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Abstract
LSM-based storage systems are widely used for superior write
performance on block devices. However, they currently fail
to efficiently support secondary indexing, since a secondary
index query operation usually needs to retrieve multiple small
values, which scatter in multiple LSM components. In this
work, we revisit secondary indexing in LSM-based storage
systems with byte-addressable persistent memory (PM). Exist-
ing PM-based indexes are not directly competent for efficient
secondary indexing. We propose PERSEID, an efficient PM-
based secondary indexing mechanism for LSM-based storage
systems, which takes into account both characteristics of PM
and secondary indexing. PERSEID consists of (1) a specifi-
cally designed secondary index structure that achieves high-
performance insertion and query, (2) a lightweight hybrid
PM-DRAM and hash-based validation approach to filter out
obsolete values with subtle overhead, and (3) two adapted op-
timizations on primary table searching issued from secondary
indexes to accelerate non-index-only queries. Our evaluation
shows that PERSEID outperforms existing PM-based indexes
by 3-7× and achieves about two orders of magnitude per-
formance of state-of-the-art LSM-based secondary indexing
techniques even if on PM instead of disks.

1 Introduction

Log-Structured Merge trees (LSM-trees) feature outstanding
write performance and thus have been widely adopted in mod-
ern key-value (KV) stores, such as RocksDB [22] and Cassan-
dra [1]. Different from in-place update storage structures (e.g.,
B+-Tree), LSM-trees buffer writes in memory and flush them
to storage devices in batches periodically to avoid random
writes, which enables high write performance and low device
write amplification. Besides high write performance, many
database applications also require high-performance queries
on not only primary keys but also other specific values [11],
thus necessitating secondary indexing techniques.

∗Jiwu Shu is the corresponding author (shujw@tsinghua.edu.cn).

LSM-trees’ attributes make it challenging to design effi-
cient secondary indexing. Modern LSM-based storage sys-
tems typically store a secondary index as another LSM-
tree [47] (e.g., a column family in RocksDB [44]). How-
ever, designed for block devices and optimized for write per-
formance, LSM-trees are not competent data structures for
secondary indexes which require high search performance.
First, since secondary indexes usually only store primary keys
instead of full records1 as values, KV pairs in secondary in-
dexes are small. LSM-trees’ heavy lookup operations are
inefficient for these small KV pairs. Second, secondary keys
are not unique and can have multiple associated primary keys.
LSM-trees’ out-of-place write pattern will scatter these non-
consecutive-arrived values (i.e., associated primary keys) to
multiple pieces at different levels. Consequently, query oper-
ations need to search all levels in the LSM-based secondary
index to fetch these value pieces. Besides the device I/O over-
head, LSM-trees have non-negligible overheads of CPU and
memory (i.e., indexing and Bloom filter) [17, 20, 34].

Moreover, the consistency of secondary indexes is another
issue in LSM-based storage systems. As an LSM-based pri-
mary table adopts the blind-write pattern to update or delete
records (appends new data without checking old data, versus
read-modify-write in B+-Trees) for high write performance,
it is unable to delete the obsolete entry in a secondary index
without acquiring the old secondary key. Consequently, when
querying a secondary index, the system should validate each
entry by checking the primary table before returning the re-
sults to users, which introduces many unnecessary but expen-
sive lookups on the primary table for obsolete entries. Some
systems fetch old records when updating or deleting records
to keep secondary indexes up-to-date synchronously [9, 44],
whereas this method discards the blind-write attribute and
thus degrades the write performance.

Though many efforts have been made to optimize these
predicaments [36, 40, 47, 50], they are difficult to solve the
problems discussed above well, sacrificing either write per-

1For clarity, we use record to refer to a KV pair in the primary table, and
entry to refer to a KV pair in a secondary index.
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formance of the LSM-based storage systems or query perfor-
mance of the secondary index.

As secondary indexing demands low-latency queries and
the KV pairs of secondary indexes are small, we argue that
leveraging persistent memory (PM) to provide a new solution
for secondary indexing is promising. PM has many attractive
advantages such as byte-addressability, DRAM-comparable
access latency, and the ability of data persistency, which is
well suited to secondary indexing. Though there are many
state-of-the-art PM-based indexes [13, 25, 31, 33, 37, 38, 45,
46, 61, 62], none of them are designed for secondary index-
ing. Without considering the non-unique feature of secondary
indexes and consistency in LSM-based KV stores, simply
adopting existing general PM-based indexes as secondary
indexes can overshadow their performance.

In this work, we propose PERSEID, a new persistent
memory-based secondary indexing mechanism for LSM-
based KV stores. PERSEID contains PS-Tree, a specifi-
cally designed data structure on PM for secondary indexes.
PS-Tree can leverage state-of-the-art PM-based indexes and
enhance them with a specific value layer, which considers the
characteristics of both PM and secondary indexing. The value
layer of PS-Tree works in a manner of blended log-structured
approach and B+-Tree leaf nodes, which is both PM-friendly
and secondary-index-friendly. Specifically, new values are
appended to value pages for efficient insertion on PM. During
the value page split, multiple values (i.e., associated primary
keys) that belong to the same secondary key are reorganized
to store continuously for efficient querying.

Moreover, PERSEID retains the blind-write attribute of
LSM-based KV stores for high write performance without sac-
rificing secondary index query performance. This is achieved
by a lightweight hybrid PM-DRAM and hash-based valida-
tion approach in PERSEID. PERSEID uses a hash table on
PM to record the latest version of primary keys. However,
multiple random accesses on PM still incur high latencies.
Thus, PERSEID adopts a small mirror of the validation hash
table on DRAM which only contains useful information for
validation. During validation, the volatile hash table absorbs
random accesses to PM, and thus reduces the validation over-
head. The small volatile hash table not only saves DRAM
memory space but also reduces cache pollution.

PERSEID has a fairly low latency of index-only query2

However, the overhead of non-index-only queries is still dom-
inated by the LSM-based primary table. Therefore, we further
propose two optimizations for non-index-only queries in PER-
SEID. First, as querying the primary table issued by the sec-
ondary index is an internal operation, we can locate KV pairs
with additional auxiliary information much more efficiently,

2Index-only query is a common query technique: Users create a covering
index that contains specific columns required by queries to avoid the cost
of reading the primary table [5, 7, 44]. A non-index-only query searches the
secondary index by secondary key to get primary keys and then retrieves full
records from the primary table.

reducing cumbersome indexing operations. By matching the
tiering compaction strategy [19, 41], we can further bypass
Bloom filter checking. Second, as one secondary index query
may need to search for multiple independent records in the
primary table, we parallelize these searching operations with
multiple threads. Since search latencies on the LSM-based
primary table may vary largely, we apply a worker-active
manner on parallel threads to avoid load imbalance among
threads and improve utilization.

