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Abstract
Random walks serve as a powerful tool for extracting infor-
mation that exists in a wide variety of real-world scenarios.
Different from the traditional first-order random walk, the
second-order random walk considers recent walk history in
selecting the next stop, which facilitates to model higher-
order structures in real-world data. To meet the scalability
of random walks, researchers have developed many out-of-
core graph processing systems based on a single machine.
However, the main focus of out-of-core graph processing sys-
tems is to support first-order random walks, which no longer
perform well for second-order random walks.

In this paper, we propose an I/O-optimized out-of-core
graph processing system for second-order random walks,
called SOWalker. First, we propose a walk matrix to avoid
loading non-updatable walks and eliminate useless walk I/Os.
Second, we develop a benefit-aware I/O model to load multi-
ple blocks with the maximum accumulated updatable walks,
so as to improve the I/O utilization. Finally, we adopt a block
set-oriented walk updating scheme, which allows each walk
to move as many steps as possible in the loaded block set, thus
significantly boosting the walk updating rate. Compared with
two state-of-the-art random walk systems, GraphWalker and
GraSorw, SOWalker yields significant performance speedups
(up to 10.2×).

1 Introduction

Random walks on graphs have received significant attention
for their ability to extract meaningful insights in graph data
analysis and machine learning [10–14]. Most existing random
walk implementations are based on the first-order Markov
model [15, 16], which assumes the transition probability only
depends on the current vertex and is independent of the pre-
vious information. Although many encouraging results have
been obtained under this assumption, the high-order infor-
mation such as second-order properties is ignored, and thus
some recent works have revealed the necessity of second-
order random walks [17, 18]. Node2vec [14], one of the most

popular network embedding methods, uses the second-order
random walk to capture neighborhood information of vertices,
which significantly outperforms the first-order methods like
DeepWalk [13]. Similar findings have been found in graph
proximity measurements. Wu et al. [19] developed the second-
order PageRank and SimRank, and Liao et al. [20] proposed
the second-order CoSimRank, which can explore cluster struc-
tures in the graph and better model real-world applications.
In addition, the random walk has been widely used in social
physics. Rosvall et al. [21] showed how the second-order
random walk model constraints on dynamics influence com-
munity detection, ranking, and information spreading, while it
is difficult for the first-order random walk in these scenarios.

Graphs with billions of edges are becoming more prevalent
in many domains, and performing some tasks often requires
tens of TB to several PB spaces. Although some vendors such
as Amazon (AWS) [6], Oracle [7], and Microsoft [8] provide
graph database services, striking a balance between low cost
and high quality remains challenging. For example, when
processing our largest graph, CrawlWeb (see Section 4.1), on
Amazon Neptune [9], we use an Amazon Elastic Compute
Cloud (EC2) instance, db.r5.4xlarge (8 cores, 16 virtual cores,
128 GB memory), and 3 TB of storage space. The monthly
cost for this instance is up to $3, 000. As the size of the
graph continues to grow, the storage requirements and com-
putational resources needed would also increase. This would
likely lead to higher costs in terms of storage space, comput-
ing resources, and potentially data transfer. In contrast, out-of-
core graph processing systems are cheaper and easier, as they
utilize external storage for processing large graphs [22–25].
These systems divide a large graph into several blocks (i.e.,
subgraphs) and store them on disks. During the graph process-
ing, a block is loaded into memory and application-specific
vertex or edge values in this block can be updated immedi-
ately. As expected, the significant performance bottleneck
of out-of-core graph processing systems is the I/O between
memory and disks, and developers can ill afford to ignore
it. Recently, numerous works have been devoted to design-
ing I/O-efficient graph processing systems for random walks.
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DrunkardMob [26] is the first large-scale out-of-core graph
processing system that allows massive random walks to be
performed in parallel. The states of all walks are represented
compactly in memory to minimize the memory footprint of
each walk. GraphWalker [27] adopts a state-aware I/O model
and an asynchronous walk updating scheme to further im-
prove the I/O performance. Besides, it proposes a lightweight
block-centric indexing scheme to reduce the memory require-
ment for storing walk states. However, these proposed so-
lutions cannot be efficiently compatible with second-order
random walks.

In this paper, we propose an I/O-optimized out-of-core
graph processing system for second-order random walks,
called SOWalker. First, to eliminate useless walk I/Os, we
propose a walk matrix to represent the walks, so as to prevent
loading non-updatable walks whose previous vertices are not
in memory. Along with the proposed walk matrix, we design
a succinct and compact data structure to provide an efficient
representation of a walk. Second, to improve the I/O utiliza-
tion, we develop a benefit-aware I/O model. Specifically, we
load multiple blocks with the maximum accumulated updat-
able walks and only load walks whose previous and current
vertices are both in the loaded blocks. For this purpose, we
map the block scheduling problem into the maximum edge
weight clique problem, and adopt a heuristic algorithm to
provide comparable I/O performance but significantly reduce
the computation time. Finally, to boost the walk updating rate,
we adopt a block set-oriented walk updating scheme, which
allows each walk can be updated as much as possible in the
loaded block set, so as to accelerate the progress of random
walks. To summarize, we make the following contributions.

• We propose a walk matrix, which prevents loading non-
updatable walks, so as to eliminate useless walk I/Os.

• We develop a benefit-aware I/O model, which loads mul-
tiple blocks with the maximum accumulated updatable
walks, so as to maximize the I/O utilization.

• We adopt a block set-oriented walk updating scheme,
which allows each walk to move as many steps as pos-
sible in the loaded block set, so as to boost the walk
updating rate.

• We conduct detailed experiments on a variety of real-
world and synthetic graphs to evaluate SOWalker. Ex-
tensive evaluation results show that SOWalker can sub-
stantially reduce the I/O cost, achieving up to 10.2×
speedup.

The rest of this paper is organized as follows. Section 2
presents the background and motivation. Section 3 describes
the detailed system designs of SOWalker. Section 4 evaluates
the system and compares it with two state-of-the-art systems.
Section 5 gives an overview of related work, and finally, Sec-
tion 6 concludes this paper.

