
This paper is included in the Proceedings of the
2023 USENIX Annual Technical Conference.

July 10–12, 2023 • Boston, MA, USA
978-1-939133-35-9

Open access to the Proceedings of the
2023 USENIX Annual Technical Conference

is sponsored by

UnFaaSener: Latency and Cost Aware Offloading
of Functions from Serverless Platforms

Ghazal Sadeghian and Mohamed Elsakhawy, University of British Columbia;
Mohanna Shahrad, McGill University; Joe Hattori, University of Tokyo;

Mohammad Shahrad, University of British Columbia
https://www.usenix.org/conference/atc23/presentation/sadeghian

UnFaaSener: Latency and Cost Aware Offloading of
Functions from Serverless Platforms

Ghazal Sadeghian Mohamed Elsakhawy Mohanna Shahrad† Joe Hattori‡ Mohammad Shahrad

University of British Columbia McGill University† University of Tokyo‡

Abstract
We present UnFaaSener, a lightweight framework that en-
ables serverless users to reduce their bills by harvesting non-
serverless compute resources such as their VMs, on-premise
servers, or personal computers. UnFaaSener is not a new
serverless platform, nor does it require any support from to-
day’s production serverless platforms. It uses existing pub/sub
services as the glue between the serverless application and
offloading hosts. UnFaaSener’s asynchronous scheduler takes
into consideration the projected resource availability of the of-
floading hosts, various latency and cost components of server-
less versus offloaded execution, the structure of the serverless
application, and the developer’s QoS expectations to find the
most optimal offloading decisions. These decisions are then
stored to be retrieved and propagated through the execution
flow of the serverless application. The system supports partial
offloading at the resolution of each function and utilizes sev-
eral design choices to establish confidence and adaptiveness.
We evaluate the effectiveness of UnFaaSener for serverless
applications with various structures. UnFaaSener was able to
deliver cost savings of up to 89.8% based on the invocation
pattern and the structure of the application, when we limited
the offloading cap to 90% in our experiments.

1 Introduction

Serverless computing [54] allows developers to quickly build
scalable, event-driven applications and pay for only what they
use. It also removes the provisioning and maintenance bur-
dens of the traditional cloud system. Developers have identi-
fied and embraced this game-changing cloud paradigm. Ac-
cording to Datadog’s June 2022 analysis of cloud user teleme-
try [33], more than 70% of organizations using AWS and over
50% of Azure and Google Cloud users have adopted server-
less offerings. A year prior, the serverless adoption numbers
for these three leading cloud providers were just above 50%,
35%, and 20%, respectively [32].

In addition to increased adoption, serverless applications
are also becoming increasingly complex. In 2019, the majority

of serverless applications were composed of just one function
and 80% had three or fewer functions [72]. Today, complex
serverless workflows are no more rare. A recent study of
open-source serverless projects has identified 31% of studied
applications to have workflow structures [35]. From 2019
to 2022 the popularity of serverless DAGs has grown by
6× at Azure [59]. The increased complexity of serverless
applications can be attributed to the maturation of serverless
offerings and the increased proficiency of developers.

With a developer-focused perspective, this work is moti-
vated by a relatively simple question: why should serverless
functions be bound to be executed within the serverless plat-
forms? If serverless functions are designed to be primarily
stateless, the serverless model disaggregates storage from
compute, the serverless isolation/virtualization mechanisms
are lightweight [17], and the model is event-driven, it begs
asking whether offloading execution of serverless functions
off the serverless platform can make economic sense.

Many organizations and development teams use serverless
offerings in conjunction with other cloud service types, such
as VMs or microservices’ containers [24, 36]. Reports from
different cloud providers indicate that the majority of VMs
in public clouds are heavily under-utilized [30, 44]. Despite
low VM utilization, public cloud providers have been able
to improve data center efficiency using advanced resource
oversubscription to co-locate many underutilized VMs with
predictable guarantees [30, 48, 55], or through dynamic ca-
pacity harvesting from those underutilized VMs to sell to
others [39,74,80]. Such strategies help the provider operate at
higher efficiency, but cloud users still have to pay for their full
static allocations. If a team is already paying an hourly rate
for renting a VM and that VM is not fully utilized, it could be
harnessed to run their own serverless functions. Additionally,
an organization may have on-premise computational capacity
that already incurs capital and operating costs, which can sim-
ilarly be leveraged to execute migratable serverless functions.

The merits of the proposed serverless function offloading
are clear, but determining when to migrate functions depends
on various factors. For example, offloading one or more func-

USENIX Association 2023 USENIX Annual Technical Conference 879

tions in a latency-sensitive chain of short functions could lead
to QoS violations due to added network latency. In contrast,
for a serverless DAG with imbalanced branches, offloading
those executions off the critical path may be worthwhile if
the cost of data movement and added latency are acceptable.
While these examples focus on latency, some serverless appli-
cations, such as nightly builds, may have little to no latency re-
quirements, making offloading more viable. Ultimately, how
and when functions of a serverless application can be of-
floaded depends on a long list of factors. Serverless providers
do not have an incentive to enable such functionality as it
would negatively impact their profitability, and developers
would rather not deal with the complexity as it goes against
the serverless philosophy of freeing them from provisioning
concerns. We believe that there is real value to be delivered in
this junction by providing developers with a system that adap-
tively and transparently offloads their serverless functions to
their own alternative execution hosts.

We design and build UnFaaSener, the first holistic server-
less offloading system without any change to today’s
serverless platforms. This system performs adaptive of-
floading of a developer’s functions to their own alternative
hosts. UnFaaSener does this by dynamically considering
latency and cost implications of offloading as well as re-
source availability predictions on hosts against goals con-
veyed by the developer (e.g., saving maximum cost, or re-
specting a certain latency QoS). We build UnFaaSener to
use existing services on a popular serverless platform, and
run various serverless applications on it. It is available at
https://github.com/ubc-cirrus-lab/unfaasener.

2 Background

2.1 The Status Quo
Execution of serverless functions. Your serverless functions
run within the serverless platform you operate on. Depending
on the provider, your functions might be allocated to run in
lightweight VMs, containers, or other isolation abstractions
that themselves use dedicated allocations or internally har-
vested resources [86]. Interestingly, your functions will not be
allocated to any underutilized VMs that you already pay for.
If you have computational resources on a different cloud or
on-premise, those are not used to host your functions either. If
a developer decides to tap into these capacities to reduce their
serverless bill, they need to build their applications differently
and effectively do resource provisioning. This defeats the
purpose of using serverless in the first place.
Offloading to and from serverless. Serverless’s unparalleled
horizontal scaling and pay-per-use pricing model enables
cheap acceleration of bursty, massively parallel workloads.
Researchers have developed general purpose (e.g., gg [37])
and domain-specific frameworks (e.g., ExCamera [38] and
NumPyWren [73]) for this purpose. Offloading to serverless
is popular for edge [26, 52, 82] and network function virtual-

ization (NFV) [16,70,85] applications. Researchers have also
proposed offloading from serverless to the edge [41].

The idea of offloading from VMs to serverless has also
been proposed. Most of these works utilize serverless as a
backup when scaling out VMs [43, 47, 63, 84, 87], however,
some others simultaneously offload a small portion of traffic
to serverless [67]. As VMs are the primary deployment in
these works, the benefits of serverless functions, such as high
scalability can not be fully exploited, and the scope of the
applications is limited to the capacity of the VMs. To fully ex-
ploit serverless advantages, researchers have suggested hybrid
VM-serverless deployment of applications [56, 75]. In these
systems, however, a secondary custom scheduler is added be-
fore the serverless scheduler, which limits the scalability of
the system and comes with security concerns.

The systems mentioned earlier are not designed for re-
source harvesting. However, a number of works have pro-
posed modifying the serverless platform to offload serverless
on the harvested resources [78, 83, 86]. We identify this as a
limitation, as one cannot expect serverless providers to change
their platforms and reduce their profitability. Besides that, the
offloading will be limited to hosts located only within the
scope of the platform scheduler (same cluster, region, or zone
of the same cloud, depending on the provider’s architecture).
UnFaaSener is designed to work with existing serverless plat-
forms, without requiring any change. By harvesting the idle
resources of any host within or outside the cloud hosting
serverless functions, UnFaaSener opportunistically achieves
cost reductions for a wide range of general-purpose appli-
cations, from single functions to applications in a form of
complex DAGs (consisting of multiple branches, merging
points, and dynamic fan-out patterns).

