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Abstract
Graph neural network(GNN) has been widely applied in

real-world applications, such as product recommendation in
e-commerce platforms and risk control in financial manage-
ment systems. Several cache-based GNN systems have been
built to accelerate GNN training in a single machine with
multiple GPUs. However, these systems fail to train billion-
scale graphs efficiently, which is a common challenge in the
industry. In this work, we propose Legion, a system that au-
tomatically pushes the envelope of multi-GPU systems for
accelerating billion-scale GNN training. First, we design a hi-
erarchical graph partitioning mechanism that significantly im-
proves the multi-GPU cache performance. Second, we build a
unified multi-GPU cache that helps to minimize the PCIe traf-
fic incurred by caching both graph topology and features with
the highest hotness. Third, we develop an automatic cache
management mechanism that adapts the multi-GPU cache
plan according to the hardware specifications and various
graphs to maximize the overall training throughput. Evalu-
ations on various GNN models and multiple datasets show
that Legion supports training billion-scale GNNs in a sin-
gle machine and significantly outperforms the state-of-the-art
cache-based systems on small graphs.

1 Introduction

Graph neural networks (GNNs), such as [8, 10, 16, 22, 40, 50],
are a class of deep learning algorithms that learn the low-
dimensional embedding using the structure and attribute in-
formation of graphs. The learned embedding can be further
used in machine-learning tasks including node classification
and link prediction. GNNs have been successfully applied
in many real-world applications, such as recommendation
systems in e-commerce platforms, fraud detection and risk
control in financial management, and molecular property pre-
diction in drug development [13,25,37,48,49]. Systems such
as DGL [42], PyG [31], and Graph-Learn [55] are proposed
to ease the development and training of GNN models.

It is common to apply GNNs over large-scale graphs in
industrial scenarios. For example, in Alibaba’s Taobao rec-
ommendation system, the user behavior graph contains more
than one billion vertices and tens of billions of edges [55].
In addition, as graphs are often skewed, it is infeasible to
aggregate all neighboring vertices when training a specific
vertex. Sampling-based mini-batch training, such as Graph-
SAGE [16], is proposed to extend GNN training to very large
graphs. In the sampling-based GNN training, there are two
key steps of data preparations before training a batch: (1) sam-
pling the multi-hop sub-graph for each vertex in the batch, and
(2) extracting the features of vertices in sampled sub-graphs.
Systems such as DGL [42] and PyG [31] store the graph data
in the CPU memory, prepare the training data of mini-batches
using CPUs, and utilize GPUs for model training. As this
approach requires transferring the sampled sub-graphs and
high-dimension feature data to the GPU for every batch, the
end-to-end training throughput is severely limited by the CPU-
GPU data transferring bandwidth [23, 47]. In addition, the
throughput of graph sampling using CPU is often insufficient
to keep up with the throughput of GPU training, especially in
multi-GPU machines.

Several cache-based approaches have been proposed to
speed up GNN training [23, 29, 33, 47]. As it is the feature
data that accounts for a majority of the CPU-GPU data trans-
ferring, caching the features of frequently accessed vertices in
GPU can significantly reduce the amount of transferred data.
To improve the throughput of graph sampling, GPU-based
sampling has also been adopted in GNN systems [33, 42, 47].

We identify that existing approaches face severe limitations
or performance issues in multi-GPU training, particularly
when the graph is large. First, the multi-GPU cache scalabil-
ity of existing cache-based systems is poor. Some cache-based
GNN systems [33,47] shuffle the training set across all GPUs
and replicate an identical feature cache across all GPUs or
NVLink cliques1 to facilitate data parallel training. The cache
capacity is constrained by the memory of a single GPU or

1NVLink clique denotes a group of GPUs where each pair of GPUs are
connected with NVLink.



NVLink clique (an NVLink clique only consists of two GPUs
in some multi-GPU architectures), resulting in poor cache
performance when scaling up the number of GPUs (see the
experiment in Figure 2). PaGraph [23] partitions the graph us-
ing a self-reliant algorithm and caches nodes with the highest
in-degree for different partitions in different GPUs, trying to
make use of data locality inside each partition. As partitions
in PaGraph include the complete L-hop neighbors of their
training vertices, there is a significant overlap between the
caches of different partitions, resulting in the same duplica-
tion issue as the aforementioned cache-based GNN systems.
Second, when adopting GPU-based graph sampling, existing
systems manage the graph topology in a very coarse-grained
manner: the topology has to be completely stored in a single
GPU [33, 42, 47] or in the CPU memory [33, 42]. The former
approach puts a hard limit on the graph scale, and further
squeezes the cache capacity for features. The latter storing the
topology in the CPU and accessing it from GPU would result
in very low utilization of the PCIe bandwidth, as the data
access of graph sampling is usually random and fine-grained.