2 Background and Motivation

Given a graph G = (V,E), where V and E are the set of ver-
tices and edges, respectively. Each edge e ∈ E is an ordered
pair e = (u,v) and is associated with a weight wuv. For each
u ∈V , the neighbor set of a vertex u is N(u). For easy refer-
ence, we illustrate the frequently used notations in Table 1.

Notation Description
G= (V,E) graph G with vertex set V and edge set E
e = (u,v) edge from u to v
wuv weight between vertex u and v
N(u) set of neighbor vertices of vertex u
B block set
|B| number of blocks in B
m maximum number of blocks cached in memory
BL loaded block set in a batch
W (i, j) number of walks crossing between block i and j
AUW accumulated updatable walks
CDG complete directed graph
k actual number of blocks to be loaded
β a bitmap to represent whether the block is

cached in memory
T0, Ts initial temperature and end temperature
γ cooling coefficient of temperature
itermax maximum number of iterations

Table 1: Notations.

2.1 Second-order Random Walk
First-order random walk. Suppose a walk is visiting vertex
v, in the next step, the walk will move to a neighbor of v with
transition probability pvz = P(z|v) = wvz/Wv, where Wv =

∑t∈N(v) wvt .
Second-order random walk. Given that the walk is visiting
vertex v at the current step and vertex u at the previous step,
the second-order transition probability that moving to vertex z
at the next step is puvz = p(z|uv). Such transition probability
can be interpreted as the edge-to-edge transition probability:
let α = (u,v) be the edge from vertex u to v, and β = (v,z) be
the edge from vertex v to z, that is, puvz = pαβ.

Below are two representative examples of second-order
random walk-based algorithms.
Node2vec. Node2vec [14] is a popular network embedding
method that introduces the second-order random walk. In
order to combine Depth First Search (DFS) and Breadth
First Search (BFS), two parameters p and q control the ran-
dom walk strategy. Parameter p controls the probability of
repeated access to the just visited vertex. Parameter q con-
trols whether a walk moves inward or outward. Given that
vertex u was visited at the previous step, the unnormalized
transition probability puvz from the current vertex v to the
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Figure 1: The transition probability computation in second-
order random walk algorithms.

next vertex z depends on the edge weight wvz and αpq(u,v,z),
i.e., puvz = αpq(u,v,z) ·wvz. αpq is calculated in the following
formula (shown in Figure 1(a)):

αpq(u,v,z) =


1
p , duz = 0
1, duz = 1
1
q , duz = 2

where duz denotes the shortest path distance between vertices
u and z, and duz ∈ {0,1,2}.
Second-order PageRank. Wu et al. [19] proposed a second-
order PageRank and used an autoregressive model to compute
the second-order influence probability, which is described as
follows:

puvz =
p′uvz

∑t∈N(v) p′uvt

where p′uvz = (1−α)pvz +αpuz (shown in Figure 1(b)). The
parameter α ∈ [0,1) is a constant (e.g., 0.2) to control the
strength of effect from the previous step.

2.2 Motivation
The out-of-core random walk systems divide a graph into sev-
eral blocks and cache some of them in memory, the remainder
blocks reside in disks temporarily. The total number of cached
blocks is limited by the available memory and block size. Dur-
ing the random walk procedure, a block is loaded from disk
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Figure 2: Differences in updatable walks between (a) first-
order random walks and (b) second-order random walks. All
three first-order random walks are updatable as opposed to
only two second-order random walks. View in color for opti-
mal visualization.

into memory according to a scheduling model, which is called
the current block. Walks that reside on the current block are
also loaded into memory and can be updated as much as
possible until they reach the boundary of the loaded block.
However, the main focus of out-of-core random walk systems
is to support first-order random walks, which are no longer
effective for second-order random walks. In the following,
we will discuss three major challenges that lead to poor I/O
performance on existing systems.
Non-updatable walks result in useless walk I/Os. The first-
order random walk’s transition probability only depends on
the current vertex. As long as the current vertex is in memory,
the walk can be immediately updated. Unlike the first-order
random walk, the second-order random walk considers re-
cent walk history in selecting the next stop. However, the
previous vertex might belong to other blocks on slow disks.
Consequently, due to the lack of previous vertex information,
some loaded walks cannot be updated directly, resulting in
non-updatable walks. As a result, these non-updatable walks
lead to useless walk I/Os.

As an example, Figure 2 illustrates the differences in up-
datable walks between first-order and second-order random
walks for a specific iteration, where block b0 and b1 are in
memory, and block b0 is the current block. Suppose that there
are three walks residing on vertex 0. For first-order walks
in Figure 2(a), all three walks are updatable. As a result, the
walk utilization of first-order random walks is always 100%,
which is defined as the ratio of updatable walks to the total
loaded walks. For second-order walks in Figure 2(b), the color
of the walk represents its state, with the upper and lower col-
ors indicating the block that the previous and current vertex
belongs to, respectively. Out of the three walks, one has its
upper half-colored yellow, indicating that its previous vertex
belongs to block b2, which is not in memory. As a result,
this walk is non-updatable, resulting in the walk utilization of
only 2/3. In order to further quantitatively evaluate the walk
utilization of node2vec on real-world graphs, we conducted
experiments on three datasets (introduced in Section 4.1). As
shown in Figure 3(a), the walk utilization of node2vec is less
than 30%, and it decreases as the size of the graph increases.

In SOWalker, we propose a walk matrix, which prevents
loading non-updatable walks to eliminate useless walk I/Os.
The non-optimal block scheduling model results in low
I/O utilization. To update non-updatable walks, the existing
block scheduling model [27, 28] iteratively loads ancillary
blocks where previous vertices belong to, resulting in a large
number of additional block I/Os. On the other hand, due to
the irregular structure of graphs and the randomness inherent
in random walks, previously visited vertices are unevenly
scattered in different blocks.