2.2 The Serverless Cost Model
Understanding the serverless cost model is imperative for
building a mental model of how UnFaaSener offers cost sav-
ings. We provide a summary here and refer the reader to
related work for more detailed descriptions [57].
Capacity cost: Developers are required to set the mem-
ory size of their serverless functions. This indirectly sets
the CPU share, too, as the CPU-to-memory allocation ra-
tio is fixed in current serverless systems [21]. Multiplying
the execution time by the configured memory size deter-
mines the GB-seconds usage. There is a cost charged per
GB-seconds; e.g., $1.67×10−5 for AWS Lambda on x86 [3].
Some providers enforce a minimum execution time per invo-
cation (e.g., 100 ms for Azure Functions). Execution times are
also rounded-up; e.g., to the nearest 1 ms for Azure Functions
and to the nearest 100 ms for Google Cloud Functions.
Invocation cost: Each invocation also incurs a cost; e.g., $0.2
and $0.4 per million requests for Azure Functions and Google
Cloud Functions, respectively.
Free tier: Typically, serverless providers offer monthly free
tiers: AWS, Azure, and Google Cloud provide 400,000 GB-

880 2023 USENIX Annual Technical Conference USENIX Association

https://github.com/ubc-cirrus-lab/unfaasener

s per month. The free tier also includes no invocation cost
for the first 1 million requests in AWS Lambda and Azure
functions, and the first 2 million for Google Cloud Functions.
Saving cost by offloading: If a developer’s serverless usage
is low enough to fit within the monthly free tier offered by
cloud providers, they should not run UnFaaSener. Beyond
that, offloading functions to alternative hosts will eliminate
the capacity and invocation costs associated with it.

3 UnFaaSener Design Challenges

Let us decompose the sub-problems that need to be solved to
enable adaptive offloading of serverless functions to achieve
maximum cost reduction with minimum impact on latency,
and with no provider support:
1. Enabling flexible offloading (§4): The very first require-

ment is to enable partial offloading of requests for each
function of a serverless application to arbitrary hosts. The
solution should support various serverless applications,
ranging from those with a single function to complex work-
flows (typically DAGs).

2. Asynchronous Scheduler (§5): To deliver a practical solu-
tion, UnFaaSener’s design should satisfy the following:

(a) The system should work with no scheduling or load bal-
ancing support from the provider.

(b) As offloading is opportunistic, serverless execution
should be the default case to ensure high scalability and
low latency for the common case.

(c) The serverless platform should remain the end-point for
the incoming traffic to the application to enforce network-
based access control rules.

(d) Given that invocation patterns can be sporadic [72], con-
tinuously performing scheduling tasks on a dedicated
VM/container is not an option, as the incurred cost can
easily exceed the cost savings of function offloading.

We need a scheduling mechanism that resides outside the
serverless platform, is activated when necessary, invokes
the solver if needed for new decisions, and reflects the
offloading decisions to be used by functions.

3. Determining optimal offloading (§6): Optimal offloading
decisions depend on various factors such as application
structure, function resource requirements, execution times,
invocation patterns, host resource availability, communica-
tion latencies and costs. Additionally, the diverse range of
developers using public clouds and the variety of server-
less applications lead to different notions of optimality.
Optimizing for latency vs. cost, mean vs. tail, etc., should
all be expressible. A solver is required to take these inputs
and determine the host(s) for function execution.

4. Monitoring and prediction of hosts’ resource availabili-
ties (§7.1, §7.2): Considering the delays associated with

Datastore

Workflow

Pub/Sub

Header

Serverless Platform

z incoming traffic

control plane

data plane

Offloading Host n

Offloading Host 2

Execution
Agent

Monitoring
Agent

Offloading Host 1 (Leader)

Log
Collector

Monitoring
Agent

Execution
Agent

Scheduler
Offloading Solver

Text

Figure 1: UnFaaSener’s system diagram.

the distributed nature of UnFaaSener’s multi-node, or even
multi-cloud deployment, each host’s resource availability
should be forecasted with a high degree of confidence.

5. Managing execution-related tasks on the host side (§7.3):
Each host is responsible for various mechanical tasks, such
as pulling the function on a cold start, setting up an appro-
priate execution environment, enforcing resource limits,
executing the function, implementing keep-alive policies,
queuing incoming requests, and invoking the next function
on the appropriate host. While this aspect of the system
may not be particularly novel in terms of research, it is
crucial for the overall performance of the system.

Figure 1 provides an overview of UnFaaSener’s different
system components. In the next sections, we describe how the
design challenges stated earlier shaped our design decisions.
In total, UnFaaSener includes ∼6.3 K-SLOC: 5.4K lines of
Python, 0.8K lines of C++, and less than 100 lines of Shell.

4 Enabling Flexible Offloading
There is no universal approach to build and deploy a server-
less application with more than one function. One can either
use different messaging systems (e.g., AWS SNS), or rely
on higher level abstractions delivered by services such as
AWS Step Functions [5] and Google Workflows [10]. For
us, it is critical to compose the application in a way that
facilitates dynamically offloading arbitrary functions to user-
specified hosts. Additionally, complexities of offloading func-
tions to varying end-points, supporting dynamic DAG struc-
tures, or rate limiting should be kept hidden from the de-
velopers as much as possible. In this section, we explain
how UnFaaSener achieves these goals. We motivate and ex-
plain design decisions that let us inject offloading decisions,
propagate future decisions, and merge branches for DAGs.
Throughout the section, we will use a simple example (shown
in Figure 2) to demonstrate each implementation aspect.
Pub/Sub as the glue. Using a topic-based publisher/sub-
scriber (pub/sub) messaging pattern enables us to control
where each function has to be executed without changing

USENIX Association 2023 USENIX Annual Technical Conference 881

F1

F2 F3

F4

F2

F1

F3

Merge

Header
reqID = x

 Branches = 2
Counter = 0

Next Funct = F4

reqID = x

reqID = x
Counter ++
Add Results

Datastore

Latest Decision

F4 Pub/Sub Messages
Datastore Interactions

Application DAG

DAG
Implemented with
Offloading Ability

Figure 2: DAG conversion to support dynamic offloading.

the serverless platform. To do so, UnFaaSener first assigns
a unique pub/sub topic to each offloading host (e.g., user’s
VMs) as a unique subscriber. Pub/sub’s flexibility enables
adding, removing, or hot-swapping hosts. This means an of-
floading host can be substituted by subscribing to the same
topic without modifying pub/sub topics. Second, a few lines
of code are inserted at the end of any non-terminal function to
enable publishing to serverless or to any specific offloading
host. We call this the routing epilogue. Finally, the routing
decision for each function needs to be delivered to its parent
function’s routing epilogue. To do this, UnFaaSener adds a
lightweight header function as the entry point of the DAG.
Its role is to communicate the routing decisions made by the
asynchronous scheduler to all functions by piggybacking the
decisions to the incoming invocation.

The availability of pub/sub services across major clouds
(e.g., AWS SNS and Google Pub/Sub) and strong support for it
in various programming languages was a major driving factor
for us to facilitate portability of UnFaaSener. Furthermore,
the use of pub/sub provides a degree of fault tolerance by
requiring subscriber acknowledgment. If no acknowledgment
is received within a set timeframe, pub/sub automatically tries
to resend the message. We evaluate pub/sub latency in §9.8.
Routing epilogue. The routing epilogue is a general code
snippet added to the end of all non-terminal functions in the
application. The code snippet in Figure 3 shows the routing
epilogue for a Python function. The routing epilogue adds
only a conditional statement in the critical path of execution,
resulting in negligible added latency compared to the regular
call to the subsequent function. Based on the routing character
sent to this function by the header function, the role of this
code piece is to route the invocation to a serverless endpoint or
to any offloading host. The former is encoded by a “0" char-
acter, and the latter is determined by the host ID embedded
in the character. This works as UnFaaSener names pub/sub
topics for offloading hosts to follow the same convention: e.g.,
hostTopic1, hostTopic2, etc.
Header function. As illustrated in Figure 2, UnFaaSener adds
a header function to the head of the DAG. The role of the
header is to generate the routing decisions to be used by the

1 ...
2 if (routing == "0"): # run next function in

serverless
3 topic = publisher.topic_path(projectID , "

F3")
4 publish_future = publisher.publish(topic ,

data=message , reqID=reqID , routing=
routingData.encode('utf -8'))

5 publish_future.result()
6 else: # offload next function to a host
7 hostNumber = ord(routing) - 64
8 hostTopic = "hostTopic" + str(hostNumber)
9 topic = publisher.topic_path(projectID ,

hostTopic)
10 publish_future = publisher.publish(topic ,

data=message , reqID=reqID , invokedFunction
="F3",routing=routingData.encode('utf -8'))

11 publish_future.result()

Figure 3: The routing epilogue appended to a function.

routing epilogue of non-terminal functions. It also takes care
of creating entities for the merging points, as described next.
Merge function. In a generic serverless DAG, a function may
have several predecessors. A challenge is dealing with prede-
cessors finishing at different times. Since serverless functions
are primarily stateless, we need to persist information sent
by predecessors. One way to solve this is using stateful func-
tions, such as AWS Step Functions [5] and Azure Durable
Functions [22], to join on predecessors. To provide a merging
mechanism that works for predecessors executed on differ-
ent hosts UnFaaSener uses a database; specifically, a NoSQL
database (Google Datastore) in our current implementation.

