
This paper is included in the Proceedings of the
2023 USENIX Annual Technical Conference.

July 10–12, 2023 • Boston, MA, USA
978-1-939133-35-9

Open access to the Proceedings of the
2023 USENIX Annual Technical Conference

is sponsored by

Efficient Memory Overcommitment for I/O
Passthrough Enabled VMs via Fine-grained

Page Meta-data Management
Yaohui Wang, Ben Luo, and Yibin Shen, Alibaba Group

https://www.usenix.org/conference/atc23/presentation/wang-yaohui

Efficient Memory Overcommitment for I/O Passthrough Enabled VMs
via Fine-grained Page Meta-data Management

Yaohui Wang, Ben Luo, Yibin Shen
Alibaba Group

Abstract
In virtualization systems, guest memory overcommitment

helps to improve the utilization of the host memory re-
source. However, the widely adopted I/O passthrough tech-
nique makes this task not intuitive since the hypervisor must
avoid DMA (Direct Memory Access) failures when the I/O
device accesses the guest memory. There already exist sev-
eral solutions, for example, IOPF (I/O Page Fault) can fix
DMA failures by allowing page fault triggered from the I/O
device side, vIOMMU and coIOMMU avoid DMA failures
by monitoring the DMA buffers in the guest. However, these
solutions all face the performance concerns introduced by the
memory backup/restore mechanism, i.e., memory swapping.
Some free page based methods (e.g., Ballooning, Free Page
Reporting, Hyperupcall) are free from memory swapping,
but they either are not DMA-safe or introduce high guest
communication overhead. In this paper, we propose V-Probe,
a high-efficiency approach to achieve memory overcommit-
ment for I/O passthrough enabled VMs. Using fine-grained
page meta-data management, V-Probe allows the hypervisor
to inspect and reclaim guest free pages actively and efficiently
while guaranteeing DMA-safety. Experiments show that, for
both memory reclamation and reallocation, the overhead of
V-Probe is in the scale of microseconds, which is faster than
Ballooning and IOPF based methods by two orders of magni-
tude. And our micro-benchmark and macro-benchmark show
that V-Probe limits the performance impact of memory over-
commitment to a low level.

1 Introduction

In virtualization systems, the total memory size of a VM
(Virtual Machine) is commonly constant while it is running,
but the working set of memory (i.e., memory accessed ac-
tively) inside a VM is usually a subset of the total mem-
ory [11, 17, 36, 42, 47]. This results in the inefficiency of
memory resource utilization [28, 39]. Memory overcommit-
ment [4,6,7,9,19,26,37,40,44] helps to mitigate this problem.

It reclaims cold memory (i.e., memory not accessed recently)
from a VM, and reallocates the memory to other VMs on
demand to increase memory utilization.

However, the widely adopted I/O passthrough technique [3,
5, 12, 15, 26, 27, 41], which significantly reduces the overhead
of I/O virtualization [1, 21, 24], requires the hypervisor to
keep a fixed memory mapping for the VM during its life cy-
cle to avoid potential DMA failures [4, 26, 40]. This highly
limits the ability of memory overcommitment since the mem-
ory reclamation will change the memory mapping of a VM
dynamically (Section 2).

Previous work tries to solve the contradiction between I/O
passthrough and memory overcommitment in two different
ways. The first is to introduce the IOPF (I/O Page Fault)
mechanism [25, 26, 34]. It allows an I/O device to notify the
hypervisor by triggering page faults when the target DMA
buffer does not reside in the main memory. After the hyper-
visor repairs the IOPT (I/O Page Table) entry for the faulted
IOVA (I/O Virtual Address), the device can replay the pre-
viously failed DMA request. The second is to monitor the
guest DMA buffers using the PV (Para-virtualization) tech-
nique [4, 10, 11, 40, 44]. Such solutions include vIOMMU [4]
and coIOMMU [40]. They use frontend drivers in the guest
to inform the hypervisor with DMA buffer alloc/free events.
With such knowledge, the hypervisor always keeps the mem-
ory mapping of the DMA buffers and thus prevents DMA
failures.

Although the above solutions allow memory overcommit-
ment to coexist with the I/O passthrough technique, they face
several deficiencies. The first is the compatibility issue, which
makes them currently less practical. For example, the IOPF
solution requires designated hardware which is not widely
supported by hardware manufacturers. And the coIOMMU
solution needs changes to the guest OS and is still not sup-
ported by off-the-shelf OSes (e.g., the Linux upstream). But
even though the compatibility issue can be fixed over time (by
evolving the hardware/software), the second issue – perfor-
mance issue – is unavoidable. When doing memory reclama-
tion/reallocation, these solutions need to backup/restore the

USENIX Association 2023 USENIX Annual Technical Conference 769

memory content using memory swapping [6, 20, 29, 30, 32].
The overhead it introduces not only slows down the mem-
ory reclamation process, but may also cause performance
oscillations to the VM and hurts the VM’s SLO [6, 49, 50].

While memory swapping is costly, reclaiming guest free
pages [44,45] is a good way to eliminate such overhead, since
the content in free pages is meaningless. But because of the
semantic gap in virtualization systems, free page reclamation
methods usually rely on the communication with the frontend
driver running inside the guest to obtain the knowledge of
guest free pages. The guest communication introduces extra
overhead and increases the response time for the memory
reclamation requests (Section 5.1.2). The recently proposed
free page inspecting method – Hyperupcall [7] – helps to
eliminate such overhead. When doing memory reclamation,
Hyperupcall allows the hypervisor to actively invoke the guest
injected eBPF functions to inspect guest free pages. How-
ever, guaranteeing DMA-safety is a challenging task with this
method. In Hyperupcall, since the guest is agnostic to the
hypervisor’s memory reclamation actions, it may allocate a
free page, whose underlying physical page is reclaimed by
the hypervisor, as a DMA buffer. Such behavior cannot be
perceived by the hypervisor, so it does not have a chance to
repair the memory mapping for the DMA buffer, which will
further cause DMA failures (Section 2.2.3).

In this paper, we propose V-Probe to address the perfor-
mance and DMA-safety challenges of memory overcommit-
ment for I/O passthrough enabled VMs. V-Probe targets guest
free pages to eliminate the costly overhead of memory swap-
ping. Inspired by Hyperupcall [7], V-Probe uses guest injected
helper functions to detect guest free pages actively, which
avoids the communication overhead with the guest. But in-
stead of using eBPF, V-Probe uses raw binary helper functions.
This avoids the complex eBPF dependencies in the guest OS
required by Hyperupcall. Such simplicity makes the deploy-
ment of the method easier. V-Probe uses the SFI (Software
Fault Isolation) technique [13, 31, 38, 43, 48], which performs
strict rule-based instruction-level checks to the injected binary,
to prevent malicious code. Using fine-grained page meta-data
management, V-Probe not only manages the memory map-
ping of the reclaimed free pages but also monitors their cor-
responding page meta-data. This allows V-Probe to react to
guest memory allocation events and prevent potential DMA
failures. Experiments show that the overhead of V-Probe is
in the scale of microseconds. Compared to Ballooning and
IOPF, it is faster by two orders of magnitude in both mem-
ory reclamation and reallocation. Our micro-benchmark and
macro-benchmark show that V-Probe limits the performance
impact of memory overcommitment to a low level.

We summarize our contribution as follows:

• We conduct a systematical study of previous VM mem-
ory overcommitment methods and characterize these
methods in different aspects to provide an overview.

• We propose V-Probe, an efficient memory overcommit-
ment method that targets guest free pages and guarantees
DMA-safety for I/O passthrough enabled VMs.

• We evaluate the overhead of V-Probe, and assess its
performance in both micro-benchmark and macro-
benchmark tests. Results show that V-Probe achieves low
overhead and limits the performance impact of memory
overcommitment to a low level.