We implement PERSEID and evaluate it against state-of-
the-art PM-based indexes and LSM-based secondary indexing
techniques on PM. The evaluation results show that PERSEID
outperforms exiting PM-based indexes by 3-7× for queries,
and achieves about two orders of magnitude higher perfor-
mance of state-of-the-art LSM-based secondary indexing tech-
niques even if on PM instead of disks, while maintaining the
high write performance of LSM-based storage systems.

In summary, this paper makes the following contributions:

• Analysis of the inefficiencies of LSM-based secondary in-
dexing techniques and existing PM-based indexes when
adopted as secondary indexes for LSM-based KV stores.

• PERSEID, an efficient PM-based secondary indexing mech-
anism, which includes a secondary index-friendly structure,
a lightweight validation approach, and two optimizations
on primary table searching issued from secondary indexes.

• Experiments that demonstrate the advantage of PERSEID.

2 Background

2.1 Log-Structured Merge Trees

The LSM-tree applies out-of-place updates and performs se-
quential writes, which achieves superior write performance
compared to other in-place-update storage structures.

The LSM-tree has a multi-level structure on storage and
each level comprises one or several sorted runs. The size of
Level Ln is several times (e.g., 10) larger than Level Ln−1.
Each sorted run contains sorted KV pairs and is further par-
titioned to multiple small components called SSTables. In
LSM-trees, new key-value pairs are first buffered into a mem-
ory component called a MemTable. When the MemTable fills
up, it turns into an immutable MemTable and gets flushed
to storage as a sorted run. Since sorted runs have overlap-
ping key ranges, a query operation needs to search multiple
sorted runs. To limit the number of sorted runs and improve
search efficiency, LSM-trees conduct compaction periodically
to merge several components and remove obsolete KV pairs.

Two typical compaction strategy and their variants are
commonly used in LSM-trees [19, 41]: The leveling strat-
egy [22, 24] only allows each level (besides L0) to have only
one sorted run; The tiering strategy [48, 54] allows each level
(besides L0) to have multiple sorted runs to reduce the write
amplification. Compared with leveling strategy, tiering strat-
egy has a much smaller write amplification ratio and thus
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Figure 1: Stand-alone secondary indexing in LSM-based sys-
tems with Synchronous strategy and Validation strategy [47].
The shaded entries indicate that they are invisible in the index.

higher write performance. However, since query operations
need to search multiple sorted runs in each level, LSM-trees
with tiering strategy have much lower read performance.

2.2 Secondary Index in LSM-based Systems

Many applications require queries on specific values other
than primary keys. Without an index based on specific values,
database systems need to scan the whole table to find relevant
data. Thus, secondary indexing is an indispensable technique
in database systems. For example, in Facebook’s database
service for social graphs, secondary keys are heavily used,
such as finding IDs who liked a specific photo [11, 44]. In
this work, we mainly discuss stand-alone secondary indexes,
which are separate index structures apart from the primary
table and are commonly used in database systems [47]. A
stand-alone secondary index maintains mappings from each
secondary key to its associated primary keys. As secondary
keys are not unique, a single secondary key can have multiple
associated primary keys.

Consistency strategy. Since LSM-based KV stores update
or delete records by out-of-place blind-writes, maintaining
consistency of secondary indexes becomes a challenge in
LSM-based storage systems. There are two strategies to han-
dle this issue, Synchronous and Validation.

For Synchronous strategy, whenever a record is written in
the primary table, the secondary index is maintained syn-
chronously to reflect the latest and valid status (e.g., Aster-
ixDB [9], MongoDB [4], MyRocks [44]). For example, as
shown in Figure 1(a), when writing a new record { p2→s1
} (p denotes the primary key, s denotes the secondary key,
and other fields are omitted for simplicity) into the primary
table, the storage system also fetches the old record of p2
to get its old secondary key s2. Then the storage system in-
serts not only a new entry { s1→p2 } but also a tombstone to
delete the obsolete entry { s2→p2 } in the secondary index.
Nevertheless, this strategy discards the blind-write attribute
and thus degrades the write performance which is the main
advantage of LSM-based KV stores.

By contrast, as shown in Figure 1(b), Validation strategy

only inserts the new entry { s1→p2 } but does not main-
tain the consistency of obsolete entries in secondary indexes
(e.g., DELI [50], and secondary indexing proposed by Luo et
al. [40]). However, secondary index query operations need to
validate all relevant entries by checking the primary table to
filter out obsolete mappings. Though previous work proposed
some approaches to reduce the validation overhead, their ben-
efits are limited. For example, DELI [50] lazily repairs the
secondary index along with compaction of the primary table.
Luo et al. [40] propose to store an extra timestamp for each
entry in the secondary index and use a primary key index
that only stores primary keys and their latest timestamp for
validation. The primary key index is validated instead of the
primary table. However, since the primary key index is also
an LSM-tree, though it filters out unnecessary point lookups
on the primary table, it still requires point lookups on itself.

Index type. As a secondary key can have multiple associ-
ated primary keys, LSM-based secondary indexes have two
types surrounding this issue, including composite index and
posting list [47]. The key in a composite index (i.e., composite
key) is a concatenation of a secondary key and a primary key.
The composite index is easy to implement and adopted by
many applications [16, 44, 47]. However, it turns a secondary
lookup operation into a prefix range search operation.

The posting list stores multiple associated primary keys in
the value of a KV pair. When a new record is inserted, there
are two update strategies. Eager update strategy conducts
read-modify-write, fetching the old posting list and merging
the new primary key to the posting list. Lazy update strategy
blindly insert a new posting list which only includes the new
primary key. It leaves posting lists merging to compaction.
However, a secondary lookup needs to search all levels to
fetch all relevant entries.

Limitations. Even though there are multiple strategies,
types, and optimizations, LSM-based secondary indexes have
to sacrifice either the write performance of storage systems or
the secondary index query performance, which results from
the incompatibility of inherent attributes of LSM-trees and
characteristics of secondary indexes.