As shown in Figure 2, the header function creates a new
entity (data object) for each merging point in the Datastore
by passing the metadata containing the request ID, the num-
ber of branches, and the subsequent function to be invoked
after that merging point. The merge function, which is added
between the predecessors and the child function, is invoked
by each predecessor. It keeps track of the content and num-
ber of responses from the predecessors using the Datastore
entity. It determines the completion of the last predecessor by
comparing the number of times it was invoked by the same
request ID to the predecessor count stored for it by the header
function in Datastore. The merge function then triggers the
next function and removes that entity from the Datastore.
DAG description. The developer provides UnFaaSener with
a DAG description JSON file, which defines the structure
of the DAG. The code snippet in §A.2 shows the workflow
description for one of our benchmark applications.

5 Asynchronous Scheduler

In this section, we describe UnFaaSener’s scheduler and how
we address the challenges stated earlier in §3.
An asynchronous scheduler off the critical path. To ad-
dress challenges 2(a), 2(b), and 2(c), we design UnFaaSener’s
scheduler to only activate when making offloading decisions.

882 2023 USENIX Annual Technical Conference USENIX Association

Y

Triggers

Major change in
predicted resource

availability

Violation of
Predictions

High/low util.
of predicted
availability

Scheduler
Datastore

Offloading
Solver

higher/
lower

percentile
sol. avail.

N

a.1 b.1 c.1

c.2

Logs

 a.2
b.2

 a.3
 b.3
c.4.2

a.4 , b.4, c.4.1, c.5

c.3.2

c.3.1

App X Routing

Figure 4: Different events triggering the asynchronous sched-
uler alongside the decision-making flow for each.

New offloading decisions do not need to be determined for
every single invocation, and the header function (§4) can rely
on the most recent decisions available in the Datastore.
Run in an offloading host. To run UnFaaSener, one or more
offloading hosts are needed. Otherwise, there is no offloading
and subsequently no cost reduction. Now, if there are already
offloading host(s) available, we can leverage them to host
the asynchronous scheduler as well. This addresses challenge
2(d) stated in §3. When there are more than one offloading
hosts, the developer can tag one of them as the leader at the
setup stage. If the leader host is not specified by the developer
or if the leader fails, we use the Raft [64] consensus algorithm
to elect the next leader in the order of the highest average
available resources since deployment.
Triggering rules. The offloading solver, which will be pre-
sented in the next section, determines the most optimal of-
floading decisions theoretically. However, serverless work-
loads can be highly dynamic. The request inter-arrival times
are shown to be highly variable [72], function execution times
for certain applications can be heavily input-dependent [62],
and the relatively short median execution time for serverless
functions [32, 72] amplifies the relative performance jitter in
the presence of third-party API calls. The resource utilization
of offloading hosts can change frequently, as well. To prevent
the solver from being constantly re-invoked, we pick minimal
triggering rules and rely on pre-solved scenarios. Figure 4
shows how system events trigger the scheduler.

A common case requiring new offloading decisions is vari-
ations in the invocation rate. UnFaaSener’s Log Collector (§8)
maintains an updated view of each application’s invocation
rate distribution on the leader host. Whenever the offloading
solver is run, it solves the same problem for different per-
centiles of the invocation rate distribution: 25th, 50th, 75th,
and 95th percentiles. The scheduler uses the 50th percentile
solutions for determining offloading decisions. Later, if the
utilization of predicted available resources was too high (85%)
or too low (20%), the scheduler can quickly pick the solution
for a higher or lower invocation percentile, respectively. We
found this simple mechanism effective for rapid flow control
without re-running the solver. In the high load case, if the

offloading decisions assuming the 95th percentile rate is still
not low enough, the solver is triggered.

6 Offloading Solver
In §3, we discussed the offloading solver that sits at the core
of UnFaaSener and is responsible for determining which func-
tions to offload, to where, and to what degree. At a high level,
the solver is a non-linear optimizer that considers execution
times, latencies, costs, resource demands, and availabilities
to determine the optimal offloading decisions. We describe
various design choices for UnFaaSener’s solver in this section.

Supporting different optimization goals: Any optimiza-
tion has an objective function. As one can imagine, the wide
range of service-level objectives (SLOs) in public cloud of-
ferings and the broad spectrum of serverless applications
(e.g., from latency-sensitive speech recognition [46] to cost-
oriented nightly builds [58, 60]) prevents using a one-size-
fits-all objective function. As a result, we built UnFaaSener’s
solver to support two different modes of operation: the cost
mode and the latency mode. In the cost mode, the goal is
to get maximum cost reduction without considering any con-
straints on the added latency. In the latency mode, the solver
aims to optimize for maximum cost reduction in the face of
a specific tolerance window for the added latency. By de-
fault, the tolerance window is set to the median latency of
the workflow (the start of the first function to the end of the
last function) when executed fully on serverless. This value
is easily modifiable by the user, and we evaluate the impact
of changing it in §9.3. Users have the flexibility to modify
existing optimization modes or introduce their own.

Considering locality: The solver can be re-invoked based
on changes in the resource availability of the hosts, change
in traffic patterns, etc. Each invocation of the solver should
not result in vastly different offloading decisions. Instead, the
solver should consider the current offloading host(s) of each
function and minimize migrations as much as possible. This
is because offloading a function to a new host would incur
additional latency to pull the code and build a container image.
The solver has a locality parameter, α, to control the degree
of emphasis placed on the locality.

Robustness to performance variations: The solver con-
sumes the data gathered by the Log Collector (§8) to deter-
mine the most optimal offloading. These logs contain obser-
vations for execution times on the serverless platform and
various hosts, as well as communication latencies. Execution
time for serverless functions has been shown to be highly vari-
able [42, 66]. The latency of pub/sub, which we use to build
our flexible offloading framework, can be highly variable too
(we evaluate this in §9.8). In this context, using only the mean
or median of limited observations can potentially misguide
the solver, specially in the latency mode, where a latency QoS
should be respected. Thus, the solver first checks the similar-
ity between serverless and host execution time distributions
using the Kolmogorov–Smirnov (KS) test, a non-parametric

USENIX Association 2023 USENIX Annual Technical Conference 883

method that makes no assumptions about the normality of
the data distributions. If the KS test reveals distinct distribu-
tions for more than 70% of offloaded workflow functions, the
solver uses mean statistics. However, if the distributions are
not distinguishable for more than 30% of offloaded functions,
the solver solves for the following three scenarios using non-
parametric confidence intervals (95% confidence level [61])
and reports the average of three solutions as the final answer:

1. Best case: This is to model the situation where everything
goes well for offloading to hosts. The lower confidence
interval bound for each host’s execution records, and upper
confidence interval bound for serverless execution records
are used by the solver.

2. Worst case: Here, confidence intervals are chosen so
that we account for the low-end cost reduction and high-
end added latency for offloading each function. Thus, the
choices for confidence interval bounds are opposite to the
best case mode.

3. Mean case: Here, the mean of system logs for each unique
function-host pair is used.

The total offloading decision percentage for each function
is limited to 90%, whether using a single or triple solver.
Keeping some traffic on the serverless platform allows for 1)
continuously observing execution times and latencies in spite
of a varying workload, and 2) keeping some serverless func-
tion images warm in case the host(s) becomes unavailable.

Multi-host offloading: When multiple hosts are available,
maximum cost reduction may require offloading the same
function to more than one host. In such a case, each host
will be in charge of a portion of the incoming traffic to that
function. Here, the solver considers the resource availability
of multiple hosts and recommends partial (as opposed to
binary) offloading decisions.

Optimization formulation: We have reviewed various
design aspects of the solver. Let us go over the formulation of
the optimization problem, shown in Algorithm 1. The latency
mode optimization has an additional constraint (Constraint 4)
for comparing the added latency with the latency tolerance.