This paper presents Legion, a GNN system that fully ex-
plores the hardware capabilities of modern multi-GPU servers
for training large-scale graphs in a single machine. Legion
proposes two key designs to fully exploit the memory space
of multi-GPUs for feature and topology cache. First, to avoid
cache replication, we propose NVLink-aware hierarchical
graph partitioning technique that helps scale the cache on
multi-GPU memory efficiently according to the specific hard-
ware structure. Legion first partitions the graph with minimal
edge-cut and assigns each partition exclusively to an NVLink
clique, and then uses hash partition to further map the training
vertices to GPUs inside each NVLink clique. Second, we pro-
pose a hotness-aware unified cache that manages both the
feature and topology cache in a vertex-centric data structure.
We enable an NVLink-enhanced cache space for the unified
cache and prioritize the topology and features with the high-
est hotness to fill the cache, so as to improve the multi-GPU
memory utilization.

The above designs pose a new challenge to Legion. Given
a fixed size of GPU memory, it is hard to manually decide
the optimal fractions of topology and feature cache such that
the overall training throughput is maximized. To solve the
challenge, we propose an automatic cache management
mechanism. Specifically, we build a cost model in the mecha-
nism to evaluate the key factor to the overall throughput, i.e.,
PCIe traffic, of both graph sampling and feature extraction in
the training phase, which is used to guide the allocations of
cache spaces for graph topology and feature. Overall, the three
key designs in Legion enable automatic caching optimization
and full utilization of hardware capability of various modern
GPU servers. Experiments show that Legion can outperform
state-of-the-art cache-based GNN systems up to 4.32×.

In summary, the contributions of this paper include:
1. We propose an NVLink-aware hierarchical graph parti-

Figure 1: The workflow of 2-hop GraphSAGE training.

tioning technique that helps minimize cache replication
between NVLink cliques and extends the threshold of
cache capacity beyond the limit of an NVLink clique.

2. We propose a hotness-aware unified cache to store topol-
ogy and features with the highest hotness in GPU memory,
so as to improve the GPU memory utilization.

3. We present an automatic cache management mechanism
that searches for the optimal cache plan without requir-
ing extra knowledge of hardware specifications and GNN
performance details from users.

4. We implement Legion that fully explores the hardware
capabilities of multi-GPU systems targeting billion-scale
GNN training, not supported by existing cache-based GNN
systems, in a single server.

2 Preliminaries

In this section, we introduce the basic concept of GNN and
the workflow of mini-batch GNN training.

2.1 Graph Neural Networks
Given a graph G = (V,E), where each vertex is associated
with a vector of data as its features Xv,v ∈V , Graph Neural
Networks(GNNs) learn a low-dimensional embedding for
each target vertex by stacking multiple GNNs layers L. For
each layer l, l ∈ L, vertex v updates its activation by aggregat-
ing features or hidden activations of its neighbors N(v),v ∈V :

al
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v,h
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2.2 Mini-batch GNNs Training
Mini-batch training is a practical solution for scaling GNN
training on very large graphs. Neighbor sampling is used to
generate mini-batches, allowing sampling-based GNN mod-
els to handle unseen vertices. For example, GraphSAGE [16]
samples multiple hops of neighbors for training as shown in
Figure 1. The workflow of GraphSAGE training follows a
vertex-centric computation paradigm including the follow-
ing steps: 1, selecting a mini-batch of training vertices from
the training set. 2, uniformly sampling the multiple hops of
fixed-size neighbors for each training vertex. 3, extracting the



features of the sub-graph consisting of the training vertices
and their neighbors to generate the mini-batch training data.
Finally, performing AGGREGATE and UPDATE according to
Equations 1, as well as executing the forward and backward
propagation to update the model parameters.