2.3 Persistent Memory
Persistent Memory (PM), also called Non-Volatile Mem-
ory (NVM) or Storage Class Memory (SCM), provides sev-
eral attractive benefits for storage systems, such as byte-
addressability, DRAM-comparable access latency, and data
persistency. CPUs can access data on PM directly with
load and store instructions. Compared to DRAM, PM has
a much larger capacity and lower cost and power consump-
tion. In addition to DDR bus-connected PM (e.g., Intel Optane
DCPMM), the recent high-bandwidth and low-latency IO in-
terconnection, Compute Express Link (CXL) [3, 29], brings a
new form of SCM, CXL device-attached memory (e.g., Sum-
sung’s Memory-semantic SSD [8]).

However, PM also has some performance idiosyncrasies.
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For example, the current commercial PM hardware (i.e., In-
tel Optane DCPMM) has physical media access granularity
of 256 bytes, leading to high random access latency (about
3× of DRAM) and write amplification for small random
writes, which needs to be considered when designing PM
systems [14, 51, 53, 55, 57, 60]. These idiosyncrasies should
be more obvious on CXL device-attached memory due to the
physical media characteristics (e.g., flash page in CXL-SSD).

3 Motivation

Though recent work introduces some techniques to optimize
secondary indexing in LSM-based systems, we find that the
performance of LSM-based secondary indexing is still unsat-
isfactory due to the incompatibility of inherent attributes of
LSM-trees and characteristics of secondary indexing. On the
one hand, LSM-tree is not a competent data structure for sec-
ondary indexes, since the characteristics of secondary indexes
exacerbate the deficiency of LSM-tree’s read operations: (1)
KV pairs are usually small in secondary indexes, to which
LSM-tree’s cumbersome lookup operations are unfriendly;
(2) Secondary keys are not unique and can have multiple val-
ues, which LSM-tree’s out-of-place update will exacerbate
the query inefficiency. On the other hand, the blind-write at-
tribute of LSM-based primary tables makes the consistency
of secondary indexes troublesome.

Therefore, this motivates us to find a better solution for
secondary indexes in LSM-based storage systems. As PM pro-
vides attractive features such as byte-addressability, DRAM-
comparable access latency, and data persistency, we argue
that it is promising to provide secondary indexing with PM.

Though there are many state-of-the-art PM-based index
structures, they are not specifically designed for secondary
indexes. To adopt them as secondary indexes (e.g., support the
multi-value feature), naive approaches include the composite
index or using a conventional allocator to organize posting
lists (§2.2). However, simply adopting these naive approaches
to use existing PM-based indexes as secondary indexes will
overshadow their superior advantages.

Why not use a PM-based composite index? Though this
method is straightforward and easy to implement in LSM-
based systems, it is not ideal for tree-based persistent indexes.
First, when adding or removing a primary key for a secondary
key, a value update operation turns into a new composite key
insert or delete operation for composite indexes. Insert and
delete operations are more expensive than update operations
in a PM-based tree index because they may cause shift oper-
ations or structural modification operations (SMO). Second,
composite indexes store every pair of mappings as an indi-
vidual KV pair, expanding the number of KV pairs, which in-
creases the height of the tree index and thus degrades its query
performance. Third, storing the same secondary keys repeat-
edly in multiple composite keys wastes PM space, which can
be a dominant overhead for some real-world databases [59].

DRAM MemTable

LSM Primary Table
($4.2) PS-Tree

(Secondary Index)

($4.3) Hybrid Hash Tables
(Validation)

PM SSD

Query

Validate
Search ($4.4)

(optional)

Figure 2: The overall architecture with Perseid.

Why not use a conventional allocator? One may use a con-
ventional allocator, such as a log-structured approach or a slab-
based allocator, to allocate space for values out of the indexes.
Nevertheless, they are not suitable for values of secondary
keys. The log-structured approach is friendly to PM for its
sequential-write pattern. One may use the log-structured ap-
proach to append new values in the log and use pointers to link
associated values belonging to the same secondary key. How-
ever, it will scatter values (primary keys) associated with the
same secondary key and thus reduce the query performance
due to poor data locality. Slab-based allocators are widely
used for volatile memory, but they are not suitable for PM and
secondary indexes. First, these general-purpose allocators usu-
ally have high overheads on PM since they conduct expensive
mechanisms for crash consistency (e.g., logging) and perform
many small writes on their metadata which is necessary for
recovery [6]. Second, slab-based allocators have low mem-
ory utilization due to the memory fragmentation issue [49],
which cannot be eliminated by restarting on PM [18]. These
issues are more severe for secondary indexes. In secondary
indexes, the value of a secondary key is changed by inserting
or removing primary keys, which means the value size (the
total size of associated primary keys) changes constantly. This
characteristic not only needs frequent reallocation but also
exacerbates the fragmentation issue.

Our experiments (§5.2) show that these naive approaches
on PM-based indexes lead to several times performance degra-
dation. It thus motivates us to explore a new PM-based sec-
ondary indexing mechanism for LSM-based KV stores. In
addition, an efficient validation approach is required to retain
the blind-write attribute of LSM-based KV stores.

4 Perseid Design

4.1 Overview

Motivated by the analysis above, we propose PERSEID, a PM-
based secondary indexing mechanism for LSM-based storage
systems, which overcomes traditional LSM-based secondary
indexes’ deficiencies. Figure 2 shows the overall architecture
of an LSM-based storage system with PERSEID.
• PERSEID contains a PM-based secondary index, PS-Tree,

which is both PM and secondary index friendly: by adopting

820    2023 USENIX Annual Technical Conference USENIX Association



log-structured insertion, PS-Tree achieves fast insertion on
PM; by storing primary keys which associate to the same
secondary key closer and further rearranging them adjacent,
PS-Tree supports efficient query operations (§4.2).

• PERSEID retains the blind-write attribute of the LSM
primary table for write performance without sacrificing
query performance by introducing a lightweight hybrid PM-
DRAM and hash-based validation approach. The validation
approach contains a persistent hash table to record version
information of primary keys, and a volatile and lite hash
table to absorb random accesses to PM. (§4.3).

• To accelerate non-index-only queries, PERSEID adapts two
optimizations on primary table searching issued from sec-
ondary indexes. PERSEID filters out irrelevant component
searching with sequence numbers and parallelizes primary
table searching in an efficient way (§4.4).

4.2 PS-Tree Design

PERSEID introduces PS-Tree, a PM-based secondary index,
which is designed considering the multi-value feature and PM
characteristics. We first present PS-Tree’s structure (§4.2.1),
and then describe its operations (§4.2.2).