Intuitively, the solver aims to find offloading decisions that
lead to maximum cost reduction, without violating resource
or QoS constraints. Offloading decisions are partial (as op-
posed to binary) to ensure delivering cost savings even with
limited host capacity. Cost is defined as the serverless exe-
cution cost, which the solver can try to minimize; unlike the
host cost, which is already paid for. The predicted serverless
cost is based on the invocation rate and execution time history,
as well as the capacity required by the function. Therefore,
the solver will prioritize offloading the function with higher
resource usage, higher execution time, or higher invocation
rate, as it will result in a higher cost reduction.

Implementation: We implemented the solver in Python to
leverage its rich optimization and data manipulation packages.
We used the GEKKO [19] package for mixed integer nonlinear

Algorithm 1 Optimization algorithm used by the Solver.
1: α: Locality Weight
2: µ: Adjusted Average CPU Utilization
3: dt

n,i: Funci offloading percent on hostn at timet
4: rpsi: Request per second for Funci
5: ExecTimen,i: Execution time of Funci on hostn
6: Scenarios: All offloading scenarios based on partial decisions.
7: hostn or serverless← scenario[i] ▷ The assigned placement for

Funci in a scenario.
8: Directed Paths: All paths starting from an initial node and end-

ing at a terminal node in a DAG
9: CommLatencyscenario[m],scenario[n]: Communication latency be-

tween Funcm on scenario[m] and Funcn on scenario[n].
10: Slackpath = Durationcritical path−Durationpath
11: ExecLatencyn,i = ExecTimen,i−ServerlessExeci ▷ Added

latency by executing Funci on hostn versus serverless execution.
12: procedure CALCCOST(dt

n,i)
13: Cost = 0 ▷ Assumes hosts with fixed cost regardless of

utilization, e.g., a VM billed at an hourly rate.
14: for Funci ∈ functions do
15: offloadingi = 0
16: for n ∈ offloadingHosts do

17: offloadingi← offloadingi +
dt

n,i

100
18: Cost← Cost+ α×

∣∣∣min(dt
n,i,1)−min(dn,i

t−1,1)
∣∣∣

19: Cost← Cost+(1−α)×costFunci
×rpsi× (0.9- offloadingi)

20: Constraint 1: ∑
Funci∈ f unctions

µ× ExecTimen,i×rpsi ×
dt

n,i

100
≤AvailableCPUhostn

21: Constraint 2: ∑
Funci∈ f unctions

Memi× ExecTimen,i×rpsi×
dt

n,i

100
≤AvailableMemhostn

22: Constraint 3: ∑
n∈offloading hosts

dt
n,i ≤ 90

23: Constraint 4: (only for the latency mode)
24: for scenario ∈ Scenarios do
25: for path ∈ Directed Paths do
26: latency = 0
27: for Funci ∈ path do
28: if scenario[i] != serverless then
29: hostn ← scenario[i]
30: latency← latency+min(dt

n,i,1)×ExecLatencyn,i

31: for Func j ∈path and Func j ∈predecessorsi do
32: latency← latency+CommLatencyscenario[i],scenario[j]

33: latency≤Slackpath+LatencyTolerance

34: Decision: d∗tn,i (OptimalValue)← argmin
dt

n,i

CALCCOST(dt
n,i)

programming (MINLP), used the CriticalPath [76] package
for slack analysis, and used the Pandas [1] package for storing
logs and efficiently performing complex statistical operations.

7 Host Agents

Let us explain UnFaaSener’s different host agents.

884 2023 USENIX Annual Technical Conference USENIX Association

7.1 Resource Monitor Agent
Implemented in C++, this lightweight agent tracks the CPU
and memory usage at the host. It distinguishes between
UnFaaSener-related processes (including containers running
offloaded functions) and host processes to create differen-
tiated scheduler triggers, described in §5. The monitoring
period is 100 ms in our implementation

7.2 Resource Predictor Agent
The predictor agent, also written in C++, is tightly coupled
with the monitor agent. It periodically (every 1 s in our imple-
mentation) predicts the maximum resource utilization in the
next time window. UnFaaSener’s effectiveness in cost reduc-
tion is as good as the accuracy of the predictions made by this
agent. If predictions are too conservative, the host’s available
capacity will not be well utilized, limiting cost reductions.
Conversely, aggressive predictions risk causing resource con-
tention between offloaded functions and host processes. We
formulate this trade-off using the following metrics:

1. Reclamation Efficiency (RE): RE represents how much
of the available resources could be reclaimed based on
the predicted usage. If predictions always match the peak
resource usage, RE would be 100%.

2. Violation Rate (V): If the predicted usage in a window is
lower than the materialized peak usage, the RE is capped at
100% and a prediction violation event is logged. V denotes
the percentage of predictions leading to a violation.

An ideal predictor would yield RE = 100% and V = 0%. For
each resource dimension (e.g., CPU and memory), the objec-
tive function combining the two looks like this:

PredictionScore = w×RE +(1−w)× (100−V) (1)
Here, w denotes the resource reclamation weight. By default,
UnFaaSener gives equal importance to reclamation efficiency
maximization and violation minimization (w = 0.5) as it does
not make any assumptions about the host workloads. Further
knowledge about the workload or user’s tolerance of slow-
down for it can change this. We do not explore this angle in
this work and only use w = 0.5. We evaluate the prediction
quality and performance of various prediction policies in §9.9
and derive the one best suited to UnFaaSener.

7.3 Execution Agent
The execution agent subscribes to the pub/sub topic of its
host and is notified on incoming invocations. If that function’s
code is not present on the host, the execution agent proceeds
to download the function’s code and metadata (runtime and
memory limit) with a call to the Google Cloud Functions’ API.
Once the function’s code and metadata are retrieved, a new
docker container image is built using the skeleton container
for the specified runtime (e.g., Python 3.10). We use Docker
Hub [8] to host skeleton images. The agent leverages Docker’s

build utility to generate a local image of the runtime that
contains the function’s code and dependencies. As the image
generation step is computationally expensive, the generated
images are kept on the host for future use. Prior work has
shown that even employing simple keep-alive policies can
notably reduce cold starts [40, 69, 72]. The execution agent
stops an idle container when the time since the end of the last
execution exceeds the keep-alive window (10 minutes), or
when capacity is needed to execute a different function.

UnFaaSener’s execution agent supports concurrent execu-
tion of multiple instances of the same or different functions.
However, the agent queues incoming requests on the host
if the predicted resource availability is more than 90% uti-
lized, or if the current degree of concurrency is at or beyond
the concurrency limit. The execution agent has a feedback
mechanism to set the concurrency limit dynamically based
on observed CPU utilization and performance degradation of
offloaded functions. It starts with assuming one CPU thread
per function, the concurrency limit is thus set to the number of
cores available in the host. Over time, the agent has access to
average container CPU utilization reported by the monitoring
agent. It also has access to execution time trends for functions
allowing it to measure any slowdown. Combining the two, it
calculates the adjusted average CPU utilization as:
µ=min(1,AvgFuncCPUUtil+0.03×(e∆ExecTime−1)) (2)

From this, the concurrency limit is calculated as Core Count
µ .

The insight for this asymmetric feedback mechanism is as
follows: if no performance degradation is sensed, µ directly
reflects the average utilization of docker containers hosting
offloaded functions. However, with slight degradation, µ is
increased super linearly to reduce the concurrency limit. More
details on this process is provided in §A.1.

UnFaaSener’s approach of using pre-solved offloading de-
cisions accelerates the scheduling path. This approach also
makes the scheduler early binding [50]. The distributed nature
of the system introduces some delay from when a burst hits
to the time that the host scheduler updates the offloading deci-
sions. This can create a request build-up on the hosts’ queues.
To prevent QoS violations, the execution agent monitors re-
quests in the queue and if their wait time exceeds a specified
window (2 s by default), that request and all its descendant
function calls are redirected to the serverless platform.

In §4 we described how using the subscription retry pol-
icy of pub/sub can provide a degree of fault tolerance. If no
acknowledgment is received within the specified number of
retries (default 5), the message is redirected to the subscriber’s
dead-letter topic, provided by pub/sub. We have designated
the topic of host(i+1)%numhosts

as the dead-letter topic for hosti.
Additionally, to prevent duplicate execution on the host side,
we have made use of the exactly-once delivery feature. How-
ever, our current implementation lacks complete handling of
a host failure scenario. Although no further offloading occurs
to the failed host, any invocations previously acknowledged

USENIX Association 2023 USENIX Annual Technical Conference 885

and queued on that host will be lost.
Offloaded function execution logs are stored locally and

periodically published to a Datastore entity every one thou-
sand logs for backup. This enables a smooth transition to a
new leader host in case of primary host failure.