2 Motivation

2.1 I/O Passthrough & DMA-safety

Figure 1: The address translation for CPU and I/O devices in
modern hardware architectures. Page faults in the I/O device
side will trigger DMA failures.

I/O passthrough, which allows the guest OS to directly
interact with the underlying hardware, is widely used in virtu-
alization systems [15,16]. Using I/O passthrough, a peripheral
device can directly access the guest memory through DMA
without the intervention of the CPU. It significantly decreases
the overhead of guest I/O operations and is also required
by the emerging high-performance RDMA (Remote Direct
Memory Access) applications [22, 23, 46]. This makes I/O
passthrough an irreplaceable part of virtualization systems
like the public cloud.

In the same way that the CPU MMU (Memory Manage-
ment Unit) needs a page table to translate GPA (Guest Physi-
cal Address) to HPA (Host Physical Address), devices’ DMA
requests rely on the IOPT to translate IOVA (I/O Virtual Ad-
dress, it is usually the same as GPA) to HPA. On the CPU side,
if the accessed GPA does not have a valid page table entry,
then a page fault will be triggered. The hypervisor will try to
fix the memory mapping in the page table, and then resume
the guest OS execution from where it triggers the page fault.
On the device side, to add IOPF support, the device needs
the ability to replay the once failed DMA request after the
hypervisor fixes the invalid IOPT entry. But unfortunately,
most off-the-shelf devices do not support such mechanism.
So they require that all DMA requests must always succeed
or they will result in DMA failure and crash of the guest OS
(Figure 1). This implies that an I/O passthrough enabled VM
has no tolerance to IOPT entry missing [4, 25, 26, 40].

770 2023 USENIX Annual Technical Conference USENIX Association

Table 1: The characteristics of the memory reclamation methods from different dimensions.

Methods DMA-safety
Hardware

Compatibility
Guest

Compatibility
Main

Overhead
IOPF DMA-safe Dedicated hardware No requirements Memory swapping

vIOMMU DMA-safe General hardware Frontend driver Memory swapping
coIOMMU DMA-safe General hardware Frontend driver Memory swapping
Ballooning DMA-safe General hardware Frontend driver Guest communication

Free Page Reporting DMA-unsafe General hardware Frontend driver Guest communication
Hyperupcall DMA-unsafe General hardware eBPF tool-chain Extremely low overhead

In memory overcommitment, the MMU page table entry
and the IOPT entry of the reclaimed page will both be invali-
dated after memory reclamation. As the hypervisor is agnostic
to whether a page is used for DMA in the guest, the reclaimed
page may be a DMA buffer. When a DMA request targeting
the reclaimed DMA buffer arrives, the missing IOPT entry
will cause DMA failure. To avoid potential DMA failures, the
hypervisor needs to disable memory overcommitment, and
statically pin the entire memory of a VM, i.e., keep a fixed
memory mapping for the VM during its life cycle.

2.2 Related Work
We discuss existing memory reclamation methods in the as-
pect of DMA-safety. We also characterize them in other im-
portant dimensions like compatibility and performance. We
summarize them in Table 1.

2.2.1 I/O Page Fault

IOPF [25, 26, 34] is a hardware feature. When DMA failure
occurs, IOPF allows a device to generate a page fault excep-
tion to the CPU, and replay the DMA request after the OS
repairs the memory mapping. So by using IOPF, memory
overcommitment is guaranteed to be DMA-safe.

As IOPF is transparent to the guest, it has no requirements
for the guest OSes. However, it faces the issue of poor hard-
ware compatibility as it requires designated hardware devices.
Although the PCIe specification [34] has been extended to
support IOPF since 2009, with the extensions of ATS (Ad-
dress Translation Service) and PRI (Page Request Interface),
the practice of such standard moves slowly. Currently, few
off-the-shelf I/O device supports IOPF. Although manufactur-
ers like AMD and Arm have introduced ATS and PRI to their
SoC design [2, 8], the absence of PCIe devices that supports
IOPF makes the IOPF call chain incomplete.

Even though the hardware compatibility issue can be
fixed over time, the performance issue is unavoidable.
Memory overcommitment depending on IOPF needs to
backup/restore the memory content when doing memory
reclamation/reallocation using memory swapping. Memory
swapping introduces I/O overhead since the contents of the
reclaimed memory are usually stored in storage media which

is much slower than the main memory. Another method of
memory swapping is memory compression. It introduces CPU
overhead since the compress/decompress process is a heavy
computing task. The overhead of memory swapping not only
slows down the hypervisor’s reaction to memory reclamation
requests, but also causes performance oscillation to the VM
and degrades the VM’s SLO, especially when a VM faces a
burst memory pressure and triggers a large number of page
faults in a short time.

Meanwhile, the hypervisor’s memory reclamation mech-
anism may also conflict with the memory reclamation in-
side the guest – The same memory page may be reclaimed
twice, once by the guest and once by the hypervisor. In
such a case, the guest’s access to the memory page will trig-
ger page faults twice, once trapped to the guest kernel and
once to the hypervisor. This is the so-called double paging
anomaly [14, 18, 33, 44] which introduces extra overhead to
memory reclamation.

2.2.2 Monitoring DMA Buffers

Another way to avoid DMA failure is to monitor DMA buffer
allocations in the guests. It implies two parts. First, when the
hypervisor reclaims a guest page, the monitor tells whether it
is a DMA buffer. Second, when the guest allocates a DMA
buffer whose underlying page is reclaimed, the monitor noti-
fies the hypervisor to fix the memory mapping in time. It is a
software solution and does not rely on designated hardware.

vIOMMU [4] is one such solution. It exposes an emulated
IOMMU (Input-output Memory Management Unit) to the
guest and enables the hypervisor to intercept, monitor, and
act upon DMA remapping operations. coIOMMU [40] is an-
other one. It decouples the memory protection and pinning
functionality in vIOMMU, which significantly improves the
performance. But coIOMMU needs extensive changes to the
guest OS, which results in the guest OS compatibility issue.
At the same time, although monitoring guest DMA buffers
guarantees DMA-safety, it still faces similar performance is-
sues as the IOPF solution because of the need for memory
swapping when doing memory reclamation/reallocation.

USENIX Association 2023 USENIX Annual Technical Conference 771

0 1 2 3 4 5 6 7

Time (Day)

0

20

40

60

80

100

Pe
rc

en
ta

ge
(%

)

Figure 2: The free memory proportion of 10,000 VMs ran-
domly sampled from the Alibaba cloud in one week period.
The X-axis is the time, the Y-axis is the sum of the VMs’
free memory size divided by the sum of the VMs’ occupied
memory size.

2.2.3 Free Page Reclamation

Free page reclamation targets on guest free pages. The quan-
tity of guest free pages is considerable. Figure 2 shows the
free memory proportion statistics of 10,000 VMs randomly
sampled from the Alibaba cloud in one week period. As it
shows, about 25.3% of the VMs’ memory is free and this
proportion is stable over time. At the same time, reclaiming
free pages helps to eliminate the memory swapping overhead,
since the contents of free pages are meaningless.

Ballooning [44] is a classical PV method that targets guest
free page reclamation. It contains a frontend driver running
in the guest, and a backend driver running in the hypervisor.
The frontend driver can "inflate" to occupy the guest free
pages and report them to the hypervisor, then the backend
driver can reclaim those pages. The reclaimed GPA area is
not allocatable in the guest until the hypervisor reallocates
new pages for it. This can prevent reclaimed GPA areas to be
used as DMA buffers, and thus avoids DMA failures.

However, the communication overhead between the fron-
tend and backend drivers (Section 5.1.2) brings performance
issues. Similar to the overhead introduced by memory swap-
ping (Section 2.2.1), the communication overhead may also
slow down the hypervisor’s reaction to memory reclamation
request, and cause VM performance oscillation [7, 9, 37].