4.2.1 Structure

The overall structure of PS-Tree is shown in Figure 3.
PS-Tree consists of two layers, SKey Layer for indexing sec-
ondary keys and PKey Layer for storing values. Specifically,
the SKey Layer resembles a normal in-memory index and
can leverage an existing high-performance PM-based index
(e.g., P-Masstree [33, 43] and FAST&FAIR [25]). The PKey
Layer stores variable-number values (i.e., primary keys and
other user-specified values) of secondary keys in a manner of
blended B+-Tree leaf nodes and log-structured approaches,
which combines the advantages of the two approaches. The
value of a secondary key in the SKey Layer is a pointer, which
points to corresponding primary keys in the PKey Layer. Each
pointer is a combination of the address of the PKey Page and
an offset within the page.

In the PKey Layer, primary key entries (PKey Entries) are
stored in PKey Pages. Each PKey entry has an 8-byte metadata
header and a primary key. The header consists of a 2-byte size,
a 1-bit obsolete flag, and a 47-bit sequence number (SQN) of
the primary key. The SQN is internally used for multi-version
concurrency control (MVCC) in LSM-based KV stores [22,
24]. Each new record (including updates and deletes) in the
primary table gets a monotonically increased SQN. PERSEID
leverages the SQN mechanism to guarantee data consistency
among the primary table and secondary indexes, and also for
validation which will be described in §4.3. PKey Pages are
aligned to PM physical media access granularity (e.g., 256
bytes of Intel Optane DCPMM [57]). PS-Tree inserts PKey
Entries into PKey Pages in a log-structured manner to reduce
the write overhead and ease crash consistency on PM.

KP1 KP2 … KPn

PKey Page

KP1 KP2 … KPn

PKey Page PKey Page

SKey
Layer

PKey
Layer

Inner
nodes

Leaf
nodes

GH PE1 PE2 GH PE1

PKey Group

Figure 3: The structure of PS-Tree. KP: Key Pointer pair,
GH: Group Header, and PE: PKey Entry.

Nevertheless, traditional log-structured approaches scatter
different values of the same secondary key in the log, result-
ing in poor data locality and degraded query performance.
To improve data locality, PS-Tree stores PKey Entries of
contiguous SKeys in the same PKey Page, similar to the leaf
node in a B+-Tree. Furthermore, during the PKey Page split,
PS-Tree rearranges PKey Entries that belong to the same
secondary keys to store continuously as a PKey Group. Each
PKey Group has an 8-byte Group Header and one or multiple
PKey Entries. The lower 48 bits of a group header are the
address of the previous PKey Group of the same secondary
key or null if the current group is the last one. Thus all PKey
Groups belonging to one secondary key are linked as a list.
The remaining 16 bits store the number of total entries and
the number of obsolete entries in the group.

4.2.2 Basic Operations

PS-Tree considers features of both secondary indexing and
persistent memory. Compared with DRAM, PM has limited
write bandwidth and the write amplification issue. Therefore,
PS-Tree adopts log-structured insertion and copy-on-write
split for efficient writes and lightweight crash consistency
mechanisms. To avoid high latencies of multiple random ac-
cesses of multiple values on PM during query operations,
PS-Tree reorganizes values of the secondary index and con-
ducts lazy garbage collection during the PKey Page split.

Log-structured Insert. Algorithm 1 describes the process
of the insert operation. First, PS-Tree searches for the SKey
and its pointer in the SKey Layer. From the pointer, PS-Tree
locates the previous PKey Group and the corresponding PKey
Page (Line 1-3). If the SKey is not found, then the PKey Page
is located from the pointer of the previous SKey which is just
smaller than this new SKey (Line 5).

Second, PS-Tree appends a new PKey Group in that PKey
Page (Line 11-12). The new PKey Group contains one entry
with the new PKey and other values if specified, and the header
points to the previous PKey Group if exists.

Third, the new pointer of the SKey (i.e., the address of
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Algorithm 1: Insert(SKey sk, PKey pk, Slice val, Se-
qNumber seq)

1 search for the leaf_node and pointer ptr of sk in SKey Layer;
2 if ptr ̸= NULL then // found sk
3 pkey_page = pointer.pkey_page;
4 else
5 pkey_page = leaf_node→get_prev_pkey_page(sk);
6 end
7 if pkey_page is full then
8 pkey_page split;
9 goto Line 1;

10 end
11 construct a PKeyGroup pg with pk, val, seq, and ptr;
12 new_ptr = pkey_page→append(pg);
13 leaf_node→upsert(sk, new_ptr);

the new PKey Group) is updated or inserted in the SKey
Layer (Line 13). Thus, the insert request usually performs
an update operation in the SKey Layer. PKey Entries of a
secondary key are always linked in the order of recency to
facilitate query operations which usually require the most
latest entries [11, 47].

Search. The search operation in PS-Tree starts with
searching for the secondary key and its pointer in the SKey
Layer. Then, from the latest PKey Group indicated by the
pointer, primary keys and other user-specified values can be
retrieved in the order of recency. PERSEID adopts the Val-
idation strategy (§2.2) for its high ingestion performance.
Therefore, all primary keys are first validated before return-
ing. Obsolete PKey Entries are marked as obsolete by setting
their obsolete flags, which will be removed physically when
the PKey Page splits. The LSM-based primary table supports
MVCC by attaching one snapshot and using reference coun-
ters to protect components from being deleted [22, 24]. In
PS-Tree, we adopt an epoch-based approach: readers publish
their snapshot numbers during query operations, and obsolete
entries whose sequence number is larger than any reader’s
snapshot number are guaranteed not to be removed physically.

Update and Delete. PS-Tree has no update or delete op-
erations (from the point of view of secondary indexes rather
than the data structure). Since updating the primary key of
a record in the primary table is commonly not supported
in database systems, there is no need to update values (pri-
mary keys) in secondary indexes. With the Validation strategy,
PS-Tree does not delete the obsolete entries synchronously
with the primary table. PS-Tree leaves obsolete entry clean-
ing to garbage collection.

Locality-aware PKey Page Split with Garbage Collec-
tion. When a PKey Page does not have enough space for a
new entry, it splits into two new PKey Page in a copy-on-write
manner. Since insertions are performed in a log-structured
manner, the PKey Entries which belong to one SKey may

(a) Before Split

Leaf Node

PKey Page

(b) After Split

PE PE PE PE PE PE PE PE

PE PE PE PE PE PE PE

KPi KPj KPk ……

KPi KPj KPk ……

Group Header

Figure 4: An example of PKey Page split. PEs (PKey Entries)
with the same color belong to the same secondary key; PE in
gray are obsolete.

scatter discontinuously. Querying these entries may need mul-
tiple random accesses on PM. As PM has non-negligible read
latencies compared to DRAM (e.g., about 300 ns with In-
tel Optane DCPMM [57]), query operations can have high
overheads. Therefore, as shown in Figure 4, to improve local-
ity, PS-Tree reorganizes PKey Entries when the PKey Page
splits. PS-Tree rearranges PKey Entries belonging to the
same SKey in one PKey Group, so these entries are stored
continuously, and the storage overhead of the Group Header is
reduced since multiple PKey Entries share one Group Header.