8 Log Collection

The log collector runs periodically (every 1 minute in our
implementation) on the leader host, collecting execution and
latency logs for serverless as well as host executions logs. The
logs for serverless executions are collected using the Google
Cloud CLI (gcloud [27]). Aside from execution time infor-
mation, serverless logs contain timestamps for the invocation
of the header function that runs exclusively on serverless.
These timestamps are used to calculate the invocation rate
distribution for the workflow, which is used by the solver.

Host execution logs are needed by the solver to enforce the
latency tolerance QoS (discussed in §6). As mentioned in §7.3,
the execution agent writes execution records (start time, end
time, invocation ID, and function ID) to local log caches, and
asynchronously backs them up on the execution log Datastore
entity. In the event of leader failure, the log collector retrieves
execution records from the Datastore entity and stores them in
a pandas dataframe, similar to how local log caches store host
logs. This stored data is readily accessible for the offloading
solver upon activation. To accelerate statistical operations, the
dataframe stores a maximum of N most recent data points per
function-host, with N = 50 yielding favorable results in our
experiments.

9 Evaluation

9.1 Setup, Methodology, and Benchmarks
UnFaaSener has many components and serverless settings are
complex. We try to carefully distill various design and perfor-
mance aspects of UnFaaSener without confusing ourselves
or the reader with unnecessary complexity. Each experiment
conveys specific points to help readers build a mental model.
The majority of our evaluations are from real deployment,
but we also conduct some simulations to stress certain parts
of the system with more usage scenarios. Any reported cost
normalization is based on the scenario where all the functions
of the workflow run on serverless.

9.1.1 Benchmark Applications

We used five real-world serverless applications to evaluate
UnFaaSener; 1) DNA Visualization [28], a script that per-
forms visualization of the input DNA sequence file, 2) Image
Processing [51], an application that performs a sequence of
operations on input images, 3) Text2Speech Censoring [34]
turns short text segments into speech and censors any profani-
ties within the text segment, 4) Regression Tuning [12], which
solves a regression problem using Keras [25], and 5) Video

Benchmark Branch Dyn. Fanout DAG Structure

DNA Visualization ✗ ✗

Image Processing ✗ ✗

Text2Speech ✓ ✗

Regression Tuning ✓ ✗

Video Analytics ✗ ✓

Table 1: Benchmark applications were chosen to represent
various structures present in today’s serverless.

Analytics [13], an application that performs object recogni-
tion on images generated from a video stream. Table 1 shows
the diverse range of structures covered by these applications.
The dynamic fanout column in the table captures whether the
application has a sub-graph with parametrized fanout.

9.1.2 Workload Invocation and Traffic
We use FaaSProfiler [9, 71], a serverless testing tool used by
prior work [50, 66, 72], to invoke traffic patterns precisely.
Depending on the nature of the experiment, we use different
invocation patterns. For evaluating high-level trade-offs or as-
sessing the extremes, using a uniform invocation rate suffices.
For those with co-location scenarios, we use the 2021 Azure
Functions Invocation Trace [6, 86].

9.1.3 Ensuring fair comparisons
We take the following steps to make sure that our reported
gains are not inflated: 1) All cost numbers include the cost
of functions added by our system; 2) all latency numbers
are end-to-end and include the latency overhead introduced
by UnFaaSener; 3) each function is tuned [2] for the most
cost-optimal memory configuration. By making the baseline
serverless functions as cost-efficient as it gets, we ensure that
UnFaaSener’s cost savings are not an artifact of comparing to
bloated functions; 4) when comparing UnFaaSener to alter-
native solutions (§9.5), we ensure that each implementation
is minimal and tuned to the specific offering; 5) we invoke
each application with a set of random inputs; 6) we ignore the
bootstrapping phase measurements, as UnFaaSener tends to
offload more during this phase, leading to more cost savings.

9.2 Latency Mode vs. Cost Mode
Here, we use a VM with 4 vCPUs and 16 GB of memory to
demonstrate how even a relatively small host can be used by
UnFaaSener to offer cost savings. Figure 5 shows the normal-
ized execution cost and end-to-end latency values associated
with running three applications in latency and cost modes. For
each application, we chose the invocation frequencies such
that the maximum offloading (with a low rate) and minimum
offloading (with a high enough rate) are stressed.

As expected, using the cost mode leads to more savings
than the latency mode. It comes at the expense of potentially
increased latency since the solver considers no latency con-
straint when making offloading decisions in the cost mode.

886 2023 USENIX Annual Technical Conference USENIX Association

0

10

20

La
te

nc
y

(s
)

Text2Speech Censoring

0

5

10

Image Processing

0

20

Regression Tuning

5 10 150.0

0.5

1.0

No
rm

al
ize

d
Co

st

5 100.0

0.5

1.0

1 20.0

0.5

1.0

Function Invocation Rate (rps)

95th Perc (Cost Mode)
Median (Cost Mode)
Normalized Cost (Cost Mode)

95th Perc (Latency Mode)
Median (Latency Mode)
Normalized Cost (Latency Mode)

Figure 5: UnFaaSener’s cost savings and end-to-end latency
in two optimization modes.

0.0 2.5 5.0 7.5
Latency Tolerance (s)

0.0

2.5

5.0

7.5

10.0

12.5

M
ed

ia
n

La
te

nc
y

(s
) QoS

Text2Speech Censoring

0 2 4 6
Latency Tolerance (s)

0

2

4

6

8

M
ed

ia
n

La
te

nc
y

(s
) QoS

Image Processing

0.6

0.7

0.8

0.9

1.0

 N
or

m
al

ize
d

Co
st

 [.
.]

0.7

0.8

0.9

1.0
 N

or
m

al
ize

d
Co

st
 [.

.]

Figure 6: Increasing the latency tolerance in the latency mode
leads to more offloading, and thus more savings.

Even in the latency mode, UnFaaSener can reduce the cost, but
is limited by the default latency tolerance. As the invocation
rates increase, the cost savings achieved by UnFaaSener de-
crease. This is because UnFaaSener is designed to harvest
the unused computing resources of already-allocated hosts.
Therefore, when the invocation rates are high, the system
is fully utilizing the resources, leaving little or no unused
capacity to be harvested.

Later in §9.3, we show how changing the latency tolerance
affects the results in the latency mode.

We measured the added latency of the header function to be
∼50ms. The end-to-end latency values include this overhead.
9.3 Latency Mode and Tolerance Window
In the latency mode, the solver tries respecting a tolerance on
the added latency when making offloading decisions. Figure 6
shows the effect of changing the tolerance window on the
cost (green cross markers) and median latency (purple circle
markers). We studied its effect on two of our benchmarks:
Image Processing and Text2Speech Censoring. The tolerance
windows are set to zero, the median, and twice the median
latency of each workflow when solely run on the serverless
platform (baseline latency). The QoS (baseline + tolerance)
for these applications is depicted with purple dashed lines.

Overall, UnFaaSener manages to offload in a controlled
fashion and complies with the set tolerance window; except
for when latency tolerance of 0 is set for Image Processing.
Image Processing is a chain and thus every offloading is on

1 10 1000.00

0.25

0.50

0.75

1.00

No
rm

al
ize

d
Co

st

Text2Speech Censoring

1 10 100

Image Processing

Function Invocation Rate (rps)

e2-s-4 (4vCPUs,16GB) e2-s-16 (16vCPUs,64GB) e2-s-32 (32vCPUs,128GB)

Figure 7: UnFaaSener leverages larger hosts effectively to
increase offloading (reduce cost).

the critical path (see Table 1). This is unlike Text2Speech that
has asymmetric branches, because of which it enjoys higher
cost reductions and a higher safety margin from the QoS line.

9.4 Impact of Host Size
The results presented so far were gathered on a relatively
small host. This was to show that even with a small host, or
equivalently, with a small leftover capacity, UnFaaSener can
offer cost savings. It is worth asking how those results scale if
we use a larger host. To answer this, we scale up the cost-mode
experiments presented in §9.2 on two larger hosts. To prevent
factors other than the resource capacity, we picked larger
hosts from the same VM family as the small host (Google
Cloud’s e2-standard family). For brevity, we only show the
cost saving results for two benchmark applications in Figure 7.
The X-axis is logarithmic, and multiplying invocation rates
appears as a shift to the right. As seen, with increased host
size, the cost saving curve is shifted to the right consistently.