Except for Ballooning, there are also other methods target-
ing free page reclamation. Free Page Reporting [45] allows
the guest to report its free pages to the hypervisor periodically.
And Hyperupcall [7], allows the hypervisor to inspect guest
free pages without guest intervention. However, guaranteeing
DMA-safety using these methods is a challenging task. As the
memory reclamation action in these methods is transparent
to the guest, the guest may allocate a free page, whose under-
lying physical page is reclaimed, as a DMA buffer. But the
hypervisor will not be notified by this action, thus it does not
have a chance to repair the memory mapping. So following
DMA requests addressing this page will fail and cause DMA
failures. Figure 3 illustrates the scenario. On the other hand,
Free Page Reporting faces the problem of timeliness. Its fron-

Figure 3: In guest free page reclamation, the hypervisor is
agnostic to the DMA buffer allocation in the guest, and fol-
lowing DMA requests will cause DMA failures.

tend driver initiates the reporting procedure with a fixed delay
(2 seconds in Linux’s implementation) after the guest releases
a high-order page. So the hypervisor’s memory reclamation
request may fail even if there are unreclaimed free pages in
the guest.

3 Approach

3.1 Design Goals
Based on our analysis in Section 2, we set our design goals
as follows:

• DMA-safety: I/O passthrough is playing an irreplace-
able part in today’s virtualization systems since it sig-
nificantly improves the guest I/O performance. The de-
sign should avoid DMA failures to make it safe for I/O
passthrough enabled VMs.

• Hardware Compatibility: The design should not rely
on IOPF as IOPF needs designated hardware. This en-
sures the solution is available for a large amount of ex-
isting hardware.

• Guest Compatibility: The design should be compatible
with a wide range of commodity guest OSes. This makes
sure the solution can be easily deployed to existing soft-
ware systems.

• Low Overhead: The overhead of the solution should be
as low as possible. This not only decreases the hyper-
visor’s reaction time for memory requests and enables
the hypervisor to take more aggressive memory reclama-
tion decisions, but also limits the performance impact on
the VMs and guarantees high VM SLO (Service-level
Objective).

According to the summary in Table 1, memory reclama-
tion methods that are unaware of the guest page alloca-
tion status (IOPF, vIOMMU, coIOMMU) require memory
backup/restore for every reclaimed page, which introduces the
overhead of memory swapping. However, obtaining knowl-
edge of guest free pages usually needs communications to the
frontend driver in the guest (Ballooning, Free Page Report-
ing), which introduces communication overhead. Hyperupcall

772 2023 USENIX Annual Technical Conference USENIX Association

achieves low overhead, but it faces two challenges. First, as
mentioned in Section 2.2.3, Hyperupcall is not DMA-safe. Al-
though discarding guest communication makes the execution
of Hyperupcall fast, this also means the guest is agnostic to the
reclamation status of its free pages. The guest may allocate
a reclaimed free page as a DMA buffer and the hypervisor
is not notified by such behavior. It may not have a chance
to fix the memory mapping before the DMA request arrives.
Second, Hyperupcall relies on the complex toolchain of eBPF
and needs modifications to the underlying LLVM compiler.
This increases the deployment complexity of Hyperupcall,
especially when adapting the toolchain to a variety of guest
OSes in the public cloud.

Solving these challenges brings us to the solution of V-
Probe. V-Probe is inspired by Hyperupcall. Like Hyperupcall,
V-Probe allows the hypervisor to actively reclaim guest free
pages without guest intervening. But V-Probe improves the
programming model of Hyperupcall to overcome its complex-
ity. More importantly, V-Probe proposes a novel fine-grained
page meta-data management technique to guarantee DMA-
safety.

3.2 V-Probe Overview

Figure 4 illustrates how V-Probe works. It contains three
parts: (1) V-Probe injector, (2) V-Probe data manager, and (3)
memory reclamation routine. Next, we will explain each part
in detail.

3.2.1 V-Probe Injector

The V-Probe injector is a guest module. It only runs one time
just after the guest finishes starting up. During its execution, it
accomplishes two tasks: (1) page meta-data layout registration
and (2) helper function registration.

In operating systems, like Linux, each physical page has
a corresponding piece of page meta-data to record its usage
state, e.g., the reference count or the allocation status. And
such meta-data is usually organized statically and continu-
ously in ranges of the physical memory. In page meta-data
layout registration, the guest first detects the GPA ranges
where the page meta-data resides. Then it passes this infor-
mation to the hypervisor through the registration API that
V-Probe provides. As the hypervisor is aware of how GPA is
translated to HPA, it can access the guest page meta-data pre-
cisely after obtaining the knowledge of guest page meta-data
GPA ranges.

But only having access to the guest page meta-data is not
enough, the hypervisor needs to understand the meanings
of the bytes in it. So we need the helper functions which
can parse the page meta-data. In helper function registration,
the guest compiles the source codes of helper functions to
hardware native binaries and injects them to the hypervisor
through the registration API of V-Probe. As the formats of

page meta-data can be different among guest OSes, the helper
functions are guest-specific and need to be dynamically com-
piled in the guest.

3.2.2 V-Probe Data Manager

The V-Probe data manager runs in the hypervisor. It provides
registration APIs for the V-Probe injector. The registered
helper functions and page meta-data layout information are
stored here. They help to recognize the status of each page in
the guest when performing memory reclamation.

Since the hypervisor will directly call the helper functions
via the injected binary code, we need a verifier to guarantee
their integrity, i.e., to prevent harmful codes injected from
malicious guests. As the use case of the helper functions
in V-Probe is limited to parsing guest page meta-data, the
logic of the helper functions should be very simple. So the
verifier uses strict rule-based restrictions to verify the injected
binaries, which protects the hypervisor from security attacks
without rejecting honest codes.

The V-Probe data manager also stores the information of
the reclaimed memory set. Each record in the set represents
a reclaimed guest memory area. Its content contains two di-
mensions: the reclaimed GFN (Guest Frame Number) range,
and the GPA range for the corresponding page meta-data.
This information is useful for page refaulting, which will be
explained in the next subsection.

3.2.3 Memory Reclamation Routine

The memory reclamation routine is the core logic to reclaim
free pages from the guest. Its execution is triggered by system
events, like periodic timers, or memory pressure. After the
preparation of the previous steps, the hypervisor can scan and
parse guest page meta-data to inspect the status of each page.

V-Probe solves the DMA-safety problem via fine-grained
page meta-data management. As shown in Figure 5, when
reclaiming guest free pages, V-Probe not only invalidates the
free pages’ mapping in the MMU page table and the I/O
page table but also modifies the page meta-data mapping in
the MMU page table to read-only. The reclaimed memory
set in V-Probe data manager will record the reclaimed GFN
range, along with the GPA range of the corresponding page
meta-data.

When the guest memory management system is going to
allocate a page inside the reclaimed GFN ranges, it will first
write to the corresponding page meta-data, e.g., change the
free flag. This will trigger a page fault on the CPU side as
we have changed the memory mapping of the page meta-data
to read-only after reclamation. The page fault notifies the
hypervisor. Then the hypervisor looks for the corresponding
record in the reclaimed memory set and recovers the memory
mappings for both the pages and the page meta-data. This
mechanism gives the hypervisor the chance to recover the

USENIX Association 2023 USENIX Annual Technical Conference 773

Figure 4: The design overview of V-Probe. It contains three parts: V-Probe injector, V-Probe data manager, and the memory
reclamation routine. The V-Probe injector registers helper functions and page page-meta layout information to the V-Probe data
manager. The code and data are used by the memory reclamation routine to inspect guest page status and reclaim free pages. The
details of the design are explained in Section 3.2.

(a) Memory mapping before free page reclamation.

(b) Memory mapping after free page reclamation.

Figure 5: Memory mapping status before and after free page
reclamation. During free page reclamation, V-Probe not only
invalidates the page table entries for the reclaimed pages but
also modifies the mapping of the page meta-data to read-only.
This gives the hypervisor the chance to recover the memory
mapping before the guest uses the page.

memory mapping before the guest uses the page, and thus it
prevents DMA failures.