Besides, entries not marked as obsolete in the current PKey
Page are validated by a lightweight approach (described in
§4.3) and obsolete entries are physically removed during re-
organization to reduce space overhead. Since a secondary key
may have many primary keys which occupy more than one
PKey Page, for those PKey Entries not in the current PKey
Page, PS-Tree lazily garbage collects them only when the
number of obsolete entries exceeds half of the number of to-
tal entries in that PKey Group. To support MVCC, PS-Tree
retains obsolete entries whose sequence number is larger than
the minimum snapshot number of concurrent readers. Ob-
solete entries may retain long if there exists a long-running
queries. PERSEID can be enhanced with similar techniques
in recent work [30, 35] to handle long-lived snapshots. After
rearranging valid entries to the new PKey Pages, pointers of
related SKeys are updated and the old PKey Page is freed.

Crash Consistency. PERSEID relies on the existing write-
ahead-log (WAL) of the LSM-based primary table to guaran-
tee atomic durability among the primary table and secondary
indexes. During recovery with WAL, PERSEID redoes uncom-
pleted operation to the PS-Tree.
PS-Tree also handles its own crash consistency issues.

Insert operations are committed only when the pointers in
SKey Layer are updated. If the system crashes before up-
dating pointers but after allocating a new PKey Page, then
the PKey Page is unreachable. After restart, a background
thread will scan the allocated pages and PS-Tree to find and
reclaim unreachable pages. Besides, PS-Tree allows concur-
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rent insertion in one PKey Page. A thread obtains the space to
write by compare-and-swap the tail pointer of the PKey Page.
Thus, the space may leak if any thread obtains it but does not
update the pointer in SKey Layer when the system crashes.
PS-Tree tolerates this situation and leaves these leakages to
page splitting which naturally reclaims these leaked spaces.

4.3 Hybrid PM-DRAM Validation
PERSEID adopts the Validation strategy (see §2.2) for high
write performance, which necessitates a lightweight validation
approach. Since update-intensive workloads are quite com-
mon nowadays [11, 12], if the validation approach is heavy,
validating a large number of obsolete entries brings no out-
comes but generates huge overhead.

PERSEID introduces a lightweight validation approach
based on the requirement of validation. PERSEID adopts a
hash table on PM storing version information for primary
keys. The hash table is indexed by the primary key and stores
its latest sequence number (§4.2.1). Nevertheless, even though
point lookups on a PM-based hash table are much faster than
on a tree, the validation time is comparable to the query time
of PS-Tree. This is because one secondary key has multiple
primary keys to validate, and PM has non-negligible random
access latency. Simply placing the hash table on DRAM will
occupy a large memory footprint. However, as validation only
needs to validate whether a version of a primary key is valid,
but not obtaining the specific latest version number, PERSEID
builds another volatile hash table on DRAM which only stores
versions for primary keys that have been updated or deleted.
In this way, PERSEID only needs to query the small volatile
hash table and thus the validation overhead is further reduced.

Figure 5 illustrates the hybrid PM-DRAM validation ap-
proach. The values in the hash tables consist of the sequence
number of the record (6-byte) and a 2-byte counter. The
counter is used to determine whether a primary key has obso-
lete versions. There is a slight difference in the counters of
the two hash tables. In the volatile hash table, each counter
indicates the number of logically existing entries related to a
primary key in the secondary index. By contrast, each counter
in the persistent hash table indicates the number of physically
existing entries in the secondary index. Next, we describe the
validation approach in detail according to operations.

Insert. When a new record (including update and delete)
is inserted into the primary table, the primary key is inserted
or updated with its sequence number into the persistent hash
table. If the persistent hash table does not contain this pri-
mary key before, its counter is set to one, which means this
primary key has only one version and no obsolete entries of
this primary key exist in the secondary index. For example
in Figure 5, at t2, key c is inserted for the first time, and it
is inserted into the persistent hash table. Otherwise, the pri-
mary key’s counter in the persistent hash table is increased by
one; besides, the primary key is inserted or updated with its
sequence number into the volatile hash table, and the counter
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Figure 5: Hybrid PM-DRAM hash-based validation.

in the volatile hash table is set to two if it’s an insertion or
increased by one if it’s an update. For example, when key c is
updated with a new version v2 at t3 in Figure 5, the entry in
the persistent hash table is updated and a new entry is inserted
into the volatile hash table.

Validate. The secondary index validates an entry by query-
ing the volatile hash table. Specifically, the entry is valid if
the sequence number of this entry matches the latest sequence
number stored in the hash table, or the hash table does not
contain the primary key which means there are no obsolete
entries of this primary key. Otherwise, the entry is not valid
and PERSEID marks the entry as obsolete and decreases the
counter of the entry in the volatile hash table by one. For
example, when key a is checked with an obsolete version v1
at t2 in Figure 5, the result is false, and then the counter is
decreased from 3 to 2. If the counter is decreased to 1, which
means all obsolete entries have been marked, the entry is re-
moved from the volatile hash table to restrict the hash table
size. For example, when key a is checked with an obsolete
version v2 at t3 in Figure 5, the counter is decreased to one,
the validation return false and the entry is removed. A rare
case is that the volatile hash table reports a new sequence num-
ber larger than the current reader’s snapshot number, which
means a concurrent writer has updated this primary key. In
this case, we cannot directly confirm whether this entry is
valid in this snapshot, so we have to validate it by the pri-
mary table. During validation for secondary index queries,
PERSEID only operate with the volatile validation hash table.
Thus, the validation overhead is quite small.

Garbage Collection. During the PKey Page split, entries
that are not marked as obsolete are also validated to remove
obsolete entries (§4.2.2). Since this step physically removes
obsolete entries, PERSEID decreases the corresponding coun-
ters in the persistent hash table. If a counter is decreased to
one, PERSEID removes the corresponding hash pairs from the
volatile hash table.

Recovery. When the system restarts from a crash or a
normal shutdown, the volatile hash table needs to be recov-
ered. PERSEID iterates the whole persistent hash table and
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inserts primary keys whose counter is greater than one into
the volatile hash table. Now the counters in the volatile hash
table are numbers of physically existing entries, which may
be larger than the actual numbers of logically existing en-
tries. Therefore, some false positive primary keys may exist
in the volatile hash table. However, this does not affect the
validation accuracy and these primary keys can be removed
by garbage collection.

