mashtizadeh, David
Terei, David Mazières, and Christos Kozyrakis. Dune:
Safe user-level access to privileged CPU features. In
10th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 12), pages 335–348, Holly-
wood, CA, October 2012. USENIX Association.

[4] Adam Belay, George Prekas, Ana Klimovic, Samuel
Grossman, Christos Kozyrakis, and Edouard Bugnion.
IX: A protected dataplane operating system for high
throughput and low latency. In 11th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI 14), pages 49–65, Broomfield, CO, October 2014.
USENIX Association.

[5] Alfred Bratterud, Alf-Andre Walla, Hårek Haugerud,
Paal E Engelstad, and Kyrre Begnum. IncludeOS: A
minimal, resource efficient unikernel for cloud services.
In 2015 IEEE 7th international conference on cloud
computing technology and science (cloudcom), pages
250–257. IEEE, 2015.

[6] Juan Cespedes. ltrace. https://ltrace.org/, 1997.

[7] Buddhika Chamith, Bo Joel Svensson, Luke Dalessan-
dro, and Ryan R. Newton. Instruction punning:
Lightweight instrumentation for x86-64. In Proceedings
of the 38th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2017, page
320–332, New York, NY, USA, 2017. Association for
Computing Machinery.

[8] Jeff Dike. User-mode linux. In 5th Annual Linux Show-
case & Conference (ALS 01), 2001.

[9] Gregory J. Duck, Xiang Gao, and Abhik Roychoud-
hury. Binary rewriting without control flow recovery.
In Proceedings of the 41st ACM SIGPLAN Conference
on Programming Language Design and Implementation,
PLDI 2020, page 151–163, New York, NY, USA, 2020.
Association for Computing Machinery.

[10] Adam Dunkels. Design and Implementation of the lwIP
TCP/IP Stack. Swedish Institute of Computer Science,
2(77), 2001.

[11] Free Software Foundation. The GNU C Library (glibc).
https://www.gnu.org/software/libc/, 1988.

[12] Will Glozer. wrk: Modern HTTP benchmarking tool.
https://github.com/wg/wrk, 2012.

[13] Michio Honda, Felipe Huici, Costin Raiciu, Joao Araujo,
and Luigi Rizzo. Rekindling network protocol innova-
tion with user-level stacks. SIGCOMM Comput. Com-
mun. Rev., 44(2):52–58, apr 2014.

[14] Galen Hunt and Doug Brubacher. Detours: Binary in-
terception of win32 functions. In Proceedings of the
3rd Conference on USENIX Windows NT Symposium -
Volume 3, WINSYM’99, page 14, USA, 1999. USENIX
Association.

[15] Intel. Data Plane Development Kit. https://www.
dpdk.org/, 2010.

[16] Intel. Intel 64 and IA-32 Architectures Software Devel-
oper Manuals, 2023.

[17] EunYoung Jeong, Shinae Wood, Muhammad Jamshed,
Haewon Jeong, Sunghwan Ihm, Dongsu Han, and Ky-
oungSoo Park. mTCP: a highly scalable user-level TCP
stack for multicore systems. In 11th USENIX Sympo-
sium on Networked Systems Design and Implementa-
tion (NSDI 14), pages 489–502, Seattle, WA, April 2014.
USENIX Association.

[18] Taesoo Kim and Nickolai Zeldovich. Practical and ef-
fective sandboxing for non-root users. In 2013 USENIX
Annual Technical Conference (USENIX ATC 13), pages
139–144, San Jose, CA, June 2013. USENIX Associa-
tion.

[19] Paul Kranenburg. strace. https://strace.io/, 1991.

[20] Gabriel Krisman Bertazi. Syscall User Dispatch.
https://www.kernel.org/doc/html/latest/
admin-guide/syscall-user-dispatch.html,
2021.

[21] Simon Kuenzer, Vlad-Andrei Bădoiu, Hugo Lefeuvre,
Sharan Santhanam, Alexander Jung, Gaulthier Gain,
Cyril Soldani, Costin Lupu, Ştefan Teodorescu, Costi
Răducanu, Cristian Banu, Laurent Mathy, Răzvan Dea-
conescu, Costin Raiciu, and Felipe Huici. Unikraft: Fast,
specialized unikernels the easy way. In Proceedings of
the Sixteenth European Conference on Computer Sys-
tems, EuroSys ’21, page 376–394, New York, NY, USA,
2021. Association for Computing Machinery.

USENIX Association 2023 USENIX Annual Technical Conference 299

https://www.winehq.org/
https://www.winehq.org/
https://man7.org/linux/man-pages/man2/seccomp.2.html
https://man7.org/linux/man-pages/man2/seccomp.2.html
https://ltrace.org/
https://www.gnu.org/software/libc/
https://github.com/wg/wrk
https://www.dpdk.org/
https://www.dpdk.org/
https://strace.io/
https://www.kernel.org/doc/html/latest/admin-guide/syscall-user-dispatch.html
https://www.kernel.org/doc/html/latest/admin-guide/syscall-user-dispatch.html

[22] Hsuan-Chi Kuo, Dan Williams, Ricardo Koller, and
Sibin Mohan. A linux in unikernel clothing. In Proceed-
ings of the Fifteenth European Conference on Computer
Systems, EuroSys ’20, New York, NY, USA, 2020. As-
sociation for Computing Machinery.