9.5 Comparison to Alternative Solutions
The primary objective of UnFaaSener is reducing the cost
by offloading to pre-paid hosts. To evaluate whether we ac-
complished this goal, we compare the maximum cost savings,
which is also the worst case latency, offered in the cost mode
with two popular serverless workflow platforms: AWS Step
Functions and Google Workflows. We also compare it to using
AWS Lambda functions glued with AWS SNS, and Google
Cloud functions glued with Google Pub/Sub. The latter is the
underlying setup for UnFaaSener. Furthermore, we present
results for UnFaaSener’s latency mode using the default tol-
erance window. Figure 8 compares the average latency and
cost per invocation for each benchmark and platform. We
could not port Text2Speech Censoring benchmark to AWS
as this benchmark utilizes Google Translate’s text-to-speech
API [11]. The cost mode is all about cost reduction. We see
that UnFaaSener is able to trade latency with cost effectively,
lowering the cost by about an order of magnitude. Using the
latency mode limits this cost reduction depending on the la-
tency tolerance expressed by developers (§9.2 and §9.3), and
helps cut down on average latency compared to the cost mode,
but the cost savings are not as significant. It is worth noting
that DNA Visualization, a single-function application, experi-
ences no added latency as it has low coordination overhead.

USENIX Association 2023 USENIX Annual Technical Conference 887

DNA

Visu
aliz

atio
nImage

Pro
ces

sin
g

Tex
t2Speec

h

Regres
sio

n

Tuning Video

Analy
tics

5

10

15

20

Av
er

ag
e

La
te

nc
y

(s
)

DNA

Visu
aliz

atio
nImage

Pro
ces

sin
g

Tex
t2Speec

h

Regres
sio

n

Tuning Video

Analy
tics

10−4

10−3

10−2

10−1

Co
st

 p
er

 In
vo

ca
tio

n
(¢

)

AWS Step Functions
Google Workflows
AWS Lambda+SNS

Google Functions+Pub/Sub
UnFaaSener Cost Mode
UnFaaSener Latency Mode (Default Tol.)

Figure 8: Comparison of latency and cost.

Finally, we see that using workflow coordination services
comes with major cost implications. This is because, in addi-
tion to the capacity and invocation cost elements mentioned
in §2.2, the developer has to pay for state transitions in these
offerings [4, 15].

9.6 Adaptive Cost Saving
We are interested in assessing the responsiveness of Un-
FaaSener to host processes. We use the host with 16 vCPUs
from earlier in this experiment. We replay a sample trace from
the 2021 Azure Functions traces [6] using FaaSProfiler [9]
to invoke the Image Processing application. At second 110,
the Graph Analytics workload from CloudSuite 3.0 [7, 65]
is run on the host for about 80 seconds. The workload uses
Apache Spark to perform graph analytics on a large-scale
Twitter dataset and uses all 16 vCPUs as well as 15 GB of
memory. Before and after this window, the host is mostly idle
and fully available for offloading.

Figure 9 shows the cost for each execution of the Image
Processing workflow over time. The timespan for the execu-
tion of the heavy host workload is marked with dashed lines.
Soon after 110 s, the execution agent slows down admitting
new requests and the monitoring agent triggers the scheduler
with a prediction failure trigger due to a sudden host load
spike. New predictions are made, and the solver makes new
offloading decisions for minimal offloading. This is reflected
in increased cost during that period. After the VM workload
ends, the predictor remains cautious briefly before declaring
the majority of the host’s resources as available. Offloading
to the VM resumes as before. The two orders of magnitude
difference in cost is attributed to the non-offloadable header
function taking less than 100 ms to execute, while the rest of
the application takes 3-4 seconds.

9.7 Host Interference
To measure the impact of UnFaaSener on host processes, we
run Text2Speech and Image Processing applications on the
16-core host described in §9.4. We invoke them with the simi-
lar rates to those used in that section, and adhere to using the
cost mode which guarantees maximal offloading, and equiva-
lently, maximum host-side interference. We use three standard
benchmark applications on the host to measure the impact

0 50 100 150 200 250 300
Invocation Arrival Time (s)

0.0
00

1

0.0
01

0

0.0
10

0

Co
st

 p
er

 In
vo

ca
tio

n
(¢

)

Host
 processes
 running

Figure 9: UnFaaSener adaptively adjusts offloading to respect
host processes.

20 40 60
Function Invocation Rate (rps)

0.6

0.7

0.8

0.9

1.0

No
rm

al
ize

d
Pe

rfo
rm

an
ce

Text2Speech

Benchmark
iperf
sysbench-mem [15 threads]
sysbench-cpu [15 threads]

10 20 30 40
Function Invocation Rate (rps)

0.6

0.7

0.8

0.9

1.0
Image Processing

Benchmark
iperf
sysbench-mem [15 threads]
sysbench-cpu [15 threads]

Figure 10: Degradation of host processes is a function of
traffic rate and the resource requirements of the functions.

on CPU, memory bandwidth, and network performance. For
the first two, we use Sysbench [53], in CPU and memory test
modes, respectively, each with 15 active threads. For network,
we use the Iperf [79] benchmark. Figure 10 shows the perfor-
mance of these benchmarks when normalized to that of an
idle host without UnFaaSener running. Across experiments,
the maximum average degradation at maximum offloading
is less than 15%. We find this degradation reasonable con-
sidering that 1) benchmarks used are highly sensitive and 2)
the developer is in the loop and aware of the operation of
UnFaaSener resource harvesting. We observe that sysbench-
mem benchmark experiences significantly higher degradation
for the Text2Speech serverless application. We pinpointed this
to Text2Speech having a function with a 2 GB memory con-
figuration, whereas the largest function for Image Processing
requires 256 MB of memory.

9.8 Pub/Sub Latency Overhead
Using pub/sub allows us to invoke functions on and from
offloading hosts. Here, we characterize the latency overhead
of the Google Pub/Sub [14], used by UnFaaSener.

In our experiment, the publisher is a Google Cloud function
in the East Coast sending payloads to three subscribers: 1) an-
other Google Cloud function in the same region, 2) a Google
Cloud VM in the same region, and 3) a private VM in the
West Coast. We test each publisher-subscriber pair with two
message sizes (10 KB and 1 MB) and two invocation rates
(0.1 rps and 5 rps). These values were driven by a recent char-
acterization of production serverless DAGs [59]. We chose
10 KB and 1 MB message sizes to estimate high-end values
for regular and high-fanout DAGs [59], respectively. Simi-
larly, 5 rps and 0.1 rps rates were chosen as high and medium
average invocation rates based on that characterization. We
collected 250 samples per scenario (3,000 samples in total).

888 2023 USENIX Annual Technical Conference USENIX Association

0.0

0.5

1.0 10.0 KB, 0.1 rps 10.0 KB, 5 rps

10 100 10000.0

0.5

1.0 1024.0 KB, 0.1 rps

10 100 1000

1024.0 KB, 5 rps

Latency (milliseconds)

CD
F

Subscriber
Google Functions (East Coast)
Google VM (East Coast)

Private VM (West Coast)

Figure 11: Pub/sub latency depends on message size, sub-
scriber type, distance, and messaging rate.

Figure 11 compares the distribution of latency depend-
ing on the subscriber. Higher message size (1 MB vs. 10 KB),
longer distance (West vs. East Coast), and very low invocation
rate (0.1 rps vs 5 rps) increase the latency. The latter is likely
caused by higher chances of lost connections between the
publisher, forwarder, and subscriber during longer invocation
periods. The wide distributions in Figure 11 reveal Pub/Sub’s
high performance variability. Even for two Google Cloud
functions in the same region, the latency varies from less
than 20 ms to more than a second. Such non-deterministic
variations in Pub/Sub latency alongside high performance
variations of serverless functions motivated us to use confi-
dence intervals statistics for the solver.

9.9 VM Resource Prediction Policy
The predictor agent runs on each host to forecast the maxi-
mum resource utilization anticipated for host processes. It has
two predictors: one for CPU and another for memory.

We dedicate this section to compare various prediction
policies and determine their fitness to be used by the Pre-
dictor agent. To assess prediction policies for a wide range
of VM usage scenarios we rely on simulations. We use the
Azure Public Dataset [29, 30] to simulate different predic-
tion policies for 1 million VMs over a 30-day period. The
dataset includes 5-minute VM CPU utilization readings (min,
average, and max utilization per reading) and has no memory
readings. CPU utilization is inherently more variable than
memory utilization. Besides, CPU utilization percentages can
experience a wider variation range due to CPU being the typi-
cal resource bottleneck in public clouds [45]. These factors
make forecasting CPU utilization a harder task.