4.4 Non-Index-Only Query Optimizations

Though the PERSEID significantly reduces the overhead of
secondary indexing, the overhead of non-index-only queries
(require full records) is still dominated by the LSM-based
primary table. Thus, PERSEID further introduces two opti-
mizations for non-index-only queries.

4.4.1 Locating Components with Sequence Number

A secondary index query operation may need to search the pri-
mary LSM table multiple times for all its associated records.
LSM-trees have mediocre read performance due to the multi-
level structure. Besides device I/Os, if data is cached in
memory or using fast storage devices, LSM-trees have non-
negligible overheads on probing components (i.e., indexing
and checking Bloom filters) [17, 20, 60]. Moreover, the read
performance gets worse with the tiering compaction strategy
since more components (SSTables) need to check and read.

Nevertheless, we find that many components are unnec-
essary to probe in searching processes issued from the sec-
ondary index. Previous work uses zone maps, which store the
minimum and maximum values of an attribute, to skip irrele-
vant data blocks or components during searching [9, 10, 47].
We found that this technique can also be used by secondary
indexes to search the primary table. Since we have already
recorded the sequence numbers of primary keys in the sec-
ondary index, the sequence number can be used as an addi-
tional attribute to skip irrelevant components. PERSEID builds
a zone map that records a sequence number range (i.e., the
minimum and maximum sequence numbers of records) for
each component (including MemTables).

Moreover, since tiering compaction does not rewrite SSTa-
bles in the higher level (except for the last level), for a range
partition, the sequence number ranges of different levels and
even different sorted runs are strictly divided. For primary
tables adopting the tiering strategy, with the primary key to
search SSTables horizontally and the additional sequence
number to search sorted runs vertically, PERSEID can locate
the exact component that contains the record directly. Besides,
since PERSEID already validates the version so it must exist
in the component, PERSEID can further skip the Bloom fil-
ter checking. Thus, the overheads on indexing and checking
Bloom filters are almost eliminated.

This optimization does not fit with leveling strategy per-
fectly. The sequence number ranges in different levels have

overlaps because compaction rewrites SSTables in the higher
level and generates new SSTables with blended sequence num-
bers from multiple levels. However, since most LSM-base
KV stores adopt the tiering strategy on L0 at least [22, 24],
this optimization is still effective to some extent.

4.4.2 Parallel Primary Table Searching

A single secondary key usually has multiple associated pri-
mary keys, and queries on these primary keys are indepen-
dent. Therefore, using multiple threads to accelerate primary
table searching is a natural optimization method. One naive
approach is to assign primary keys to each thread in a round-
robin fashion. However, point lookups on LSM-trees may
have a large latency gap, since some KV pairs can be fetched
from MemTable or block cache directly and others may reside
at a relatively high level and need several disk I/Os due to
Bloom filter false positives. The naive approach will result in
a load imbalance among parallel threads where some threads
have finished their tasks and become idle while others are still
stuck and there may still exist some unfinished tasks.

To avoid this situation, we apply a worker-active fashion.
PERSEID publishes primary keys into a shared queue as tasks,
and each parallel thread fetches one task from the queue. In
this way, though each thread may complete a different number
of tasks, parallel threads are fully utilized.

5 Evaluation

In this section, we evaluate PERSEID against existing PM-
based indexes with naive approaches and state-of-the-art
LSM-based secondary indexing techniques [40, 47]. After
describing the experimental setup (§5.1), we evaluate these
secondary indexing mechanisms with micro benchmarks to
show their performance on basic operations (§5.2). Then,
we evaluate these systems’ overall performance with mixed
workloads (§5.3) and recovery time (§5.4).

5.1 Experimental Setup
Platform. Our experiments are conducted on a server with
an 18-core Intel Xeon Gold 5220 CPU, which runs Ubuntu
20.04 LTS with Linux 5.4. The system is equipped with 64
GB DRAM, two 128 GB Intel Optane DC Persistent Memory
in AppDirect mode, and a 480 GB Intel Optane 905P SSD.
Compared Systems. We implement PS-Tree of PER-
SEID based on two typical PM-based indexes, a B+-Tree
FAST&FAIR [25] and a trie-like P-Masstree [33, 43]. We
compare PERSEID against the two original PM-based
indexes, and LSM-based secondary index (denoted as LSMSI)
approaches of LevelDB++ [47]. The compared PM-based
indexes are implemented as secondary indexes via the
composite index approach and the log-structured approach
(denoted as FAST&FAIR-composite, FAST&FAIR-log,
P-Masstree-composite, P-Masstree-log, respectively).
For the log-structured approach, we provide enough space
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Figure 6: Insert and upsert performance.

and disable garbage collection to avoid its influence and
present the ideal performance [51]. We enhance other
PM-based indexes with PERSEID’s hybrid PM-DRAM
validation approach (§4.3) and LSMSI with the primary key
index [40] (§2.2) for validation. For a fair comparison, we also
implement LSM-based secondary indexing approaches on
PM. We use PebblesDB [48], a state-of-the-art tiering-based
KV store, as the primary table.
Workloads. Since common benchmarks for key-value stores
such as YCSB [15] don’t have operations on secondary in-
dexes, as in previous work [36, 40, 47], we implemented a
secondary index workload generator based on an open-source
twitter-like workload generator [2] for evaluation. With this
generator, we generate several microbenchmark workloads
and mixed workloads. The primary key (e.g., ID) and sec-
ondary key (e.g., UserID) are randomly generated 64-bit in-
tegers. The key space of primary keys and secondary keys
is 100 million and 4 million, respectively. Thus the average
number of records per secondary key is about 25. The size of
each record is 1KB.
KV Store Configurations. For the primary table, according
to configuration tuning guide [23], MemTable size is set to
64 MB and the Bloom filters are set to 10 bits per key. As our
workloads will generate a primary table larger than 100 GB,
we set a 16-GB block cache for the primary table and a 1-GB
block cache for the LSM-based secondary index. Compres-
sion is turned off to reduce other influencing factors.

5.2 Microbenchmarks

In this section, we evaluate the basic single-threaded per-
formance and scalability of compared secondary indexing
mechanisms.

5.2.1 Insert and Update

The Insert workload (i.e., no updates) has 100 million unique
records. Figure 6(a) shows the average latency of insert op-
erations of each secondary index. PERSEID performs about
10-38% faster than the corresponding composite indexes, but
25% slower than the ideal log-structured approach without
garbage collection due to the page split overhead in PS-Tree.
The composite index approach results in inferior performance
as we analyzed in §3. Other approaches have higher perfor-
mance due to the sequential-write pattern.