4 Implementation

In this section, we introduce the implementation details of
V-Probe, which includes four parts: meta-data registration,
helper function registration, memory reclamation routine, and
page fault handler. We also explain the synchronization prob-
lem we face in V-Probe and how we solve this issue.

Our implementation of V-Probe is based on Linux, whose
source code can be easily touched and modified. The hardware
architecture is based on x86_64. The CPU we use is Intel®
Xeon® Platinum 8163 CPU.

4.1 Meta-data Registration
The meta-data of pages in Linux is usually defined as type
struct page. There are three kinds of struct page organization
models in Linux, decided by one of the three compile con-
figurations: CONFIG_FLATMEM, CONFIG_DISCONTIGMEM and
CONFIG_SPARSEMEM_VMEMMAP. But no matter what the con-
figuration is, the struct page data is organized linearly in
ranges of continuous memory in the guest physical address
space. V-Probe injector detects the struct page layout, indi-
cating each struct page memory range with two dimensions:
(1) the start and end GPA of the struct page memory range,
and (2) the start and end GFN that are managed by the range

774 2023 USENIX Annual Technical Conference USENIX Association

of struct page. V-Probe injector registers the information to
the hypervisor, then the hypervisor can locate the struct page
of each guest GFN.

4.2 Helper Functions Registration

(a) The source code and compiled binary of the helper function page_free.
This function is used to parse whether a guest page is free. The function
it calls (PageBuddy) is a Linux built-in function. The size of the compiled
binary is only 17 bytes.

(b) The source code and compiled binary of the helper function page_order.
This function is used to parse how many free pages are adjacent to this page.
The function it calls (page_private) is a Linux built-in function. The size of
the compiled binary is only 5 bytes.

Figure 6: The source codes and their compiled binary of the
two helper functions in V-Probe.

V-Probe relies on the helper functions to parse guest struct
page and obtain the status of the pages. They are injected from
the guest to the hypervisor after the guest finishes starting up.
Since the formats of struct page vary from guests OSes, the
helper functions need to be dynamically compiled in the guest.

Linux uses the buddy system [35] to manage free pages.
It organizes free pages as blocks, and the size of one block
is the order of 2. A buddy system block is identified by the
leading struct page in the block, and it also records the order
of the block. By parsing the struct page, i.e., testing a specific
bit or reading a specific field in it, we can decide whether a
struct page is the leading one in a block, and get the order
of the free page count in this block. In Linux, two kernel
built-in functions, PageBuddy and page_private, help to do
the parsing.

The two helper functions used in V-Probe are shown
in Figure 6b: (1) page_free, which wraps the function
PageBuddy, and (2) page_order, which wraps the function

page_private. These two helper functions are short and sim-
ple, and the sizes of their binary code are also small: 17 bytes
for page_free and 5 bytes for page_order. The definition
of the helper functions requires the noinline decorator, to
ensure they are not compiled to inline functions and can be
called by the hypervisor in a function manner.

To avoid harmful codes injected from malicious guests, we
need a verifier to guarantee the integrity of the helper function
binary. We apply SFI to implement the verifier. As the logic
of the helper functions used in V-Probe are very simple, sim-
plified yet strict checking rules in SFI are enough to protect
the hypervisor from security attacks without rejecting honest
codes. These rules are as follows:

• Register rdi is read-only, register rax is read-write.
Other registers are not allowed to be used.

• The function can only read a limited range of memory,
which is usually the size of the guest struct page, pointed
by the parameter stored in the rdi register.

• The function can not write to any main memory.

• No branch instruction or privileged instruction is al-
lowed.

• The last instruction must be retq.

• The length of the binary is less than 64 bytes.

The above rules protect the hypervisor from being compro-
mised by the injected code for two reasons. First, they make
sure the helper functions obey the convention of a function
call, and no branch nor privileged instructions are allowed.
This implies the instructions inside the call will be executed
sequentially, and the execution will finally return to the caller.
Second, during the function call’s execution, the accesses to
registers and memory are strictly limited to avoid any host
memory corruption. But note that these rules are highly re-
lated to the Intel X86_64 architecture. They need to be re-
designed on other CPU platforms.

4.3 Memory Reclamation Routine
The memory reclamation routine is triggered by host events
(like the memory pressure), and its execution is controlled
by the hypervisor. Algorithm 1 shows the pseudocode of
the procedure. It has two input parameters, GUEST , and
MIN_ORD, which respectively indicate the target guest we
try to reclaim memory from and the minimum order we
want. The procedure iterates through each GFN in the guest
(Line 2) and uses the two helper functions registered before,
GUEST.PAGE_FREE and GUEST.PAGE_ORD, to check
whether the guest page is free and what is the order in the
buddy system (Lines 6-7). If it meets our requirements (Line
8), then we try to reclaim the corresponding pages (Lines

USENIX Association 2023 USENIX Annual Technical Conference 775

Algorithm 1 The procedure of memory reclamation

Input: GUEST , MIN_ORD
Output: SUCCESS/FAIL

1: procedure MEMORYRECLAMATION
2: for each GFN in GUEST do
3: if GFN is reclaimed then
4: continue
5: SP← struct page of GFN in GUEST
6: FREE← GUEST.PAGE_FREE(SP)
7: ORD← GUEST.PAGE_ORD(SP)
8: if FREE and ORD≥MIN_ORD then
9: Lock MUTEX

10: Make the struct page GPA range read-only
11: SP′← struct page of GFN in GUEST
12: FREE ′← GUEST.PAGE_FREE(SP′)
13: ORD′← GUEST.PAGE_ORD(SP′)
14: if FREE ′ and ORD′ ≥MIN_ORD then
15: GFNst ← GFN
16: GFNen← GFN +(1 << ORD′)
17: RANGE← [GFNst , GFNen)
18: Unmap EPT in RANGE
19: Unmap IOMMU in RANGE
20: Add RANGE to the reclaimed set
21: Release reclaimed pages to hypervisor
22: Unlock MUTEX
23: return SUCCESS
24: Make the struct page GPA range read-write
25: Unlock MUTEX
26: return FAIL

9-25). The core reclamation logic makes the struct page GPA
range read-only (Line 10), invalidates the memory mapping
in EPT (Extended Page Table) and IOMMU page table for
the reclaimed GFN range (Lines 15-19), adds this range to
the reclaimed set (Line 20), and finally, releases the reclaimed
pages to the hypervisor (Line 21). Algorithm 1 uses the mutex
(Line 9) and the page status double check logic (Lines 11-
14) to avoid synchronization problems, which will be further
explained in Section 4.5.

4.4 Page Fault Handler

Since we have modified the EPT mapping of the struct page
GPA range to read-only for the reclaimed GFNs, when the
guest tries to allocate these pages, it will write to the corre-
sponding struct page to modify the bytes of page status flags.
Thus a page fault is triggered. The pseudocode of the page
fault handler is shown in Algorithm 2. It has two input param-
eters: GUEST and GPA, which respectively indicate the guest
and the accessed GPA that triggers the page fault. First, it calls
GetReclaimedRange to find the reclaimed memory range re-

Algorithm 2 The procedure of page fault handler

Input: GUEST , GPA

1: procedure PAGEFAULTHANDLER
2: Lock MUTEX
3: RANGE← GetReclaimedRange(GUEST , GPA)
4: PAGES← pages reallocated for RANGE
5: Map RANGE to PAGES in EPT
6: Map RANGE to PAGES in IOMMU
7: Remove RANGE from the reclaimed set
8: Make the struct page GPA range read-write
9: Unlock MUTEX

10: return

Input: GUEST , GPA
Output: RANGE

11: procedure GETRECLAIMEDRANGE
12: for each RANGE in the reclaimed set of GUEST do
13: SPst ← the start struct page GPA in RANGE
14: SPen← the end struct page GPA in RANGE
15: if SPst ≤ GPA≤ SPen then
16: return RANGE

sponsible for GPA (Line 3). Then it allocates pages (Line 4),
remaps the EPT and IOMMU page table for this range (Lines
5-6), removes the range from the guest’s reclaimed memory
set (Line 7), and resumes the EPT mapping of the struct page
GPA range to read-write (Line 8).