We implement eight common time series forecasting meth-
ods and use traces from 100,000 VMs to train the best policy
parameters for them. These trained policy parameters are used
as the initial parameters for test VMs and during the lifetime
of each test VM the parameters are periodically retuned per
VM. A brief description of explored methods and their corre-
sponding parameters (shown in curly brackets) is listed below.
For all policies, we also consider a safeguard margin (m) to

allow exploring conservative predictions. To derive this mar-
gin despite inherent differences between various prediction
methods, we also included m as a training parameter.

Simple Exponential Smoothing (SES) {pars: m,α}:
sn+1 = αxn +(1−α)sn, xn+1 = sn+1× (1+m) (3)

Simple Moving Average (SMA) {pars: m,N}:

xn+1 =
1+m

N

n

∑
n−N+1

xi (4)

The averaging window is limited to the existing number of
observation if there are less than N observations.

Histogram (Hist) {pars: m, p,d}: Recent work [68, 72, 81]
has demonstrated the superior performance of histogram-
based time series forecasting. We implemented a histogram
with a 1% utilization resolution. At each prediction window,
the max observed utilization observed gets rounded to deter-
mine the histogram bin to be incremented. A certain percentile
of the histogram (p) is then used to determine the prediction
for the next window. A high percentile reduces violations,
but reduces reclamation efficiency. Old observations in the
histogram are depreciated using the decay factor (d).

Markov Chain (MC) {pars: m,r,o}: Markov Chains have
been used for time series forecasting in various problem do-
mains [18, 23, 49]. We build a simple MC predictor for CPU
prediction. A state transition matrix (STM) captures the his-
tory of state transitions. Each state is a range of CPU utiliza-
tion percentages; with state resolution (r) of 5%, there are a
total of 100

5 = 20 states. The current state is determined based
on the latest utilization observation: i = ⌈100%/xn⌉, and the
forecasted utilization is:

xn+1 =
∑
⌈100%/r⌉
j=1 ST Mi, j× (j+o)

∑
⌈100%/r⌉
j=1 ST Mi, j

× (1+m) (5)

Here, o is an offset to compensate quantization of values.
Other predictors: We also implemented Double Exponen-

tial Smoothing, Autoregressive, Passive Aggressive Regres-
sion, and ARIMA predictors. We do not present their descrip-
tion and results for brevity due to their mediocre performance
compared to SES and SMA despite more complexity.

Figure 12 compares prediction scores for these four poli-
cies. It also shows an Oracle policy where future is known, in
which case RE is always 100% and V is always 0%. We only
include VMs with a minimum lifetime of 30 minutes (65%
of all VMs), as 5-minute readings mean that shorter lifetimes
require 4 or fewer predictions; too few to draw meaningful
statistical conclusions from. We see that any active prediction
policy is significantly better than relying on the latest obser-
vation of peak utilization. While we picked MC for delivering
slightly better scores, we do not observe considerable differ-
ences among these policies. To better understand what limits
prediction scores, we look at resource reclamation efficiency
and prediction violations of the MC prediction policy sepa-
rately, as a function of VM lifetime (Figure 13). Results here
include any VM with lifetime of at least 15 minutes (91%

USENIX Association 2023 USENIX Annual Technical Conference 889

0 20 40 60 80 100
Prediction Score

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Prediction Method
Latest Max
SMA
SES
Hist
MC
Oracle

Figure 12: Prediction scores for simulated policies.

Figure 13: Resource reclamation efficiency and prediction
violations as a function of VM lifetime for 1 million VMs.

of all 1 million VMs). We observe that with increased VM
lifetime, the resource efficiency is increased and violations are
reduced. This is not surprising, as with longer history, policy
parameters can be better trained for each VM.

10 Related Work
Table 2 compares UnFaaSener with the related works target-
ing offloading in the serverless domain. For a category of
related work, the application is primarily deployed on VMs
and serverless plays the backup role at scale-out, while new
VMs are being provisioned [43, 47, 63, 84, 87]. LIBRA [67]
extends these works by simultaneously utilizing FaaS for the
low-rate bursty portion of the traffic. Reliance on VMs as the
primary infrastructure limits the scope of such systems to spe-
cific domains (as seen in Table 2), and in effect distances them
from serverless’s high scalability and pay-per-use features.

Another category of work proposes building hybrid IaaS-
FaaS deployments [56, 75]. The main drawback of these sys-
tems is adding a second scheduling/control layer on top of
that of serverless platforms. Moving away from the sched-
uler of public serverless offerings as the primary scheduler
and adding a new layer limits the scalability of these ap-
proaches, and comes with reliability and security implications.
UnFaaSener relies on the serverless scheduler to ensure a se-
cure and scalable gateway to external events, and by using
pre-solved decisions, eliminates added scheduling overheads.

Lastly, a category of work proposes modifying the server-
less platform to enable serverless functions to use resource-
harvesting VMs [86], idle resources from over-allocated
serverless functions [83], and users’ VMs on the same plat-
form [78]. These proposals modify cloud providers exten-
sively, which is out of reach of end users, and limit offloading
to the scheduler’s scope, usually within the same cluster. Un-

Related Supports Scheduling/ General Resource Primary Partial
Work Complex Control Path Purpose Harvesting Deployment Offloading

DAGs Decisions
Splice ✗ FaaS scheduler ✓ ✗ Hybrid ✗
[75] + Custom Scheduler

Spock ✗ FaaS scheduler ✗ ✗ IaaS NA
[43] + Custom Scheduler (ML Inference)

SplitServe ✗ FaaS scheduler ✗ ✗ IaaS NA
[47] + Custom Scheduler (Spark Jobs)

MArk ✗ FaaS scheduler ✗ ✗ IaaS NA
[84] + Greedy Instance Plan (ML Inference)

Amoeba ✗ FaaS scheduler ✗ ✗ Hybrid
[56] + Custom Controller (Microservices) ✗

FEAT ✗ FaaS scheduler ✓ ✗ IaaS
[63] + Custom Controller NA

LIBRA ✗ FaaS scheduler ✓ ✗ IaaS ✓ (offloads
[67] + Custom Controller excess traffic)

ServerMore ✗ FaaS scheduler ✓ ✓ FaaS ✗
[78] + Custom Controller

Skedulix ✓ FaaS scheduler ✓ ✗ Private ✗
[31] + Custom Scheduler FaaS

Kraken [20] ✓ Kraken Scheduler ✓ ✗ FaaS NA
Freyr ✗ Serverless Controller ✓ ✓ FaaS NA
[83] + Resource Manager

Zhang et al. ✗ FaaS scheduler ✓ ✓ FaaS NA
[86]

BeeHive ✗ FaaS scheduler ✗ ✗ IaaS ✓ (sets
[87] + Custom Runtime (Web Apps) offloading ratio)

UnFaaSener ✓ FaaS scheduler ✓ ✓ FaaS ✓
+ lightweight LUT

Table 2: The taxonomy of related work.

FaaSener works on top of existing serverless systems, requires
no change to the platform, and puts no limit on the location
of hosts it is harvesting resources from.

11 Discussion

Threat model. UnFaaSener offloads users’ functions to their
own offloading hosts. This simplifies the threat model by
eliminating co-location of different teams’ applications on the
same host. Developers have full control: they specify offload-
ing hosts, install host agents, and can unsubscribe hosts at any
time. UnFaaSener’s execution agent runs offloaded functions
in separate Docker containers for isolation, but this also brings
security implications [77]. In this context, we assume that 1)
the host, which belongs to the same development team, is not
malicious and 2) the developer is aware of the data protection
implications of offloading functions.

12 Conclusion

UnFaaSener enables serverless developers to leverage the
unused capacity of their VMs or on-premise servers, yielding
substantial cost savings without modifying existing serverless
platforms. UnFaaSener lays a foundation for researchers to
explore the potential of the proposed serverless offloading
mechanism for diverse purposes beyond cost optimization.

13 Acknowledgements

We thank members of the UBC CIRRUS Lab for their feed-
back on this work, and thank Ila Nimgaonkar for suggesting
the name UnFaaSener. We also thank the anonymous review-
ers and our shepherd, Chia-Che Tsai, for helping us improve
the paper. This work was supported in part by the Natural Sci-
ences and Engineering Research Council of Canada (NSERC)
grants RGPIN-2021-03714 and DGECR-2021-00462. This
work was made possible by cloud resources from Digital Re-
search Alliance of Canada, Google Cloud Research Credits
program, and AWS Cloud Credit for Research program.

890 2023 USENIX Annual Technical Conference USENIX Association

References

[1] pandas, Accessed: 2023-01-05. https://pandas.pyd
ata.org/.

[2] AWS Lambda Power Tuning, Accessed on 2023-01-05.
https://github.com/alexcasalboni/aws-lambd
a-power-tuning.