The upsert workloads contain 100 million insert operations
and 100 million update operations. Operations are shuffled to
avoid all newer entries being valid in secondary indexes. In
the Uniform workload, both primary keys and secondary keys
follow a uniform distribution. In the Skewed-Pri workload,
primary keys follow a Zipfian distribution with the skewness
parameter 0.99, and secondary keys are selected randomly. In
the Skewed-Sec workload, secondary keys follow a Zipfian
distribution (parameter 0.99), and primary keys are uniform.
Thus, hot secondary keys have lots of associated primary keys,
which represent low-cardinality columns.

Compared with other secondary indexes, composite indexes
perform even worse in upsert workloads. This is because, with
additional upsert operations, composite indexes have more
KV pairs and larger tree heights. By contrast, PS-Tree and
the log-structured approach do not increase the number of KV
pairs in the index part.

5.2.2 Query

In this experiment, we evaluate the performance of index-only
queries of each system after loading the insert workload or
upsert workloads. Index-only query reflects the performance
of a secondary index itself and is a common query technique
(i.e., covering index [5, 7]) to avoid looking up the primary
table. We show two different selectivities by specifying limit
N (10 and 200) on return results. The most recent and valid
N entries are returned. For limit of 200, the actual average
number of returned entries per query is 25 and 142 for the
Skewed-Pri and Skewed-Sec, respectively.

Figure 7 shows the results of index-only query performance.
From the results, we have the following observations.

First, PM-based indexes have significantly lower latencies
than LSM-based secondary indexes. Putting LSMSI on PM
(LSMSI-PM) has very limited improvement, which is because
LSMSI already benefits from block cache and OS page cache.
Even so, LSMSI is still inefficient due to the high overhead
of indexing and Bloom filter checking. Besides, LSMSI has a
high overhead on validating the primary key index.

Second, PERSEID outperforms existing PM-based indexes
with the composite index and the log-structured approach
by up to 4.5× and 4.3×, respectively. The log-structured ap-
proach has poor locality since relevant values are scattered
across the whole log and require multiple random accesses to
fetch them all. Composite indexes are inferior due to the larger
number of KV pairs in the indexes and range-scan operations
as we analyzed in §3. They are especially inefficient under the
Skewed-Sec workload with a large limit (e.g., 200), where they
fetch a large number of entries and fail to enjoy the cache ef-
fect. By contrast, the performance of PERSEID is much more
stable across different workloads, owing to the locality-aware
design of PS-Tree. For a limit of 10, PM-based secondary
indexes benefit from higher cache hit ratios under the Skewed-
Sec workload, thus achieving better performance than other
upsert workloads. Composite indexes also occupy about 4×
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Figure 8: Index-only range query performance.

more PM space than PS-Tree, which is because they repeat-
edly store secondary keys and have more index nodes. In
addition, P-Masstree-composite has higher latencies than
FAST&FAIR-composite, because trie-based indexes are less
efficient than B+-Trees in range search since their leaf nodes
do not have sibling pointers pointing to neighbor nodes.

Third, under upsert workloads, all systems need to validate
more primary keys to exclude obsolete entries, which also
contributes to the higher overheads than under insert work-
loads. For LSMSI, since the primary key index needs multiple
heavy point lookups on LSM-trees, validating the primary
key index accounts for the lion’s share of the total cost of
an index-only query. LSMSI has lower latencies under the
Skewed-Pri workload than other upsert workloads since the
primary key index enjoys the data locality on primary keys.
By contrast, PERSEID (and other PM-based indexes) validates
on a volatile hash table, which takes up less than half of the
total cost. The overhead on PERSEID increased little due to
the locality-aware design of PS-Tree and the lightweight
validation approach.

5.2.3 Range Query

In the following experiments, we show results of the LSM-
based secondary index on PM (LSMSI-PM), and PM-based
secondary indexes based on P-Masstree as representatives.
We evaluate the range queries of these secondary indexes.
Each range query searches for 20 secondary keys and retrieves
5 latest associated primary keys of each secondary key.

The results are shown in Figure 8. Range queries need
to search more KV pairs from ten different secondary keys,
showing a more pronounced difference between these sec-
ondary indexes than low-limit query operations. PERSEID
outperforms LSMSI-PM, the Composite P-Masstree, and the
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Figure 9: Multi-threaded performance.

log-structured approach by up to 92×, 5.2×, and 1.6×, respec-
tively under the Skewed-Sec workload. Though LSMSI-PM
benefits from PM access latency and DRAM caching, it still
has a fairly high latency. This is because the range operation
in LSM needs to merge-sort multiple iterators of components.
The composite index needs to perform more range search
than PERSEID in the index since PERSEID groups primary
keys outside of the index.

5.2.4 Multi-threaded Performance

Figure 9 shows the multi-threaded performance of compared
secondary indexes. We take the results of Skewed-Pri and
Skewed-Sec workloads as representatives. For Skewed-Sec,
we show the result with the limit of 200, and the result
with the limit of 10 is similar to that of Skewed-Pri. For
upsert operations, PERSEID scales up to 24 threads, achiev-
ing 2.8× and 16× the upsert throughput of the compos-
ite P-Masstree and LSMSI-PM, and slightly slower than the
ideal log-structured approach. For query operations, PER-
SEID scales well and achieves 7× and 3× query through-
put of P-Masstree-composite and P-Masstree-log under
the Skewed-Sec workload due to the locality-aware design
of PS-Tree. LSMSI has poor scalability due to its coarse-
granularity lock and non-concurrent logging mechanism.
Though using the same index structure (P-Masstree), because
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Figure 10: Non-index-only query performance. The primary table time on +PAR only shows the time not covered by other parts.
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Figure 11: Non-index-only query performance on Leveling-
based LSM table.

the composite index turns update operations into insert op-
erations, the index operations limit its write scalability; and
because it expands the number of KV pairs and thus has a
bigger tree height, the increased index overhead limits its
query scalability. As for the log-structured approach, the poor
data locality restricts its query performance, especially for
large-range queries.