3 Observation and Motivation

When training large-scale graphs whose size exceeds the ca-
pacity of GPU memory on a multi-GPU server, the major
performance bottleneck becomes the data movement from
CPU to GPUs under the constraint of PCIe bandwidth. To
this end, existing works [33, 42, 47] intend to relieve the PCIe
bandwidth bottleneck by caching the hottest graph features on
GPU memory. Though these cache-based approaches signifi-
cantly reduce PCIe traffic, we still identify two issues of these
existing cache-based GNN systems when training large-scale
graphs: 1) poor multi-GPU cache scalability, and 2) coarse-
grained GPU memory management for graph topology. In
the following, we discuss each issue and the corresponding
observation that motivates the design of Legion.

3.1 Multi-GPU Cache Scalability

As feature extraction occupies most of the data transferring
from CPU to GPU, cache-based systems like GNNLab [47]
maintain a global feature cache for vertices which are more
frequently accessed via a pre-sampling phase. As training ver-
tices are globally shuffled among all training GPUs, GNNLab
replicates this cache across all GPUs involved in model train-
ing. Since a single GPU’s memory space is quite limited, the
fraction of cached features would inevitably become lower
when the graph size grows, resulting in a lower cache hit
ratio even on multi-GPU servers. To increase the cache ca-
pacity, the cache mechanism in Quiver [33] leverages high-
speed NVLinks to support inter-GPU cache between NVLink-
connected GPUs. Different from GNNLab, Quiver replicates
feature cache between NVLink cliques and averagely hashes
the features among GPUs in the same NVLink clique. How-
ever, this mechanism could still lead to poor cache scalability,
especially when the NVLink clique is relatively small. E.g.,
the Siton server used in Table 1 has 4 NVLink cliques, each
of which contains only 2 GPUs. Figure 2 illustrates that, in
systems like Quiver, the PCIe transactions incurred by CPU-
GPU data transferring stop decreasing when the number of
GPUs is larger than the size of NVLink clique. This result
shows that the cache performance in the above GNN systems
cannot scale well with the increasing number of GPUs in
modern servers.

To solve the scalability issue incurred by cache replication,
PaGraph [23] partitions the graph in a self-reliance approach
and maintains an independent cache for each partition using
an in-degree-based metric on different GPUs. To train an
L-layer GNN model, PaGraph extends every partition with re-

(a) 2 GPUs per NVLink clique (b) 4 GPUs per NVLink clique

Figure 2: Comparing the cache scalability of cache-based
GNN systems using the Products [17] dataset and 2-hop
GraphSAGE [16] model in terms of normalized CPU-GPU
PCIe transactions. The cache ratio is set to 5% |V | on every
GPU. The tested platforms are Siton (a) and DGX-V100 (b)
servers, as shown in Table 1.

dundant vertices and edges to include all the L-hop neighbor
vertices for each train vertex in this partition. Each GPU only
trains its own partition and synchronizes its local gradients
periodically to update the model. However, the inclusion of
the L-hop neighbor vertices leads to heavily duplicated cache
contents on all GPUs. Figure 2 shows that the PaGraph ex-
hibits a similar cache performance as GNNLab which adopts
the cache replication mechanism. We further implement a
PaGraph-plus design to alleviate the cache duplication issue
in PaGraph. Specifically, we replace the graph partitioning
algorithm in PaGraph with the XtraPulp [35] algorithm that
minimizes edge-cuts between partitions and adopts a pre-
sampling-based hotness metric to select the vertex features to
be cached. Although PaGraph-plus achieves higher cache hit
rates compared to PaGraph, the cache hit rates on different
GPUs are very unbalanced as different partitions have various
graph distributions. Figure 3 illustrates the load imbalance
issue of PaGraph-plus by measuring the cache hit rates of
eight GPUs. We observe that the hit rate varies by up to 17%.

To sum up, for systems that globally shuffle the training
vertices among GPUs in every iteration, such as GNNLab and
Quiver, cache replication cannot be completely eliminated
as each GPU may randomly access any vertex in the entire
graph. Whereas the high-speed NVLinks between GPUs can
be used to reduce the replication factor and expand the cache
capacity. For systems that locally shuffle training vertices in
each partition to produce mini-batches for different GPUs,
such as PaGraph, the cache replication problem could be
alleviated only when the model layer is small (e.g., less than 2).
PaGraph-plus can further reduce cache duplication but faces
another issue of unbalanced cache hit rates among GPUs.
Observation O1: Graph partitioning can be suitably
guided by hardware structure. Different from Quiver,
GNNLab, PaGraph, and PaGraph-plus do not take advantage
of the NVLink between GPUs, which is a common capabil-
ity in modern multi-GPU servers. As GPUs inside the same
NVLink clique can access each other’s memory via the low-
latency high-throughput NVLink, an NVLink clique can hold
the entire cache of a partition, which can be randomly sliced



Figure 3: Cache hit rates of different systems in a server with
8 GPUs. The cache ratio is set to 5% |V | on every GPU. The
graph sampling follows the 2-hop GraphSAGE [16] model’s
setting using the Products [17] dataset. “NVx" means utilizing
NVLink clique with x GPUs.