To quantify the effect of the non-optimal block scheduling
model on I/O utilization, we run DeepWalk (i.e., first-order)
and node2vec (i.e., second-order) on a state-of-the-art system,
GraphWalker [27]. The I/O utilization is defined as the num-
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(a) Walk utilization (b) I/O utilization

Figure 3: Walk utilization and I/O utilization.

ber of walk steps divided by the number of edges in a loaded
block. For Deepwalk, we use GraphWalker’s state-aware I/O
model to preferentially load the block with the most walks into
memory. For node2vec, we also load a block with the most
walks as the current block and iteratively load another block
into memory as the ancillary block. Figure 3(b) shows the I/O
utilization of DeepWalk and node2vec. We can see that the
I/O utilization is significantly low in the second-order random
walk application. Besides, running DeepWalk requires fewer
than 400 block I/Os, while running node2vec requires over
2400 block I/O, which severely slows down the processing of
random walks.

In SOWalker, we develop a benefit-aware I/O model, which
loads multiple blocks with the maximum accumulated updat-
able walks to maximize the I/O utilization.
The block-oriented walk updating scheme brings low walk
updating rate. Existing systems [27] manage walks at a block
granularity and restrict walk updating to a block, which is
called block-oriented walk updating. However, this hinders
the walk updating and walks fail to utilize the vertex infor-
mation in other blocks residing in memory, resulting in low
walk updating rate. For example, in Figure 2(b), suppose that
two updatable walks move along the red path toward vertex
3. Under the block-oriented walk updating scheme, block b1,
where vertex 3 belongs to, is not the current block, so the
walks cannot continue to move, which leads to low walk up-
dating rate. In fact, if a walk moves to any vertex belonging
to the block in memory, it can further be updated, since the
previous and current vertex information are both available.

In SOWalker, we adopt a block set-oriented walk updating
scheme, which allows each walk to move as many steps as
possible in the loaded block set to boost the walk updating
rate.

3 Design of SOWalker

In this section, we first present the system overview of
SOWalker. Then, we introduce the detailed designs includ-
ing the walk matrix, benefit-aware I/O model, and block set-
oriented walk updating scheme.
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Figure 4: Overall design of SOWalker. View in color for
optimal visualization.

3.1 System Overview

Figure 4 shows the overall design of SOWalker. To represent
large graphs in the external memory setting, the graph is often
partitioned into several blocks and stored on disks, and each
block is associated with a walk pool storing the temporarily
non-updatable walk states. A semi-circle in the walk pool
is a vertex in a walk, with the color of the upper and lower
semi-circle indicating the block that the previous and current
vertices belong to, respectively. ‘×n’ means there are n walks
of such state. Considering that the previous and current ver-
tices may belong to two blocks, we propose a walk matrix
to intuitively show the number of walks crossing between
blocks. The values in the walk matrix are created and updated
based on the walk states in the walk pool ( 1 ).

During the random walk procedure, we first load m blocks
simultaneously to fit into memory, where m denotes the max-
imum number of blocks cached in memory. Suppose that
m = 3 in Figure 4. We define loading a block as one block
I/O, and scheduling and loading m blocks at the same time
as a batch. To maximize accumulated updatable walks in a
batch, we develop a benefit-aware I/O model. Specifically,
relationships between blocks (i.e., the values in the walk ma-
trix) can be mapped as a directed complete graph ( 2 ), and
the block scheduling can be modeled into the maximum edge
weight clique problem. Nodes in the clique are the blocks to
be loaded. As an example in the figure, there are 23 updat-
able walks in block b0, b1, and b2, which is the maximum
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among all candidate block sets. Therefore, we load the three
blocks into memory ( 3 , shown as red nodes), and only load
the walks whose previous and current vertices are both in the
loaded blocks ( 4 , walks in red box).

During the updating phase, we adopt a block set-oriented
walk updating scheme that allows walks to access vertices
in all loaded blocks since there are some edges connecting
blocks (shown as arrows with dashed lines). That is to say,
if the next vertex is still in memory, the walk can keep mov-
ing until it reaches a termination condition or visits a vertex
belonging to a disk block. Here, 18 walks finish and the re-
maining 5 walks move to block b3. When there are no more
walks in memory, update the walk states in the walk pool ( 5 ).
Repeat the process of block loading and walk updating until
all random walks are finished.

3.2 Walk Matrix Representation

In order to skip loading non-updatable walks and eliminate
useless walk I/Os, we use a walk matrix to represent the walks.
The dimensionality of the matrix is the number of blocks.
Each element (i, j) in this matrix represents the walks whose
previous vertex belongs to block i, and the current vertex
belongs to block j. The sum of all elements is the number
of unfinished walks. The walk matrix is created and updated
according to the walk states in the walk pool. In each batch,
m blocks are selected based on the number of walks in the
walk matrix, which will be discussed in Section 3.3. When
all the walks in memory have been finished or have reached
the boundary of the loaded block set, SOWalker checks the
walk states to obtain the block IDs of the previous and current
vertices. If the IDs are different, it means the walk is crossing
blocks. Count the number of such walks that cross blocks and
update the corresponding element of the walk matrix. Based
on the walk matrix, SOWalker can readily check whether a
walk can be updated, judging that both the previous vertex
and the current vertex are in memory, thus skipping loading
non-updatable walks and eliminating useless walk I/Os.

Figure 5 shows the detail of walk matrix W . The elements
in W represent the number of walks crossing blocks at the
current time. Suppose a graph is divided into 8 blocks, and
the maximum number of blocks cached in memory is 3. If
SOWalker selects blocks b0, b1, and b2 to load into memory,
then only the updatable walks, which are in the red box need
to be loaded. Other walks do not need to be loaded because
the blocks containing the previous or previous vertices are not
in memory. Note that the number of walks in W (i, i) is always
0 because the walk whose previous and current vertices are
in the same block can be updated without additional block
I/Os. Without the walk matrix, walks whose current vertices
are in blocks b0, b1, and b2 will be loaded (in the green box).
However, the walks in the set difference of the green box and
the red box are non-updatable walks.