Function GetReclaimedRange is simplified as a loop for
ease of demonstration. We use the rbtree (Red-black Tree),
which is an implementation of the binary search tree in Linux,
to optimize the performance of memory range inserting, delet-
ing, and searching.

4.5 Synchronization Problem
One challenge for the reclamation process is the synchro-
nization problem: the guest may allocate the pages while we
are reclaiming them, and the status of the guest struct page
may change from "free" to "allocated" within the memory
reclamation routine, which may cause inconsistency in the
system.

Figure 7 show two cases to illustrate how the mutex and
double-checking in Algorithm 1 (Lines 9-14) and Algorithm 2
(Line 2) avoids the racing conditions. In reclaim 1⃝, if the
guest allocates the free pages after the Hypervisor makes the
corresponding struct page GPA range read-only, it will trigger
page fault and the mutex will prevent the page fault handler
to fix the memory mapping before the hypervisor finishes
reclamation. This guarantees the atomicity of the memory
reclamation process and the page fault handling. In reclaim
2⃝, if the guest allocates the free page before the Hypervisor

776 2023 USENIX Annual Technical Conference USENIX Association

Figure 7: Two cases to illustrate how V-Probe solves the
synchronization problem.

makes the corresponding struct page GPA range read-only, the
double-checking will detect such behavior and skip the page,
so as to avoid the inconsistency of the page status knowledge.

5 Evaluation

In this section, we conduct experiments to evaluate V-Probe
in different aspects. First, we evaluate V-Probe’s overhead in
memory reclamation and reallocation tasks. Then we evaluate
its impact on workload performance using both the micro-
benchmark and macro-benchmark.

The experiments are based on the hardware architecture of
Intel® Xeon® Platinum 8163 CPU. The hypervisor is based
on QEMU and KVM. And the memory allocator manages the
underlying memory of guest VMs in 2MB granularity. The
guests in our experiments run Linux OS, each equipped with
2 CPU cores and 4GB main memory.

We use Ballooning and the IOPF based method for com-
parison. For simplicity, we will call the IOPF based method
as IOPF in the following explanation. For memory recla-
mation and reallocation tasks, we compare V-Probe with
both Ballooning and IOPF. For micro-benchmark and macro-
benchmark tests, we only use IOPF for comparison. We do
not use Ballooning for these benchmarks because the frontend
driver of Ballooning will hold the reclaimed free pages and
make them unallocatable in the guest. So if the memory usage
of the task does not exceed the remaining allocatable memory
in the guest, the performance will be the same as the base-
line with no memory reclamation. On the other hand, if the
memory usage of the task exceeds the remaining allocatable

V-Probe IOPFBallooningBallooning
(guest idle)

0

2

4

6

8

10

O
pe

ra
tio

n
tim

e
co

st
(m

s)

0.09

9.06

6.07

0.81
0.06

6.88
7.39

0.79

Reclaim
Reallocate

Figure 8: The time cost of V-Probe, Ballooning and IOPF to
reclaim (reallocate) 2MB memory from (to) the guest. We run
sysbench CPU workloads in the guest to emulate the guest’s
CPU stress.

memory in the guest, the guest will kill the task because of
the OOM (Out of memory) error.

We reclaim 30% of the server’s memory at the beginning
of the each benchmark test. In practice, to avoid host memory
insufficiency, the memory reclamation policies need to limit
the quantity of memory reclaimed from each guest and the
quantity of memory that can be reused by other VMs. 30% of
memory reclamation is an extremely high value in practice.
In this configuration, the benchmark results reveal the perfor-
mance impact limit of V-Probe in a real-world environment.

Since IOPF is not commonly supported by off-the-shelf I/O
devices, we implement IOPF by ourselves using FPGA-based
SmartNIC. The storage media we use for memory swapping
is a hard disk drive, with 250MB/s I/O throughput. Notice
that other methods relying on memory swapping (vIOMMU,
coIOMMU) share similar results with IOPF.

5.1 Overhead
5.1.1 Data Registration

The overall data registration process takes less than 1 second.
The main overhead comes from the helper function compi-
lation and page meta-data layout detection within the guest.
The overhead of data transferring is small as the size of the
registered data is only 232 bytes in our implementation, which
includes the binaries of the helper functions, the page meta-
data layout information, and the extra API-related fields. Also,
as the helper functions are simple and small, the verification
cost is negligible. Data registration only runs one time after
the guest finishes starting up, and its overhead will not impact
the following memory reclamation procedure.

5.1.2 Memory Reclamation and Reallocation

We evaluate the overhead of V-Probe in the memory recla-
mation (reallocation) task by measuring the time it takes to

USENIX Association 2023 USENIX Annual Technical Conference 777

reclaim (reallocate) 2MB memory from (to) the guest. For
memory reclamation, the cost refers to the time elapsed be-
tween the initiation of the memory reclamation request and
the moment the hypervisor releases the reclaimed memory
back to the host. For memory reallocation, the cost refers
to the time elapsed between the initiation of the memory
reallocation request and the point at which the hypervisor
establishes the new memory mapping.

We use Ballooning and IOPF for comparison. Dur-
ing memory reclamation (reallocation), we run sysbench
CPU workloads in the guest to emulate the guest’s CPU
stress. Specifically, we run the command ’sysbench cpu
-threads=$(nproc) -time=0 run’ in the guest to make
all of the CPUs busy. We also assess the performance of Bal-
looning when the guest OS is idle, in order to determine the
upper limit of its performance. For each measurement, we run
the operation 10 times and present the average value as the
result.

We will take the memory reclamation task as an example to
analyze the experiment results. The memory reallocation task
shares a similar analysis. As Figure 8 shows, V-Probe takes
only 0.09ms to reclaim 2MB memory on average, while Bal-
looning and IOPF take 6.07ms and 6.88ms respectively. We
analyze the reasons why V-Probe is two orders of magnitude
faster than the other two methods as follows:

• Ballooning relies on the communication with the fron-
tend driver running in the guest when reclaiming mem-
ory from it. The communication introduces a large delay,
especially when the guest is busy with CPU intensive
tasks, which reduces the chance for the thread of the
frontend driver to gain CPU time slice. The overhead
of communication (5.79ms) occupies 95.4% of the total
overhead (6.07ms) when using Ballooning to reclaim
2MB memory. Even if the CPU is not busy in the guest,
the communication overhead (0.53ms) also occupies
65.4% of the total overhead (0.81ms).

• IOPF relies on memory swapping to avoid guest memory
corruption. Memory swapping introduces a large over-
head of disk I/O (8.95ms), which occupies 98.8% of the
total overhead (9.06ms).

• When triggered by events, V-Probe can use the injected
helper functions to inspect the guest free pages actively,
without the time-consuming communication with the
guest. At the same time, since the reclaimed pages are
free memory in the guest and do not contain valuable
data, V-Probe does not need memory swapping, which
avoids the disk I/O overhead.

The memory overhead of V-Probe’s reclamation process
is also small. For each reclaimed memory range, we allocate
a 64B data structure to maintain the necessary data, which
includes the start/end GPA of the struct page and the physical

0 5 10 15 20 25 30 35

Time (s)

70

80

90

100

T
C

P
th

ro
u

gh
p

u
t

(M
B

/s
)

Baseline

V-Probe

IOPF

Figure 9: The TCP throughput of the baseline, V-Probe, and
IOPF.

page, and other data-structure-specific fields. The overhead is
64B/2MB = 0.031‰ for a 2MB area and 64B/4MB = 0.015‰
for a 4MB area.