(a) PCIe throughput vs. payload size (b)

Figure 4: (a) The PCIe 3.0 throughput under different payload
sizes of PCIe requests. (b) The PCIe traffic reduction rate for
Paper100M with the growth of the cache capacity. The cache
is on a single GPU and selected after pre-sampling.

and averagely allocated among GPUs inside a clique. This
hardware-coherent design can balance the cache hit ratios
between intra-clique GPUs. As the number of partitions is
reduced to the number of NVLink cliques, it is more likely
that the partitions follow a similar distribution (see the cache
hit rate distribution of Legion in Figure 3). Inspired by O1,
we propose an NVLink-aware hierarchical partitioning to pre-
serve multi-GPU cache scalability in Legion (Section 4.1).

3.2 Coarse-grained GPU Memory Manage-
ment for Graph Topology

In multi-GPU servers, the throughput of CPU-based graph
sampling may not catch up with the throughput of GPU-based
training. To improve the end-to-end training throughput, re-
cent GNN systems [33,42,47] adopt GPUs to accelerate graph
sampling. We observe that all these systems apply a very
coarse-grained memory management mechanism for graph
topology. In particular, they store the entire graph topology
either in CPU memory or in a single GPU, depending on the
size of graph topology: the graph topology is stored in CPU
memory when it is too large or exceeds the capacity of a sin-
gle GPU. The approach of storing the entire graph topology
in a single GPU sets a hard limit on the scale of the graph.
For example, a V100 GPU with 16GB memory can store
at most 4 billion edges [16] without considering any other
memory usage of feature cache and model training. When
storing the graph topology in CPU memory, GPUs can di-
rectly access the graph topology via a unified virtual memory

address (UVA [27]) technique. While the data access pattern
of graph sampling is usually random and fine-grained. E.g.,
Figure 4a shows that the PCIe throughput of graph sampling
is much lower than feature extraction. A large number of sam-
pling PCIe transactions with small payload sizes will increase
the CPU-GPU PCIe contention and lead to low bandwidth
utilization.
Observation O2: The access of graph topology is skewed
as graph features. Existing cache-based GNN systems [23,
33, 47] only maintain feature cache in GPU to reduce the
CPU-GPU communication costs. However, we observe that
the performance gain of the per-unit feature cache decreases
once the cache capacity exceeds a threshold (see Figure 4b).
We observe that the access of graph topology during graph
sampling is also skewed as the access of features. Instead of
allocating all the available GPU memory (except for the reser-
vation for model training) for feature cache, it is reasonable
to cache a subset of graph topology, i.e., edges of vertices that
are frequently accessed during sampling, in the GPU memory
to accelerate GPU sampling. Figure 4b shows that a rela-
tively small topology cache can obviously reduce the number
of PCIe transactions incurred by GPU sampling. Motivated
by O2, we propose a hotness-aware unified cache in Legion.
Specifically, Legion caches both graph topology and graph
features with the goal of minimizing CPU-GPU communica-
tion overhead (see Section 4.2). Under the capacity limit of
GPU memory, it is difficult to manually decide the optimal
fractions of topology and feature cache. Legion solves this
challenge with an automatic cache management mechanism,
which can generate the optimal cache plan without requiring
knowledge of hardware specifications from users.

4 Design of Legion

In order to address the aforementioned performance issues
of existing cache-based GNN systems, we propose Legion,
a cache-optimal GNN system that can push the envelope of
the multi-GPU system automatically for billion-scale GNN
training. The overall design of Legion is presented in Fig-
ure 5. We propose an NVLink-aware hierarchical partitioning
technique (Section 4.1) in Legion that facilitates scaling up
the cache capacity and reducing cache duplication in multi-
GPU servers. To utilize GPU cache for both graph sampling
and feature extraction, we present a hotness-aware unified
cache (Section 4.2) that maintains both the topology and fea-
ture caches to optimize the overhead of PCIe traffic. We also
develop an automatic cache management mechanism (Sec-
tion 4.3) to automatically decide the memory allocations for
both topology and feature caches.