In order to organize the walk data more compactly, we

adopt a succinct data structure to encode each walk with 128
bits as shown in Figure 5 (on the right). source, previous and
current is encoded in 29 bits, which represents the start vertex,
previous vertex, and current vertex of a walk respectively.
In this way, SOWalker can support starting random walks
from 229 source vertices simultaneously. Commonly, random
walks are fed into downstream tasks, so it is necessary to save
walk paths easily. In order to identify each walk quickly, we
encode walk ID in 34 bits, which supports a maximum of 32
(i.e., 234/229) walks starting from each vertex. Besides, hop
indicates the number of steps the walk has already moved.
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29 bit 7 bit29 bit

29 bit

walk buffer

walk ID source

previous current hop

...
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Figure 5: Walk matrix representation.

3.3 Benefit-Aware I/O Model
This section discusses how to efficiently schedule blocks.
Since the previous and current vertices of a second-order
random walk may belong to different blocks, we need to con-
sider dependencies between blocks. Thus, we simultaneously
schedule multiple blocks, instead of one block. Specifically,
to improve the I/O utilization, we propose a benefit-aware
I/O model to load multiple blocks with the maximum ac-
cumulated updatable walks. For this purpose, we formulate
the block scheduling problem as the maximum edge weight
clique problem. We also adopt an efficient heuristic algorithm
to provide comparable I/O performance with a fraction of the
cost.
Problem definition. Suppose the block set is B, |B| is the num-
ber of blocks, and m is the maximum number of blocks cached
in memory. W (i, j) denotes the number of walks crossing be-
tween block i and j, that is, the values in the walk matrix. BL
is the loaded block set in a batch. The goal of block schedul-
ing is to load multiple blocks with the maximum accumulated
updatable walks, so the benefit is measured in terms of the
accumulated updatable walks (AUW), defined as:

AUW (BL) = ∑
i∈BL

∑
j∈BL

W (i, j) (1)

Problem mapping. Here, the relationship between blocks
can be illustrated with a complete directed graph. The edge
weight between two neighborhood blocks denotes the number
of walks crossing between two blocks. For the block set B,
the complete directed graph (CDG) is defined as:
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CDG = (B,E) (2)
E = {ei j =W (i, j)|i, j ∈ B} (3)

To maximize the accumulated updatable walks, we convert
the block scheduling problem into the maximum edge weight
clique problem, i.e., maximizing the sum of edge weights
from all the feasible candidates.

Definition 1 (Maximum Weighted Scheduling, MWS): Given
the complete directed graph CDG = (B,E) along with the
memory capacity requirements, MWS produces the loaded
blocks, which satisfies that (1) the block scheduling problem
is feasible according to the memory capacity requirements,
i.e., the maximum number of blocks cached in memory; (2)
the block scheduling problem produces the maximum sum
of edge weights that maximizes the number of accumulated
updatable walks in a batch.

Taking into account both the memory capacity and maxi-
mizing the sum of edge weights, the MWS is formulated as:

max∑
i

∑
j

ei jyi j (4)

s.t.
|B|−1

∑
i=0

xi = m (5)

yi j ≤ xi (6)
yi j ≤ x j (7)
xi,yi j ∈ {0,1} (8)

where the variable xi equals one if block i is loaded in memory.
Constraint 5 guarantees that only m blocks can be chosen. By
Constraints 6 and 7, for any edge (i, j), a binary variable
yi j = 1 if and only if both xi = 1 and x j = 1.

To maximizes AUW (BL), MWS must select m blocks for
scheduling, but it ignores the contribution to block I/O reduc-
tion. In fact, the candidate block cached in memory does not
yield block I/O but the walks in that block can be updated.
Therefore, we aim to maximize the number of accumulated
updatable walks in a block I/O. The objective function is
redefined as:

max
BL

S =
AUW (BL)

k
(9)

where k is the actual number of blocks to be loaded.
We use a bitmap β to record whether the block is cached

in memory. If block i is in memory, the bit of block i is set
to 1, i.e., βi = 1. Otherwise, the bit is set to 0. By identifying
which blocks are in memory, we can fully utilize the blocks
in memory. Based on this consideration, we try to add the
following constraint to the formulation:

|B|−1

∑
i=0

βi · xi = m− k (10)

where m−k chosen blocks are already in memory. Constraint
10 ensures that the chosen block i does not need to be loaded,

Algorithm 1: SA-based benefit-aware I/O model
Input: CDG = (B,E), B0: initial block set
Output: the loaded block set BL

1 Function SelectBlocks(CDG=(B,E), B0):
2 BL ← B0 // initial block set
3 t ← T0 // initial temperature
4 i← 0 // iteration counter
5 while t≥ Ts and i≤itermax do
6 Bc ← CHOOSENEWBLOCK(CDG,BL)
7 ∆S = S(Bc)-S(BL)
8 if ∆S>0 or e∆S/t>random(0,1) then
9 BL ← Bc

10 t ← γt
11 i← i+1

12 return BL

if and only if βi = 1 and xi = 1. We iterate over all k ∈ [1,m]
to find the optimal solution.

The above linear programming method can guarantee the
optimality of the solution obtained. However, the complexity
of this problem is in order of 2n [29]. As the scale of the
problem is increasing, the complexity also soars. To settle the
problem in a reasonable time, we adopt a heuristic algorithm
to provide sub-optimal solutions, which is possible to solve
large-scale problems within an acceptable time [30].
Solutions via heuristic algorithm. Since the maximum edge
weight clique problem is NP-hard [31], many heuristic algo-
rithms have been proposed to achieve a reasonable trade-off
between computation time and solution quality. Simulated
annealing (SA) is a local search procedure to find an efficient
and feasible solution. In order to escape from local optima, a
worse solution is accepted as the new solution with a proba-
bility that decreases as the computation proceeds. Despite its
simpler structure and fewer parameters, SA has shown com-
petitiveness in searching for optimal or near-optimal solutions
and has been widely used to solve the maximum edge weight
clique problem [32–35].

Inspired by Ernst et al. [35], we also use SA to select a
loaded block set to maximize the number of accumulated
updatable walks in a block I/O. The establishment of the
objective function is described according to Equation 9. The
detailed procedures of the SA-based benefit-aware I/O model
is given as follows. Algorithm 1 illustrates the pseudo-code
of this model.