5.2 Micro-benchmark
The micro-benchmarks in our evaluation include TCP
throughput and UDP latency, as these two metrics are critical
for many important applications (e.g., file servers, databases,
and key-value stores). The evaluation requires a client-server
experiment setting. We measure the performance impact of
V-Probe on these metrics when a large amount of memory is
reclaimed from the server side and high memory footprint is
triggered by the network stream. We compare V-Probe with
the baseline (i.e., no memory is reclaimed from the guest) and
IOPF.

Although there exist many network performance bench-
mark tools (e.g., netperf), they only focus on the efficiency
of the network stack and have a low memory footprint, which
means they cannot cover the logic of the memory refault logic
(i.e., trigger page fault and reallocate memory). So we design
and implement our own micro-benchmarks, which have a high
memory footprint while measuring the TCP throughput and
UDP latency.

5.2.1 TCP Throughput

To evaluate TCP throughput, we run a client and a server in
two separate VMs, both equipped with 2 CPU cores and 4GB
main memory. The server serves a 4GB file and the client
will download the file when running the experiment. 30% of
the server’s memory is reclaimed at the beginning of the test.
When the client downloads the file, the server will read the
file from the disk to the in-memory page cache. As Linux
drops the page cache in an on-demand manner, the server
will fill the memory with the page cache until the memory
is insufficient. This implements a high memory footprint of
the experiment and will trigger page refault in the serve. We
record the download speed as the TCP throughput.

Figure 9 shows the throughput changes over time in differ-
ent settings. As the figure shows, the throughput fluctuation

778 2023 USENIX Annual Technical Conference USENIX Association

0 2 4 6 8

UDP latency (ms)

0.00

0.25

0.50

0.75

1.00

P
ro

b
ab

il
it

y

Baseline

V-Probe

IOPF

Figure 10: The CDF of the UDP latency when applying the
baseline, V-Probe and IOPF.

of the baseline and V-Probe are smaller than that of IOPF.
The minimum throughput of the baseline, V-Probe and IOPF
are 97MB/s, 93.1MB/s, and 85.8MB/s respectively. And the
average value is 100.2MB/s, 99.8MB/s, and 97.5MB/s respec-
tively. These results show that V-Probe may degrade the TCP
throughput slightly compared with the baseline, but it is much
better than IOPF.

5.2.2 UDP Latency

To evaluate UDP latency, we run a client and a server in two
separate VMs, both equipped with 2 CPU cores and 4GB
main memory. 30% of the server’s memory is reclaimed at
the beginning of the test. The logic of the UDP server is quite
simple: It listens on a port, accepts a UDP connection request,
allocates a 2MB buffer and accesses it, then sends a response
back to the client. This is to simulate a UDP application with
a high memory footprint. Allocating and accessing buffers
may cause page faults and page reallocations if the underly-
ing memory is reclaimed by the hypervisor. The UDP client
records the latency of each request as the results.

Figure 10 shows the CDF (Cumulative Distribution Func-
tion) of different settings. The 90th percentile latency of the
baseline, V-Probe and IOPF is 0.23ms, 0.39ms and 6.55ms
respectively, and the 99th percentile latency is 1.36ms, 2.43ms
and 8.27ms respectively. The overhead of V-Probe is 69.6%
and 79.4% in the 90th and 99th percentile latency, respectively,
when compared to the baseline. However, it significantly out-
performs IOPF, which introduces approximately 27X and 5X
overhead in the 90th and 99th percentile latency.

5.3 Macro-benchmark
We use Redis, a widely used in-memory key-value database
as the macro-benchmark to evaluate V-Probe. We run a client
and a server in two separate VMs, both equipped with 2 CPU
cores and 4GB main memory. At the beginning of the experi-
ment, we remove all the data from the Redis server database
and reclaim 30% memory from the server. The client runs
redis-benchmark, the official Redis benchmark tool, to con-
tinuously send SET commands to the server. The SET com-

0 25 50 75 100 125 150 175 200

Time (s)

11.8

12.0

12.2

12.4

12.6

12.8

Q
P

S
(K

)

Baseline

V-Probe

IOPF

Figure 11: The Redis QPS when applying baseline, V-Probe,
and IOPF.

mand will randomly write key-value pairs to the in-memory
database. There are 1,000,000 random keys, and the value size
of each SET operation is 2KB. We record the QPS (queries
per second) and the operation latency during the test. We only
test the SET workload because V-Probe is a free-page-based
method, and data insertion is necessary to trigger guest page
allocation, and thus necessary to trigger V-Probe’s memory
reallocation. If we use the GET workload to evaluate V-Probe,
the data in Redis will always stay in the main memory, with no
page fault or memory reallocation operations will not utilize
the functionality of V-Probe.

Figure 11 shows the QPS over time in the different set-
tings. As it shows, the result of V-Probe (12.55K) is close
to the baseline (12.56K). And the result of IOPF (12.31K)
is about 2% lower than the other two. For the tail latency of
each operation (not shown in the figure), the baseline and
V-Probe exhibit a 99.99th percentile latency of 1ms, while
the IOPF exhibits a noticeably higher 99.99th percentile la-
tency of 7ms (the precision of the latency data is limited to
the redis-benchmark tool). This indicates the Redis perfor-
mance while applying V-Probe for memory reclamation is
close to the case with no memory reclamation and better than
applying IOPF.

6 Discussion

6.1 Compatibility

In this paper, we present a Linux-based implementation of
V-Probe which is highly straightforward for two reasons.
First, the V-Probe injector, including the helper functions, is
lightweight (140 LOC (Lines of Code)), and it is dynamically
compiled after the startup of the guest. This means that the
V-Probe injector does not need to change for different releases
of the Linux kernel. Second, V-Probe does not hack any API
in the guest OS. This implies that V-Probe does not enforce
any changes on the guest OS and retains full compatibility for
guest OSes.

V-Probe relies on the continuous arrangement of the guest
page meta-data. Accordingly, while in this paper we examine

USENIX Association 2023 USENIX Annual Technical Conference 779

a Linux-based implementation of V-Probe, the adoption of V-
Probe is similar in Unix-like OSes that use a similar memory
management mechanism to Linux. For example, FreeBSD
uses ranges of struct vm_page (like struct page in Linux) to
arrange the page meta-data and uses the buddy system to
manage them.

V-Probe introduces about 1,300 LOC to the hypervisor, as
the logic of V-Probe on the hypervisor side is much more
complex. But this does not impact the practice of V-Probe as
most of the cloud providers use customized hypervisors, and
V-Probe can be easily integrated into these software systems.

V-Probe introduces high hardware compatibility as it only
relies on the basic virtualization features of the CPU. These
features are widely supported by popular CPU platforms such
as Intel, AMD, Arm, and RISC-V. Furthermore, V-Probe does
not rely on IOPF which is not commonly supported by off-
the-shelf I/O devices.

6.2 Fine-grained Page Meta-data Management
Using fine-grained page meta-data management, V-Probe can
effectively avoid DMA failures in I/O passthrough enables
VMs. At the same time, the idea of fine-grained page meta-
data management can also be combined with other free page
reclamation methods to avoid DMA failures. For example,
in Free Page Reporting, except for the free pages, the guest
can also report the page meta-data to the hypervisor. So by
managing the access mode of the guest page meta-data’s GPA
range, Free Page Reporting can avoid DMA failures in the
same way V-Probe does. But unlike V-Probe, which uses
helper functions to inspect guest free pages without notifying
the guest, these methods rely on the frontend drivers to obtain
the guest page status, which means the guest communication
overhead is unavoidable.

6.3 Threats to Validity
There are two threats to the validity of our work. First, this
paper defines and examines an example implementation of the
V-Probe design that is specific to Intel X86_64 architecture
and Linux-based OSes. Therefore, architecture-based and OS-
based assumptions of this example implantation would need to
be adjusted when moving to other architectures and OS types.
However, since V-Probe relies on the continuous arrangement
of the guest page meta-data, V-Probe may not apply to the
OSes that use different ways to arrange the page meta-data.