[23] Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon
Peter, Emmett Witchel, and Thomas Anderson. Strata:
A cross media file system. In Proceedings of the 26th
Symposium on Operating Systems Principles, SOSP ’17,
page 460–477, New York, NY, USA, 2017. Association
for Computing Machinery.

[24] Jing Liu, Anthony Rebello, Yifan Dai, Chenhao Ye,
Sudarsun Kannan, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. Scale and performance in
a filesystem semi-microkernel. In Proceedings of the
ACM SIGOPS 28th Symposium on Operating Systems
Principles, SOSP ’21, page 819–835, New York, NY,
USA, 2021. Association for Computing Machinery.

[25] Google LLC. gVisor. https://gvisor.dev/, 2018.

[26] Anil Madhavapeddy, Richard Mortier, Charalampos Rot-
sos, David Scott, Balraj Singh, Thomas Gazagnaire,
Steven Smith, Steven Hand, and Jon Crowcroft. Uniker-
nels: Library operating systems for the cloud. In Pro-
ceedings of the Eighteenth International Conference on
Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’13, page 461–472, New
York, NY, USA, 2013. Association for Computing Ma-
chinery.

[27] Ilias Marinos, Robert N.M. Watson, and Mark Handley.
Network stack specialization for performance. In Pro-
ceedings of the 2014 ACM Conference on SIGCOMM,
SIGCOMM ’14, page 175–186, New York, NY, USA,
2014. Association for Computing Machinery.

[28] Steven McCanne and Van Jacobson. The BSD Packet
Filter: A New Architecture for User-level Packet Cap-
ture. In USENIX winter, volume 46, 1993.

[29] Ruslan Nikolaev and Godmar Back. Virtuos: An operat-
ing system with kernel virtualization. In Proceedings of
the Twenty-Fourth ACM Symposium on Operating Sys-
tems Principles, SOSP ’13, page 116–132, New York,
NY, USA, 2013. Association for Computing Machinery.

[30] Pierre Olivier, Daniel Chiba, Stefan Lankes, Changwoo
Min, and Binoy Ravindran. A binary-compatible uniker-
nel. In Proceedings of the 15th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environ-
ments, VEE 2019, page 59–73, New York, NY, USA,
2019. Association for Computing Machinery.

[31] Pierre Olivier, Hugo Lefeuvre, Daniel Chiba, Stefan
Lankes, Changwoo Min, and Binoy Ravindran. A
syscall-level binary-compatible unikernel. IEEE Trans-
actions on Computers, 71(9):2116–2127, 2022.

[32] Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports,
Doug Woos, Arvind Krishnamurthy, Thomas Anderson,
and Timothy Roscoe. Arrakis: The operating system is
the control plane. In 11th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI 14),
pages 1–16, Broomfield, CO, October 2014. USENIX
Association.

[33] Ali Raza, Thomas Unger, Matthew Boyd, Eric B
Munson, Parul Sohal, Ulrich Drepper, Richard Jones,
Daniel Bristot De Oliveira, Larry Woodman, Re-
nato Mancuso, Jonathan Appavoo, and Orran Krieger.
Unikernel linux (ukl). In Proceedings of the Eighteenth
European Conference on Computer Systems, EuroSys
’23, page 590–605, New York, NY, USA, 2023. Associ-
ation for Computing Machinery.

[34] Luigi Rizzo. netmap: A Novel Framework for Fast
Packet I/O. In 2012 USENIX Annual Technical Confer-
ence (USENIX ATC 12), pages 101–112, Boston, MA,
June 2012. USENIX Association.

[35] Salvatore Sanfilippo. Redis - Remote Dictionary Server.
https://redis.io/, 2009.

[36] Zhiming Shen, Zhen Sun, Gur-Eyal Sela, Eugene Bag-
dasaryan, Christina Delimitrou, Robbert Van Renesse,
and Hakim Weatherspoon. X-Containers: Breaking
Down Barriers to Improve Performance and Isolation of
Cloud-Native Containers. In Proceedings of the Twenty-
Fourth International Conference on Architectural Sup-
port for Programming Languages and Operating Sys-
tems, ASPLOS ’19, page 121–135, New York, NY, USA,
2019. Association for Computing Machinery.

[37] Livio Soares and Michael Stumm. FlexSC: Flexible sys-
tem call scheduling with Exception-Less system calls.
In 9th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 10), Vancouver, BC,
October 2010. USENIX Association.

[38] Ziye Yang, James R Harris, Benjamin Walker, Daniel
Verkamp, Changpeng Liu, Cunyin Chang, Gang Cao,
Jonathan Stern, Vishal Verma, and Luse E Paul. Spdk:
A development kit to build high performance storage
applications. In 2017 IEEE International Conference on
Cloud Computing Technology and Science (CloudCom),
pages 154–161. IEEE, 2017.

300 2023 USENIX Annual Technical Conference USENIX Association

https://gvisor.dev/
https://redis.io/

	Introduction
	zpoline
	Challenge and Goal
	Design
	Implementation
	Setup Procedure
	Hook Function Development
	NULL Access Termination

	Limitations

	Evaluation
	Comparison
	ptrace
	int3 Signaling
	Syscall User Dispatch (SUD)
	Function Call Replacement by LD_PRELOAD

	System Call Hook Overhead
	User-space OS Subsystem Performance

	Conclusion