Step 1: Initialize. Set initial temperature T0, end tempera-
ture Ts, cooling coefficient γ of temperature, and the maximum
number of iterations itermax, where itermax =Cm

|B|. Previous
work has shown that a good initial solution results in faster
convergence and improves the quality of the solution [36, 37].
In order to find a reasonably good initial block set, blocks
appear in descending order of the number of walks in it. We
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choose the top-m block as the initial block set B0, meaning
the block with more walks is more likely to be loaded into
memory.

Step 2: Accept or reject the new solution. SA works it-
eratively by successively replacing the current solution with
a random solution. In each iteration, randomly remove a se-
lected block from the current block set BL. Then, one of the
remaining blocks is chosen randomly, and getting a new can-
didate block set Bc. Compute the difference between the new
candidate block set Bc and the current block set BL, i.e., the
increment of the objective function ∆S = S(Bc)− S(BL). If
Bc is better, i.e., ∆S≥ 0, then it will be accepted. Otherwise,
it will be accepted with probability p = e∆S/t , where t denotes
the current temperature. Generate a random number ζ, where
ζ ∈ [0,1]. If p > ζ, then Bc will be accepted. Otherwise, it
will be rejected.

Step 3: Continue or end. Compute current temperature
t = γt and the number of iterations i = i + 1. If t < Ts or
i > itermax, end the algorithm. Otherwise, go back to step 2.

Compared to the exact but complicated linear programming
method, SA provides an approximate solution but is much
simpler, which yields orders of magnitude speedup and the
computation time is only a small fraction of the total execution
time (see Section 4.4.1).

3.4 Block Set-Oriented Walk Updating

Existing random walk systems partition a graph into several
blocks. The block loading and walk management are at a
block granularity, resulting in the walk updating being limited
to a single block, called block-oriented walk updating. Once a
walk reaches the boundary of the current block, the updating
of a walk will be stopped. However, such a strategy hinders
the walk updating and potentially increases the number of
block I/Os.

To see this problem more concretely, we will consider a
partitioned graph in Figure 4. The graph is partitioned into
four blocks. Suppose two blocks are cached in memory and
all walks start at vertex 0. We use the state-aware I/O model
in GraphWalker [27] to load the block containing the largest
number of walks as the current block, and iteratively load
another block as the ancillary block. We skip loading the
blocks without containing any previous vertex information.
Figure 6(a) shows the process of block-oriented walk updat-
ing. (i, j) means the blocks cached in memory, where i is the
current block, and j is the ancillary block. Only the walk in
the current block can be updated. ‘+’ means the lasted loaded
block. As a result, 10 block I/Os are required and the walk
steps per block I/O is 2.4.

We argue that although a graph is partitioned into sev-
eral blocks, walks can move across blocks via the cut edges
between these blocks. Thus, if a walk moves to any vertex
belonging to the block in memory, it can further be updated,
until it reaches the boundary of the block set in memory and

(i, j) Walk paths

(+b0,+b1)

w0: 0→7
w1: 0→1→2→3
w2: 0→2→3

(b1,b0)
w1: 3→4→0
w2: 3→5→8

(+b2,b0) w0: 7→8→6→4
(b2,+b1) w2: 8→6→0
(+b0,b1) w1: 0→2→3
(b0,+b2) w2: 0→1→2 (end)
(+b1,b0) w1: 3→4 (end)
(b1,+b2) w0: 4→0
(+b0,b1) w0: 0→7
(+b2,b0) w0: 7→8→9 (end)

(a) The process of block-oriented walk updating

(i, j) Walk paths

(+b0,+b1)

w0: 0→7
w1: 0→1→2→3→4→
0→2→3→4 (end)
w2: 0→2→3→5→8

(b0,+b2) w0: 7→8→6→4

(+b1,b2)
w0: 4→0
w2: 8→6→0

(+b0,b1) w0: 0→7

(b0,+b2)
w0: 7→8→9 (end)
w2: 0→1→2 (end)

(b) The process of block set-oriented walk updating

Figure 6: Block- vs. Block set-oriented walk updating.

moves to the block in disk. Such walk updating is called block
set-oriented walk updating, which is illustrated in the example
in Figure 6(b). In the first batch, blocks b0 and b1 are loaded
into memory. Walk w1 can be finished directly without extra
block I/Os. While it needs 4 block I/Os in the block-oriented
walk updating scheme. In the third batch, both walk w0 and
w2 can be updated. In contrast, in the block-oriented walk
updating scheme, only the walk in the current block can be
updated. As a result, the number of block I/Os is reduced to 6
and the walk steps per block I/O increases to 4. The reason
is that the block set-oriented walk updating allows walks to
repeatedly visit the block in memory, which boosts the walk
updating rate and accelerates the random walk process. Re-
cently, GraSorw [28] also allows walks to be updated across
the blocks. However, it limits the number of blocks in mem-
ory to 2, which is less flexible for different-scale graphs and
random walks.
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4 Evaluation

In this section, we evaluate the effectiveness of SOWalker.
First, we introduce our experimental setup. Then, we compare
SOWalker with two state-of-the-art random walk systems,
GraphWalker [27] and GraSorw [28], in terms of overall per-
formance and I/O efficiency. Third, we evaluate the effect of
different block scheduling models. Finally, we analyze the
impact of block size.

4.1 Setup
Environment. The hardware platform used in our experi-
ments is a commodity server equipped with a 32-core 2.10
GHz Intel Xeon CPU E5-2620 with 128GB main memory and
a 3TB HDD, running Ubuntu 20.04 LTS. SOWalker is imple-
mented in around 4, 000 lines of C++ code and compiled by
g++ 9.4.0 with an optimization flag as -O3. We use OpenMP
for parallel random walks, and the number of threads is set
to 32 unless explicitly specified. The reported results were
averaged over 5 runs, and the error bars have been omitted as
the variance was negligible.
Datasets. Table 2 describes the statistics of our evaluated
graphs. RANDOM (RND) is a synthetic graph where each
vertex is connected to five randomly selected neighbors. The
probability of two vertices being connected is inversely pro-
portional to the difference in their IDs. RMAT-27 (RM27),
RMAT-28 (RM28), and Kron30 (K30) are synthetic graphs
generated with the Graph500 generator [5], exhibiting a
power-law degree distribution. Twitter (TW) [1] and Friend-
ster (FR) [2] are social graphs that show the relationship
between users within each online social network. UK-Union
(UK) [3] and CrawlWeb (CW) [4] are web graphs that consist
of hyperlink relationships between web pages. Graph Size
is the amount of data stored in text format as an edge list.
CSR Size is the storage cost to store graphs in CSR format.
Since systems are executed in an out-of-core environment,
the memory limit is set to 2GB (for RND and RM27), 4GB
(for RM28, Twitter, Friendster, and UK-Union), or 32GB (for
Kron30 and CrawlWeb). Block Size is heuristically set to 1/4
of the memory size according to Section 4.4.3. |B| is the num-
ber of blocks that a graph is partitioned into according to the
block size.