Second, when reclaiming free pages, V-Probe needs to mod-
ify the memory mapping for the page meta-data GPA range.
But since memory mapping is by the granularity of pages,
the meta-data should reside on the same physical page. So V-
Probe can only reclaim continuous free pages in batches. As a
result, guest free page fragmentation may weaken the memory
reclamation effect of V-Probe. But free page fragmentation in
the guests is usually caused by high memory pressure, which

suggests the system not to reclaim memory from them. Also,
this problem can be mitigated by the memory compaction
functionality in the guest OS.

7 Conclusion

In this paper, we conduct a systematic survey of previous
VM memory reclamation methods and analyze their relation-
ship with the widely deployed I/O passthrough technique.
Based on the analysis, We propose V-Probe, a non-intrusion
and efficient approach to achieve memory overcommitment
for I/O passthrough enabled VMs. Using fine-grained page
meta-data management, V-Probe enables the hypervisor to
actively inspect and reclaim the guest free pages while guar-
anteeing DMA-safety. We implement V-Probe and evaluate
its efficiency in different aspects. Experiment results show
that the overhead of V-Probe is on the micro-second scale and
it has low performance impact on the guest workload. It also
has high compatibility with different hardware platforms and
a wide range of Linux kernel releases, which simplifies the
deployment.

References

[1] Abdullah Aljumah and Mohammed Altaf Ahmed. De-
sign of high speed data transfer direct memory access
controller for system on chip based embedded products.
Journal of Applied Sciences, 15(3):576–581, 2015.

[2] AMD. Amd i/o virtualization technology (iommu)
specification, 2021. https://developer.amd.com/
wp-content/resources/48882_IOMMU_3.05_PUB.
pdf.

[3] Ardalan Amiri Sani, Kevin Boos, Shaopu Qin, and Lin
Zhong. I/o paravirtualization at the device file bound-
ary. ACM SIGARCH Computer Architecture News,
42(1):319–332, 2014.

[4] Nadav Amit, Muli Ben-Yehuda, Dan Tsafrir, Assaf
Schuster, et al. viommu: efficient iommu emulation. In
USENIX Annual Technical Conference (USENIX ATC),
pages 73–86, 2011.

[5] Nadav Amit, Abel Gordon, Nadav Har’El, Muli Ben-
Yehuda, Alex Landau, Assaf Schuster, and Dan Tsafrir.
Bare-metal performance for virtual machines with exit-
less interrupts. Communications of the ACM, 59(1):108–
116, 2015.

[6] Nadav Amit, Dan Tsafrir, and Assaf Schuster. Vswapper:
A memory swapper for virtualized environments. Acm
Sigplan Notices, 49(4):349–366, 2014.

780 2023 USENIX Annual Technical Conference USENIX Association

https://developer.amd.com/wp-content/resources/48882_IOMMU_3.05_PUB.pdf
https://developer.amd.com/wp-content/resources/48882_IOMMU_3.05_PUB.pdf
https://developer.amd.com/wp-content/resources/48882_IOMMU_3.05_PUB.pdf

[7] Nadav Amit and Michael Wei. The design and imple-
mentation of hyperupcalls. In USENIX Annual Techni-
cal Conference (USENIX ATC), pages 97–112, 2018.

[8] Arm. Arm system memory management unit archi-
tecture specification, 2021. https://developer.arm.
com/documentation/ihi0070/latest.

[9] Kapil Arya, Yury Baskakov, and Alex Garthwaite.
Tesseract: reconciling guest i/o and hypervisor swap-
ping in a vm. Acm Sigplan Notices, 49(7):15–28, 2014.

[10] S Anish Babu, MJ Hareesh, John Paul Martin, Sijo
Cherian, and Yedhu Sastri. System performance evalua-
tion of para virtualization, container virtualization, and
full virtualization using xen, openvz, and xenserver. In
2014 fourth international conference on advances in
computing and communications, pages 247–250. IEEE,
2014.

[11] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand,
Tim Harris, Alex Ho, Rolf Neugebauer, Ian Pratt, and
Andrew Warfield. Xen and the art of virtualization.
ACM SIGOPS Operating Systems Review, 37(5):164–
177, 2003.

[12] Muli Ben-Yehuda, Michael D Day, Zvi Dubitzky,
Michael Factor, Nadav Har’El, Abel Gordon, Anthony
Liguori, Orit Wasserman, and Ben-Ami Yassour. The
turtles project: Design and implementation of nested
virtualization. In USENIX Symposium on Operating
System Design and Implementation (USENIX OSDI),
volume 10, pages 423–436, 2010.

[13] Miguel Castro, Manuel Costa, Jean-Philippe Martin,
Marcus Peinado, Periklis Akritidis, Austin Donnelly,
Paul Barham, and Richard Black. Fast byte-granularity
software fault isolation. In Proceedings of the ACM
SIGOPS 22nd symposium on Operating systems princi-
ples, pages 45–58, 2009.

[14] Khien-mien Chew and Avi Silberschatz. On the avoid-
ance of the double paging anomaly in virtual memory
systems. 1992.

[15] Yaozu Dong, Xiaowei Yang, Jianhui Li, Guangdeng
Liao, Kun Tian, and Haibing Guan. High performance
network virtualization with sr-iov. Journal of Parallel
and Distributed Computing, 72(11):1471–1480, 2012.

[16] Daniel Firestone, Andrew Putnam, Sambhrama
Mundkur, Derek Chiou, Alireza Dabagh, Mike
Andrewartha, Hari Angepat, Vivek Bhanu, Adrian
Caulfield, Eric Chung, et al. Azure accelerated
networking:{SmartNICs} in the public cloud. In 15th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 18), pages 51–66, 2018.

[17] Tal Garfinkel, Ben Pfaff, Jim Chow, Mendel Rosenblum,
and Dan Boneh. Terra: A virtual machine-based plat-
form for trusted computing. In ACM Symposium on
Operating Systems Principles (SOSP), pages 193–206,
2003.

[18] Kinshuk Govil, Dan Teodosiu, Yongqiang Huang, and
Mendel Rosenblum. Cellular disco: Resource manage-
ment using virtual clusters on shared-memory multi-
processors. In ACM Symposium on Operating Systems
Principles (SOSP), pages 154–169, 1999.

[19] Fei Guo, Seongbeom Kim, Yury Baskakov, and Ishan
Banerjee. Proactively breaking large pages to improve
memory overcommitment performance in vmware esxi.
In ACM SIGPLAN/SIGOPS International Conference
on Virtual Execution Environments, pages 39–51, 2015.

[20] Chien-Chin Huang, Gu Jin, and Jinyang Li. Swapad-
visor: Pushing deep learning beyond the gpu memory
limit via smart swapping. In Proceedings of the Twenty-
Fifth International Conference on Architectural Support
for Programming Languages and Operating Systems,
pages 1341–1355, 2020.

[21] Tai-Yi Huang, JW-S Liu, and Jen-Yao Chung. Allowing
cycle-stealing direct memory access i/o concurrent with
hard-real-time programs. In International Conference
on Parallel and Distributed Systems (ICPADS), pages
422–429. IEEE, 1996.

[22] Anuj Kalia, Michael Kaminsky, and David G Andersen.
Using rdma efficiently for key-value services. In Pro-
ceedings of the 2014 ACM Conference on SIGCOMM,
pages 295–306, 2014.

[23] Anuj Kalia, Michael Kaminsky, and David G Andersen.
Design guidelines for high performance {RDMA} sys-
tems. In 2016 USENIX Annual Technical Conference
(USENIX ATC 16), pages 437–450, 2016.