5.2.5 Non-Index-Only Query

We next evaluate the non-index-only query operations. Be-
sides the basic compared secondary indexes, we also enhance
them by applying the two optimizations (§4.4), sequence num-
ber zone map (+SEQ) and parallel primary table searching
(+PAR) sequentially. In this experiment, we use 4 threads
for parallel primary table searching. Figure 10 shows the
performance and time breakdown of non-index-only query
operations. Note that the breakdown of primary table time on
+PAR only shows the time not covered by the secondary index
and validation. PERSEID brings considerable improvements
against the LSMSI-PM, even if it has the two optimizations
applied. PERSEID outperforms LSMSI-PM by up to 62% and
2.3×, when without and with optimizations on primary table
lookups (the sequence number zone map and parallel primary
table searching), respectively.

Though the primary key index indeed reduces unnecessary
point lookup operations on the primary table for LSMSI-PM,
with advanced low-latency storage devices and sufficient
DRAM caching, it also has significant overhead. On the con-

trary, the hybrid PM-DRAM validation of PERSEID reduces
the primary table lookups with subtle extra overhead.

PERSEID’s optimizations on primary table searching can
also boost other compared secondary indexing. The zone
map improves the overall query performance of the KV store
with PERSEID by about 50%, and the parallel primary ta-
ble searching further improves by up to 3.1×. However, the
numbers are only 20-36% and up to 2.4× for LSMSI-PM, re-
spectively. This is because these optimizations only accelerate
the primary table lookups, but the LSMSI-PM still has huge
overheads. In addition, LSMSI-PM has to conduct the heavy
validation first then it can pass the lookup tasks to parallel
worker threads. Therefore, parallel threads cannot work ade-
quately for LSMSI-PM.

We also implement secondary indexes and conduct the
experiments on a leveling-based LSM primary table (Lev-
elDB [24]). Figure 11 shows the results of Skewed-Sec as an
example. The main difference is that the sequence number
zone map is less effective on leveling-based LSM primary
tables. However, the zone map is still effective when the limit
is small, since the latest few records stay in MemTables or
SSTables in lower levels like L0, and these components can
be filtered by sequence number with a high probability.

5.3 Mixed Workloads

Workload Operation Ratios
Upsert Get Index-Only Query Non-Index-Only Query

Write-Heavy 70% 10% 10% 10%
Balanced 45% 10% 25% 20%

Read-Heavy 20% 20% 40% 20%

Table 1: Mixed workloads description.

In this section, we evaluate PERSEID, the composite P-
Masstree, and LSMSI-PM under mixed workloads. The mixed
workloads consist of interleaved and various types of opera-
tions, which are more representative of real-world workloads.
Each workload has 40 million operations, containing both
Skewed-Pri and Skewed-Sec operations. Table 1 describes
these workloads’ traits. Each system is prefilled with 80 mil-
lion records before performing the workloads. We also enable
PERSEID’s optimizations on primary table searching (i.e.,
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Figure 12: Performance of mixed workloads.

the sequence number zone map and parallel primary table
searching) for all systems.

Figure 12 reports the average operation latencies every mil-
lion operations. At the beginning of the Write-Heavy work-
load and the Balanced workload, PM-based secondary in-
dexes have a spike in latency, which is mainly caused by
seek-driven compaction in the LSM primary table. PERSEID
outperforms LSMSI-PM significantly under different mixed
workloads. Even though the overhead of the primary table
dominates the whole operations, PERSEID still has visible
advantages against the other PM-based indexes. Note that
PS-Tree has much less capacity overhead than the composite
index. As we set the limit on return results to 10 for query
operations, the log-structured approach is not affected too
much by its poor data locality.

5.4 Recovery Time

We evaluate the recovery time of PERSEID and LSMSI-PM
after the Zipfian upsert workload that contains 200 million
upsert operations with a single thread. Since we only need
to recover the volatile validation hash table in PERSEID, it
takes 2.7 seconds to scan the persistent hash table and rebuild
the volatile hash table. By contrast, it takes 2.3 seconds and
1.4 seconds to recover the LSM-based secondary index and
the primary key index, respectively. Their recovery time is
mainly spent on rebuilding MemTables from logs and varies
with the size of MemTables.

6 Related Work

Secondary Indexing in LSM-based KV stores. Qader et
al. [47] conduct a comparative study on secondary indexing
techniques in LSM-based systems. They conclude and evalu-
ate several common secondary indexing techniques, including
filter-based embedded index, composite index, and posting
list. DELI [50] proposes an index maintenance approach that
defers expensive index repair to compaction of the primary
table. Luo et al. [40] propose several techniques for LSM-
based secondary indexes, improving data ingestion and query
performance. However, their techniques are mainly saving
random device I/Os for traditional disk devices which reduce
random reads at the cost of more sequential reads. Based

on key-value separation [39], SineKV [36] keeps both the
primary index and secondary indexes pointing to the record
values. Thus, secondary index queries can get records directly
without searching the primary index. However, SineKV has
to discard the blind-write attribute and maintain index consis-
tency synchronously. Cuckoo Index [32] enhances the filter-
based indexing with a cuckoo filter. However, as a filter-based
index, Cuckoo Index does not support range queries.

Though there are many proposed optimizations, LSM-
based secondary indexing is not efficient enough due to the
nature of LSM-trees. In this work, we revisit the design of the
secondary index with persistent memory.

PM-based indexes. There has been plenty of research on
high-performance PM indexes [13, 25, 31, 33, 42, 45, 46, 52,
56, 61]. These general-purpose indexing are not directly com-
petent for efficient secondary indexing.

Improving LSM-based KV stores with PM. There is
a lot of work optimizing LSM-based KV stores with PM.
NoveLSM [27] introduces a large mutable MemTable on
PM to lower compaction frequency and avoid logging. SLM-
DB [26] utilizes a B+-Tree on PM to index KV pairs on
disks; SSTables on disks are organized in a single level,
which reduces the compaction requirements. MatrixKV [58]
places level L0 on PM and adopts fine-granularity and paral-
lel column compaction to reduce write stalls in LSM-trees.
Facebook redesigns the block cache on PM to reduce the
DRAM usage and thus reduce the total cost of ownership
(TCO) [21,28]. Different from these efforts, this work revisits
the secondary indexing for LSM-based KV stores with PM.

7 Conclusion

In this paper, we revisit secondary indexing in LSM-based
storage systems with PM. We propose PERSEID, an effi-
cient PM-based secondary indexing mechanism for LSM-
based storage systems. PERSEID overcomes the deficiencies
of traditional LSM-based secondary indexing and existing
PM-based indexes with naive approaches. PS-Tree achieves
much higher query performance than state-of-the-art LSM-
based secondary indexing techniques and existing PM-based
indexes without sacrificing the write performance of LSM-
based storage systems. The prototype of PERSEID is open-
source at https://github.com/thustorage/perseid.
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