Dataset |V | |E| Graph Size CSR Size Block Size |B|
RM27 134.2M 1.1B 18GB 4GB 512MB 9
RND 268.4M 1.4B 24.7GB 5.2GB 512MB 11
TW 61.5M 1.5B 24.4GB 5.5GB 1GB 6

RM28 268.4M 2.1B 34.9GB 8GB 1GB 9
FR 65.6M 3.6B 58GB 13.5GB 1GB 14
UK 133.6M 5.5B 94.6GB 20.4GB 1GB 21
K30 1.1B 33.8B 628.3GB 120GB 8GB 16
CW 3.6B 126B 2.6TB 470GB 8GB 59

Table 2: Statistics of datasets.

Graph algorithms. We evaluate SOWalker with two second-
order random walk-based applications discussed in Section 2,
i.e., node2vec and the second-order PageRank. For node2vec,
we set the parameter p = 0.5, q = 2. Each vertex samples 10
walks with a fixed walk length of 80. For the second-order
PageRank, the maximum walk length is 20, and we simulate
2, 000 random walks starting at each query source vertex.
Systems for comparison. We perform a comprehensive anal-
ysis of SOWalker’s performance and compare it with two
state-of-the-art random walk systems.

• GraphWalker [27], an I/O-efficient system for first-order
random walks. When executing second-order random
walks, we adopt the state-aware I/O model to load a
block with the maximum number of walks as the current
block and iteratively load another block into memory as
the ancillary block. Both GraphWalker and SOWalker
use the same parameter configuration.

• GraSorw [28] is the first out-of-core graph processing
system designed for second-order random walks. It it-
eratively selects a block as the current block and uses
a learning-based block loading model. However, this
model consists of three stages: getting the running logs
under the full-load mode, training, and running with the
trained thresholds. Both the first and third stages involve
second-order random walks, rendering it deficient in real-
world applications. Therefore, we only use the full-load
mode to load the ancillary block. On the other hand, Gra-
Sorw fixes the number of blocks in memory to 2, so we
set the block size to half the memory size.

4.2 Overall Performance
We first compare the execution time of the chosen algorithms
on different graphs and systems. Figure 7 shows the execu-
tion time normalized w.r.t. GraphWalker. We can see that
SOWalker is faster than both GraphWalker and GraSorw
in all cases. Specifically, SOWalker achieves 1.4-8.3× and
2.4-10.2× speedups over GraphWalker on node2vec and
the second-order PageRank, respectively. As for GraSorw,
SoWalker achieves 1.2-5.7× and 1.4-5.4× speedups over it
on node2vec and the second-order PageRank, respectively.
The main reason for the speedup in SOWalker is twofold.
First, SOWalker loads multiple blocks with the maximum
accumulated updatable walks, which improves the I/O utiliza-
tion and the walk updating rate, so it requires much fewer
blocks I/Os to run second-order random walks. GraSorw, on
the other hand, is unaware of the walk states, just iteratively se-
lects a block as the current block and loads an ancillary block
into memory. Although GraphWalker loads a block with the
maximum number of walks as the current block, it is unaware
of the number of walks that can be updated. Therefore, both
of them suffer poor performance. Second, SOWalker adopts
the block set-oriented walk updating scheme, which allows
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(a) Node2vec (b) Second-order PageRank

Figure 7: Execution time comparison.

(a) Node2vec (b) Second-order PageRank

Figure 8: Block I/O comparison.

the loaded walks can be updated as much as possible in the
loaded block set, so as to further accelerate the random walk
process and reduce the block I/O costs.

4.3 I/O-efficiency Evaluation

Block I/O comparison. To justify the above argument, we
compare the block I/O time on SOWalker and the other sys-
tems. Block I/O time is the time cost of loading blocks.
Figure 8 shows the block I/O time normalized w.r.t. Graph-
Walker. In all cases, SOWalker outperforms both GraphWalker
and GraSorw. Specifically, the block I/O time in SOWalker
is only 5.8-41.3% of that in GraphWalker, and 7.5-72.9%
of that in GraSorw, respectively. This is mainly attributed
to SOWalker’s benefit-aware I/O model that loads multiple
blocks with the maximum accumulated updatable walks, so
as to accelerate the random walk process and significantly
reduce the block I/O number. On the other hand, GraphWalker
and GraSorw load blocks iteratively, which incur great I/O
cost.
I/O utilization. To verify that SOWalker can improve the
I/O utilization, Figure 9(a) shows the average I/O utilization
for node2vec on Twitter, Friendster, and UK-Union, normal-
ized w.r.t. GraphWalker. As we can see, for all the graphs,
SOWalker shows the highest average I/O utilization. Com-
pared to GraphWalker and GraSorw, the I/O utilization of
SOWalker is improved by 13.2-34.2× and 2.3-26.4×, respec-
tively. This is mainly attributed to the benefit-aware I/O model,
which maximizes the number of walks that can be updated,
thereby improving I/O utilization. Besides, according to our

(a) I/O utilization (b) Walk updating rate

Figure 9: I/O utilization and walk updating rate.