[24] Donghyuk Lee, Lavanya Subramanian, Rachata
Ausavarungnirun, Jongmoo Choi, and Onur Mutlu.
Decoupled direct memory access: Isolating cpu and
io traffic by leveraging a dual-data-port dram. In
International Conference on Parallel Architecture and
Compilation (PACT), pages 174–187. IEEE, 2015.

[25] Ilya Lesokhin, Haggai Eran, Shachar Raindel, Guy
Shapiro, Sagi Grimberg, Liran Liss, Muli Ben-Yehuda,
Nadav Amit, and Dan Tsafrir. Page fault support for
network controllers. ACM SIGARCH Computer Archi-
tecture News, 45(1):449–466, 2017.

[26] Ilya Lesokhin and Dan Tsafrir. I/O Page Faults. PhD
thesis, Computer Science Department, Technion, 2015.

USENIX Association 2023 USENIX Annual Technical Conference 781

https://developer.arm.com/documentation/ihi0070/latest
https://developer.arm.com/documentation/ihi0070/latest

[27] Joshua LeVasseur, Volkmar Uhlig, Jan Stoess, and Ste-
fan Götz. Unmodified device driver reuse and improved
system dependability via virtual machines. In USENIX
Symposium on Operating System Design and Implemen-
tation (USENIX OSDI), volume 4, pages 17–30, 2004.

[28] Jiaxin Li, Dongsheng Li, Yuming Ye, and Xicheng
Lu. Efficient multi-tenant virtual machine allocation
in cloud data centers. Tsinghua Science and Technology,
20(1):81–89, 2015.

[29] Shuang Liang, Ranjit Noronha, and Dhabaleswar K
Panda. Swapping to remote memory over infiniband: An
approach using a high performance network block de-
vice. In 2005 IEEE International Conference on Cluster
Computing, pages 1–10. IEEE, 2005.

[30] Duo Liu, Kan Zhong, Xiao Zhu, Yang Li, Lingbo Long,
and Zili Shao. Non-volatile memory based page swap-
ping for building high-performance mobile devices.
IEEE Transactions on Computers, 66(11):1918–1931,
2017.

[31] Yandong Mao, Haogang Chen, Dong Zhou, Xi Wang,
Nickolai Zeldovich, and M Frans Kaashoek. Software
fault isolation with api integrity and multi-principal mod-
ules. In Proceedings of the Twenty-Third ACM Sympo-
sium on Operating Systems Principles, pages 115–128,
2011.

[32] Antonio Marsico, Roberto Doriguzzi-Corin, and
Domenico Siracusa. An effective swapping mechanism
to overcome the memory limitation of sdn devices. In
2017 IFIP/IEEE Symposium on Integrated Network and
Service Management (IM), pages 247–254. IEEE, 2017.

[33] KAZUHIKO OHMACHI, THORU NISHIGAKI, and
SHIGEO TAKASAKI. Analysis of pawp/vms: Paging
algorithm to prevent double paging anomaly in virtual
machine systems. J. Inform. Processing, 4(2):55–60,
1981.

[34] PCI-SIG. Address translation services revision 1.1,
2009. http://www.pcisig.com/specifications/
iov/ats/.

[35] James L Peterson and Theodore A Norman. Buddy
systems. Communications of the ACM, 20(6):421–431,
1977.

[36] Mendel Rosenblum and Tal Garfinkel. Virtual machine
monitors: Current technology and future trends. Com-
puter, 38(5):39–47, 2005.

[37] Assaf Schuster, Nadav Amit, and Dan Tsafrir. Memory
swapper for virtualized environments, November 7 2017.
US Patent 9,811,268.

[38] David Sehr, Robert Muth, Cliff Biffle, Victor Khimenko,
Egor Pasko, Karl Schimpf, Bennet Yee, and Brad Chen.
Adapting software fault isolation to contemporary
{CPU} architectures. In 19th USENIX Security Sympo-
sium (USENIX Security 10), 2010.

[39] SK Shravan, J Lakshmi, and Neeraj Bisht. Towards
improving data center utilisation by reducing fragmen-
tation. In IEEE International Conference on Cloud
Computing (CLOUD), pages 941–945. IEEE, 2018.

[40] Kun Tian, Yu Zhang, Luwei Kang, Yan Zhao, and Yaozu
Dong. coiommu: A virtual iommu with cooperative
dma buffer tracking for efficient memory management
in direct i/o. In USENIX Annual Technical Conference
(USENIX ATC), pages 479–492, 2020.

[41] Cheng-Chun Tu, Michael Ferdman, Chao-tung Lee, and
Tzi-cker Chiueh. A comprehensive implementation and
evaluation of direct interrupt delivery. Acm Sigplan
Notices, 50(7):1–15, 2015.

[42] Rich Uhlig, Gil Neiger, Dion Rodgers, Amy L Santoni,
Fernando CM Martins, Andrew V Anderson, Steven M
Bennett, Alain Kagi, Felix H Leung, and Larry Smith.
Intel virtualization technology. Computer, 38(5):48–56,
2005.

[43] Robert Wahbe, Steven Lucco, Thomas E Anderson, and
Susan L Graham. Efficient software-based fault isola-
tion. In ACM Symposium on Operating Systems Princi-
ples (SOSP), pages 203–216, 1993.

[44] Carl A. Waldspurger. Memory resource management
in VMware ESX server. In USENIX Symposium on
Operating System Design and Implementation (USENIX
OSDI), pages 181–194, 2002.

[45] Wang Wei. Provide support for free page reporting,
2020. https://lwn.net/Articles/808807/.

[46] Xingda Wei, Jiaxin Shi, Yanzhe Chen, Rong Chen, and
Haibo Chen. Fast in-memory transaction processing
using rdma and htm. In Proceedings of the 25th Sympo-
sium on Operating Systems Principles, pages 87–104,
2015.

[47] Zhen Xiao, Weijia Song, and Qi Chen. Dynamic re-
source allocation using virtual machines for cloud com-
puting environment. IEEE Transactions on Parallel and
Distributed Systems, 24(6):1107–1117, 2012.

[48] Bennet Yee, David Sehr, Gregory Dardyk, J Bradley
Chen, Robert Muth, Tavis Ormandy, Shiki Okasaka,
Neha Narula, and Nicholas Fullagar. Native client: A
sandbox for portable, untrusted x86 native code. In
IEEE Symposium on Security and Privacy (SP), pages
79–93. IEEE, 2009.

782 2023 USENIX Annual Technical Conference USENIX Association

http://www.pcisig.com/specifications/iov/ats/
http://www.pcisig.com/specifications/iov/ats/
https://lwn.net/Articles/808807/

[49] Pengfei Zhang, Xi Li, Rui Chu, and Huaimin Wang. Hy-
bridswap: A scalable and synthetic framework for guest
swapping on virtualization platform. In 2015 IEEE Con-
ference on Computer Communications (INFOCOM),
pages 864–872. IEEE, 2015.

[50] Qi Zhang and Ling Liu. Shared memory optimization
in virtualized cloud. In 2015 IEEE 8th International
Conference on Cloud Computing, pages 261–268. IEEE,
2015.

USENIX Association 2023 USENIX Annual Technical Conference 783

	Introduction
	Motivation
	I/O Passthrough & DMA-safety
	Related Work
	I/O Page Fault
	Monitoring DMA Buffers
	Free Page Reclamation

	Approach
	Design Goals
	V-Probe Overview
	V-Probe Injector
	V-Probe Data Manager
	Memory Reclamation Routine

	Implementation
	Meta-data Registration
	Helper Functions Registration
	Memory Reclamation Routine
	Page Fault Handler
	Synchronization Problem

	Evaluation
	Overhead
	Data Registration
	Memory Reclamation and Reallocation

	Micro-benchmark
	TCP Throughput
	UDP Latency

	Macro-benchmark

	Discussion
	Compatibility
	Fine-grained Page Meta-data Management
	Threats to Validity

	Conclusion