4.1 NVLink-aware Hierarchical Partitioning
Motivated by observation O1, we propose a simple yet effec-
tive graph partitioning mechanism, referred to as hierarchical



Figure 5: Design overview of Legion. Legion consists of three main contributions C1, C2, and C3.

partitioning, to facilitate cache scalability in Legion. Differ-
ent from conventional graph partitioning algorithms which
partition all edges/vertices of a graph into multiple tablets,
hierarchical partitioning in Legion aims to divide the training
vertices/edges into multiple disjoint tablets. The inputs of hi-
erarchical partitioning are an NVLink topology matrix MT of
the underlying multi-GPU server and a graph G. The output
is an assignment plan disseminating training vertices/edges
among GPUs. Specifically, the process of hierarchical parti-
tioning mainly consists of four steps:
S1: NVLink Clique Detection. With the topology matrix
MT of the server, Legion employs a MaxCliqueDyn algo-
rithm [45] to identify the NVLink clique sets in MT , and
outputs the number of NVLink cliques Kc and the number of
GPUs in each clique Kg.
S2: Inter-clique Graph Partitioning. To reduce the cache
duplication between NVLink cliques, Legion uses an edge-
cut minimizing partitioning algorithm, e.g., METIS [21] and
XtraPulp [35], to split the input graph G into Kc partitions, i.e.,
P1, P2, ..., PKc, such that nodes are balanced among partitions
and inter-partition edge-cuts are minimized. The training ver-
tex set in Pi is denoted as V Pi. As the training vertices are
randomly selected from G, the training vertex sets of different
partitions are almost of the equal size. The number of parti-
tions is equal to the number of detected NVLink cliques, and
each NVLink clique hosts the cache for a dedicated partition.
This way, Legion can reduce the cache duplication between
NVLink cliques and take advantage of cache locality within
an NVLink clique.
S3: Intra-clique Training Vertex Partitioning. As GPUs
within an NVLink clique can access each other’s memory via
low-latency high-throughput NVLink interconnect, hierarchi-
cal partitioning further hashes the training vertex set of each
partition into Kg tablets, where Kg is the GPU number in a
clique. E.g., V Pi is split into V Pi[1] and V Pi[2] if Kg equals 2.
Each tablet is exclusively mapped to a GPU in the correspond-
ing NVLink clique. We explain how to generate the cache for
each training vertex tablet in Section 4.2.
S4: Training Vertex Assignment. Finally, Legion assigns
training vertices of each tablet to a corresponding GPU as the
batch seeds, which will then be shuffled locally to generate

mini-batches for graph sampling and training.
As such, Legion provides better cache scalability and load

balancing compared to existing systems. Figure 2 shows the
cache performance of Legion improves with the increase
of GPUs almost linearly. Figure 3 illustrates that Legion
has smaller fluctuations in the cache hit rates on multi-GPU
servers with NVLink cliques of various sizes.

4.2 Hotness-aware Unified Cache

Motivated by the observation O2, we propose a hotness-
aware unified cache to cache both graph topology and graph
features. In this Section, we introduce the detailed mechanism
of the unified cache.

4.2.1 Cache Structure

The unified cache consists of two parts: the topology cache
and the feature cache. In particular, the topology cache main-
tains out-edge neighbor IDs for each selected hot vertex in
the format of a compressed sparse row (CSR). As for the
feature cache, Legion stores the feature vectors of selected
hot vertices in the format of a 2D array, where each row is the
feature vector of a selected hot vertex. Note that, the selected
vertices in the topology and feature caches could be different.

4.2.2 Cache Construction

The construction of the unified cache is divided into three
steps: (1) pre-sampling, (2) cache candidate selection, and (3)
cache initialization. All the GPUs/NVLink cliques perform
these steps concurrently to construct their own unified cache.
S1: Pre-sampling. Similar to GNNLab [47], Legion adopts
a pre-sampling phase2 to estimate the hotness metrics of
graph topology and feature data during the training phase.
Once the process of hierarchical partitioning is completed,
the training vertex tablet assigned to each GPU is determined,
which is used as the input for pre-sampling. The output of
pre-sampling includes two hotness matrices: topology hot-
ness matrix HT and feature hotness matrix HF . Each matrix’s
row represents the GPU IDs within an NVLink clique, the

2During pre-sampling, graph topology is stored in the CPU memory.
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