(a) I/O amount (b) Reused block count

Figure 10: I/O amount and reused block count.

walk matrix, we only loads walks whose previous and current
vertices are both in memory. This guarantees that all walks
can be updated and provides 100% walk utilization. While
GraphWalker and GraSorw are unaware of the number of
walks that can be updated, resulting in low I/O utilization.
Walk updating rate. Figure 9(b) reports the average walk up-
dating rate normalized w.r.t. GraphWalker. The average walk
updating rate in SOWalker significantly outperforms Graph-
Walker by up to 62.7×. Benefiting from our block set-oriented
walk updating scheme, which allows each walk to move as
many steps as possible in the loaded block set, SOWalker
achieves more walk steps. In contrast, in GraphWalker, once
a walk reaches the boundary of the block, the updating of a
walk will stop, so the walk steps are limited. Although Gra-
Sorw also allows walks to be updated across the two blocks
in memory, SOWalker still achieves up to 1.6-15.6× average
walk updating rate stemming from the fact that it maximizes
the I/O utilization based on the benefit-aware I/O model.
I/O amount. As mentioned earlier, the I/O amount can be di-
vided into two parts: edge data on blocks and walk data. Let N
be the total number of block I/Os, M be the block size, and W
be the total number of loaded walks, with each walk encoded
with 128 bits. The total I/O amount A = N ∗M +W ∗ 128.
Since block size is pre-defined, the I/O amount is proportional
to the number of block I/Os and loaded walks. Figure 10(a)
shows the I/O amount that each system runs node2vec on
Twitter, Friendster, and UK-Union. We can see that there is
a significant reduction in I/O amount. Compared to Graph-
Walker, SOWalker achieves an I/O reduction of over 80%
on these graphs. Furthermore, the I/O amount in SOWalker
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is only 23.7-67.9% of that in GraSorw. This reduction can
be attributed to the accelerated random walk process, which
enables the walks to be completed faster and significantly
reduces the number of block I/Os.
Reused block counts. Blocks in memory can be reused as
they do not yield block I/O but walks in these blocks can be
updated. Figure 10(b) shows the reused counts for each block
on UK-Union. The reused block counts in SOWalker are
usually much higher than those in GraphWalker. The reason
is that we consider the contribution of loaded blocks in the
benefit-aware I/O model. In contrast, in GraphWalker, only
a few blocks are highly reused, because many walks stay in
these blocks. This makes them more likely to be selected as
the current block and cached in memory for a long time. On
the other hand, other ancillary blocks are iteratively loaded,
resulting in frequent swapping between memory and disk.
Consequently, the reused counts of these blocks are low.

4.4 Design Choices
In this section, we conduct experiments to validate some of
our critical design choices that are essential to achieve optimal
performance for SOWalker.

4.4.1 Comparisons of Scheduling Models

We now evaluate the effectiveness of the block scheduling
models by comparing the following models:

• Random: randomly chooses m blocks to load into mem-
ory, which is used as the baseline.

• Max-m: chooses top-m blocks based on the number of
walks in a block.

• Exact: the exact benefit-aware I/O model according to
the linear programming method.

• Benefit-aware I/O model (BA): the benefit-aware I/O
model according to the simulated annealing algorithm.

We run node2vec on UK-Union. A similar trend can also
be observed on the other graphs and algorithms; their results
are omitted due to space limitations. Table 3 presents the
execution time, block I/O time, and computation time for the
above models. Note that the computation time of the Random
model and Max-m model is very short by a negligible amount.
There are two observations that can be found. First, both the
Random and Max-m models yield relatively higher execution
times than BA model. This is expected since the Random
model is an arbitrary order without any optimization. The
Max-m model also suffers poor performance as it only focuses
on the maximum number of walks. Some loaded walks cannot
be updated due to the lack of previous vertex information,
which wastes precious disk bandwidth and slows down the
processing of random walks. Second, BA model achieves both

Model Execution
time (s)

Block I/O
time (s)

Block I/O
number

Computation
time (s)

Random 4970 3234 9868 -

Max-m 3871 2162 6391 -

Exact 14311 548 1484 12097

BA 2133 575 1537 10

Table 3: The comparison with different block scheduling
models. ‘-’ means that the computation time is negligible.

the best performance and the near-optimal block scheduling
model. To verify the correctness of BA, we compare it with the
Exact model. The results exhibit that BA gives rise to a similar
but slightly higher block I/O cost over the Exact model. More
importantly, BA provides a speedup of 6.7× of the Exact
model, and the computation time of the simulated annealing
algorithm is only 10 seconds. While the computation time of
the Exact model is nearly 3.5 hours, which constitutes 85%
of the total execution time, and we cannot afford such a level
of slowdown. In summary, our BA model can achieve faster
runtime and better I/O performance.
4.4.2 Comparisons of Walk Updating Schemes

Next, we evaluate the effectiveness of SOWalker’s block set-
oriented walk updating through a comparison experiment with
block-oriented walk updating.

Block-oriented walk updating cannot be directly used in
SOWalker, since our benefit-aware I/O model requires the
help of block set-oriented walk updating. Therefore, we de-
sign a baseline system, which loads a block with the maximum
number of walks as the current block and iteratively loads
another block into memory as the ancillary block. We incre-
mentally add the block set-oriented or block-oriented scheme
to the baseline system and evaluate the performance impact
of our contribution.

Figure 11 exhibits the performance of node2vec running
on Twitter, Friendster, and UK-Union. The block set-oriented
scheme outperforms the block-oriented scheme for all graphs.

Figure 11: Block- vs. Block set-oriented walk updating.
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The performance improvement is especially significant for
Friendster, which yields up to 2.1× speedups. The reason
behind this is that under the block set-oriented scheme, the
walk can move across the entire loaded block set in memory.
This leads to a longer walk steps in a block I/O. In contrast,
the block-oriented scheme restricts walk updating to only one
block, hindering the walk updating process and resulting in a
large number of block I/Os.

4.4.3 Impact of Block Size

We also evaluate the impact on performance with different
block sizes. Memory is limited to 4GB to illustrate the appli-
cability. To demonstrate, we run node2vec on three represen-
tative graphs, Twitter, Friendster, and UK-Union. Figure 12
shows the execution time. The results on GraSorw are omit-
ted since it fixes the number of blocks in memory to 2 and
the block size is fixed to half the memory size. SOWalker
presents superior performance over GraphWalker across all
cases. This improvement is especially significant for small
block sizes. This is because with the block-oriented walk
updating scheme, GraphWalker restricts walk updating to a
block, which severely wastes the vertex information in other
blocks residing in memory. While our block set-oriented walk
updating scheme allows walks to move across blocks in mem-
ory, so as to best utilize resources. Even when the block size is
set to 2GB, i.e., 2 blocks in memory, the block-oriented walk
updating scheme degrades into the block set-oriented walk
updating scheme, the results are still encouraging. The rea-
son is that our benefit-aware I/O model loads multiple blocks
with the maximum accumulated updatable walks, so as to
accelerate the random walk process. Besides, we observe that
the block size should be neither too small nor too large to
achieve a good performance in SOWalker. For the smaller
block size, the walk updating rate is low. While for the larger
block size, the I/O utilization is low. Therefore, according to
our experiences, heuristically setting the block size to 1/4 of
the memory size can produce the best performance.

Figure 12: Impact of block size.

(a) Scalability with memory (b) Scalability with graph size

Figure 13: Scalability with memory and graph size.

4.5 Scalability

We evaluate the scalability of SOWalker by examining the
performance improvements achieved with increased mem-
ory limits. Figure 13(a) illustrates the performance variance
of node2vec on UK-Union as the memory increases. All
three systems demonstrate good scalability when more pow-
erful memory resources can be utilized. Although as mem-
ory increases, the performance disparities between systems
tend to diminish, it is worth noting that SOWalker outper-
forms other systems utilizing 16GB memory, even when it
is equipped with only 2GB memory. When the memory is
increased to 32GB, the whole graph can fit into memory, and
SOWalker still outperforms the other two systems, yielding
1.4× speedups.

We also evaluate the scalability of SOWalker with respect
to graph size. We conduct experiments on random graphs
and vary the number of edges from 1×108 to 9×108, with an
average degree of 10. As shown in Figure 13(b), as the graph
size increases, the implementation exhibits good scalability.
However, due to the variability in the structures of different
random graphs, some noise could be generated.

5 Related Work

Many graph systems have been proposed to process large
graphs. In the past, numerous systems have emphasized the
ability to run in a distributed environment, which use a clus-
ter of machines to process large graphs [43–48]. However,
distributed graph systems are still bugged by load imbalance
problems and significant communication overheads.

Since out-of-core graph processing systems can represent
large graphs in the external memory setting, they serve as a
promising alternative to distributed solutions. GraphChi [22]
is a pioneer in this category, which utilizes the Parallel Slid-
ing Window (PSW) technique to reduce random I/O accesses
from storage. X-Stream [49] provides a two-phase Scatter-
Gather programming model that makes tradeoffs between
random memory access and sequential access from streaming

USENIX Association 2023 USENIX Annual Technical Conference    97



data. GridGraph [23] presents a 2-level hierarchical partition-
ing scheme to improve the locality and reduce the number
of I/Os. DynamicShards [24] uses dynamic shards to reduce
disk I/Os. CLIP [25] and LUMOS [50] make full use of the
loaded blocks to reduce disk I/O operations. However, these
existing works were not originally designed for random walks
and thus give sub-optimal performance.

With the increasing interest in the performance optimiza-
tion of random walks, a large number of systems have been
designed to handle random walks. DrunkardMob [26] is the
first random walk system, which enables the simulation of
billions of random walks on massive graphs, on just a sin-
gle computer. However, it adopts the iteration-based model,
which limits the efficiency and scalability of random walks.
GraphWalker [27] develops a state-aware I/O model and an
asynchronous random walk updating schedule to improve the
I/O utilization. As it is designed for first-order random walks,
it still incurs excessive disk I/Os when executing second-
order random walks. GraSorw [28] is designed specifically
for second-order random walks. It develops a bi-block exe-
cution engine and a learning-based block loading model to
improve the I/O efficiency. However, its bi-block execution
engine limits the number of blocks in memory to 2, which
is less flexible for different-scale graphs and random walks.
Moreover, the learning-based block loading model has to
run the second-order random walk task twice to get the run-
time statistics, rendering it deficient in real-world applications.
SOWalker differs from all these systems in the walk represen-
tation, block scheduling model, and walk updating scheme. It
designs a walk matrix to avoid loading non-updatable walks,
proposes a benefit-aware I/O model to improve the I/O utiliza-
tion, and adopts a block set-oriented walk updating scheme
to boost the walk updating rate.

Meanwhile, memory optimizations and the increased num-
ber of cores make it possible to process large graphs more ef-
ficiently on a single machine. For example, ThunderRW [38]
employs the step interleaving technique to hide memory ac-
cess latency by switching the executions of different random
walk queries. FlashMob [39] tries to harvest spatial and tem-
poral locality underneath the apparently random nature of
random walks. Besides, Shao et al. [40] proposed a memory-
aware framework for second-order random walks, which au-
tomatically assigns a suitable sampling method for each node
to minimize the time cost within a memory budget. While
SOWalker focuses on I/O optimizations, some of these tech-
niques can be implemented to further enhance the in-memory
performance.

6 Conclusion

In this paper, we propose an I/O-optimized out-of-core graph
processing system for second-order random walks, called
SOWalker. To eliminate useless walk I/Os, we propose a walk
matrix to prevent loading non-updatable walks. To improve

the I/O utilization, we develop a benefit-aware I/O model
to load multiple blocks with the maximum accumulated up-
datable walks. To boost the walk updating rate, we adopt a
block set-oriented walk updating scheme to allow each walk
to move as many steps as possible in the loaded block set.
Our optimizations yield significant performance benefits com-
pared to the state-of-the-art random walk systems and greatly
reduce the I/O cost.

In the future, we would like to explore promising directions
of second-order random walks. The current graph partitioning
is quite simple, so we plan to design carefully graph partitions
in order that random walkers should be trapped for long times
in good partitions. Besides, we note that cache stall is also
a performance bottleneck. The in-memory optimization of
the second-order random walk is another attractive study to
follow.
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