[3] AWS Lambda Pricing, Accessed on 2023-01-05. https:
//aws.amazon.com/lambda/pricing/.

[4] AWS Step Functions Pricing, Accessed on 2023-01-05.
https://aws.amazon.com/step-functions/pric
ing/.

[5] AWS Step Functions: Visual workflows for distributed
applications, Accessed on 2023-01-05. https://aws.
amazon.com/step-functions/.

[6] Azure Functions Invocation Trace 2021, Accessed on
2023-01-05. https://github.com/Azure/AzurePu
blicDataset/blob/master/AzureFunctionsInvo
cationTrace2021.md.

[7] CloudSuite: Graph Analytics, Accessed on 2023-01-05.
https://github.com/parsa-epfl/cloudsuite/b
lob/CSv3/docs/benchmarks/graph-analytics.m
d.

[8] Docker Hub: Build and ship any application anywhere,
Accessed on 2023-01-05. https://hub.docker.com
/.

[9] FaaSProfiler, Accessed on 2023-01-05. https://gith
ub.com/PrincetonUniversity/faas-profiler.

[10] Google Cloud Workflows, Accessed on 2023-01-05. ht
tps://cloud.google.com/workflows.

[11] Google text-to-speech API, Accessed on 2023-01-05.
https://cloud.google.com/text-to-speech.

[12] A PaaS end-to-end ML setup with Metaflow, serverless
and SageMaker., Accessed on 2023-01-05. https:
//github.com/jacopotagliabue/no-ops-mach
ine-learning.

[13] vSwarm: A suite of representative serverless cloud-
agnostic (i.e., dockerized) benchmarks, Accessed on
2023-01-05. https://github.com/vhive-serve
rless/vSwarm.

[14] What is Pub/Sub?, Accessed on 2023-01-05. https:
//cloud.google.com/pubsub/docs/overview.

[15] Workflows pricing, Accessed on 2023-01-05. https:
//cloud.google.com/workflows/pricing.

[16] Paarijaat Aditya, Istemi Ekin Akkus, Andre Beck,
Ruichuan Chen, Volker Hilt, Ivica Rimac, Klaus Satzke,
and Manuel Stein. Will serverless computing revolution-
ize NFV? Proceedings of the IEEE, 107(4):667–678,
2019.

[17] Alexandru Agache, Marc Brooker, Alexandra Iordache,
Anthony Liguori, Rolf Neugebauer, Phil Piwonka, and
Diana-Maria Popa. Firecracker: Lightweight virtual-
ization for serverless applications. In 17th USENIX
symposium on networked systems design and implemen-
tation (NSDI 20), pages 419–434, 2020.

[18] R. Allard. Use of time-series analysis in infectious
disease surveillance. Bulletin of the World Health Orga-
nization, 76(4):327, 1998.

[19] Logan Beal, Daniel Hill, R Martin, and John Hedengren.
GEKKO optimization suite. Processes, 6(8):106, 2018.

[20] Vivek M. Bhasi, Jashwant Raj Gunasekaran, Prashanth
Thinakaran, Cyan Subhra Mishra, Mahmut Taylan Kan-
demir, and Chita Das. Kraken: Adaptive container pro-
visioning for deploying dynamic dags in serverless plat-
forms. In Proceedings of the ACM Symposium on Cloud
Computing, SoCC ’21, page 153–167. ACM, 2021.

[21] Muhammad Bilal, Marco Canini, Rodrigo Fonseca, and
Rodrigo Rodrigues. With great freedom comes great op-
portunity: Rethinking resource allocation for serverless
functions. In Proceedings of the Eighteenth European
Conference on Computer Systems, EuroSys ’23, page
381–397. ACM, 2023.

[22] Sebastian Burckhardt, Chris Gillum, David Justo, Kon-
stantinos Kallas, Connor McMahon, and Christopher S
Meiklejohn. Durable functions: semantics for stateful
serverless. Proc. ACM Program. Lang., 5(OOPSLA):1–
27, 2021.

[23] A. Carpinone, M. Giorgio, R. Langella, and A. Testa.
Markov chain modeling for very-short-term wind power
forecasting. Electric Power Systems Research, 122:152–
158, 2015.

[24] Paul Castro, Vatche Ishakian, Vinod Muthusamy, and
Aleksander Slominski. The rise of serverless computing.
Communications of the ACM, 62(12):44–54, 2019.

[25] Francois Chollet et al. Keras, Accessed: 2022-10-13.
https://github.com/fchollet/keras.

[26] Claudio Cicconetti, Marco Conti, Andrea Passarella, and
Dario Sabella. Toward distributed computing environ-
ments with serverless solutions in edge systems. IEEE
Communications Magazine, 58(3):40–46, 2020.

USENIX Association 2023 USENIX Annual Technical Conference 891

https://pandas.pydata.org/
https://pandas.pydata.org/
https://github.com/alexcasalboni/aws-lambda-power-tuning
https://github.com/alexcasalboni/aws-lambda-power-tuning
https://aws.amazon.com/lambda/pricing/
https://aws.amazon.com/lambda/pricing/
https://aws.amazon.com/step-functions/pricing/
https://aws.amazon.com/step-functions/pricing/
https://aws.amazon.com/step-functions/
https://aws.amazon.com/step-functions/
https://github.com/Azure/AzurePublicDataset/blob/master/AzureFunctionsInvocationTrace2021.md
https://github.com/Azure/AzurePublicDataset/blob/master/AzureFunctionsInvocationTrace2021.md
https://github.com/Azure/AzurePublicDataset/blob/master/AzureFunctionsInvocationTrace2021.md
https://github.com/parsa-epfl/cloudsuite/blob/CSv3/docs/benchmarks/graph-analytics.md
https://github.com/parsa-epfl/cloudsuite/blob/CSv3/docs/benchmarks/graph-analytics.md
https://github.com/parsa-epfl/cloudsuite/blob/CSv3/docs/benchmarks/graph-analytics.md
https://hub.docker.com/
https://hub.docker.com/
https://github.com/PrincetonUniversity/faas-profiler
https://github.com/PrincetonUniversity/faas-profiler
https://cloud.google.com/workflows
https://cloud.google.com/workflows
https://cloud.google.com/text-to-speech
https://github.com/jacopotagliabue/no-ops-machine-learning
https://github.com/jacopotagliabue/no-ops-machine-learning
https://github.com/jacopotagliabue/no-ops-machine-learning
https://github.com/vhive-serverless/vSwarm
https://github.com/vhive-serverless/vSwarm
https://cloud.google.com/pubsub/docs/overview
https://cloud.google.com/pubsub/docs/overview
https://cloud.google.com/workflows/pricing
https://cloud.google.com/workflows/pricing
https://github.com/fchollet/keras

[27] Google Cloud. gcloud CLI overview, Accessed on 2023-
01-05. https://cloud.google.com/sdk/gcloud.

[28] Marcin Copik, Grzegorz Kwasniewski, Maciej Besta,
Michal Podstawski, and Torsten Hoefler. SeBS: A
serverless benchmark suite for function-as-a-service
computing. In Proceedings of the 22nd International
Middleware Conference, Middleware ’21, page 64–78.
ACM, 2021.

[29] Eli Cortez. Azure public dataset v1, Accessed on 2023-
01-05. https://github.com/Azure/AzurePublic
Dataset/blob/master/AzurePublicDatasetV1.m
d.

[30] Eli Cortez, Anand Bonde, Alexandre Muzio, Mark
Russinovich, Marcus Fontoura, and Ricardo Bianchini.
Resource central: Understanding and predicting work-
loads for improved resource management in large cloud
platforms. In Proceedings of the 26th Symposium on
Operating Systems Principles, SOSP ’17, page 153–167.
ACM, 2017.

[31] Anirban Das, Andrew Leaf, Carlos A. Varela, and Stacy
Patterson. Skedulix: Hybrid cloud scheduling for cost-
efficient execution of serverless applications. In 2020
IEEE 13th International Conference on Cloud Comput-
ing (CLOUD), pages 609–618, 2020.

[32] Datadog. The state of serverless, May 2021. https:
//www.datadoghq.com/state-of-serverless-20
21/.

[33] Datadog. The state of serverless, June 2022. https:
//www.datadoghq.com/state-of-serverless/.

[34] Simon Eismann, Johannes Grohmann, Erwin van Eyk,
Nikolas Herbst, and Samuel Kounev. Predicting the
costs of serverless workflows. In Proceedings of the
2020 ACM/SPEC International Conference on Perfor-
mance Engineering, ICPE ’20, page 265–276, April
2020.

[35] Simon Eismann, Joel Scheuner, Erwin Van Eyk, Maxi-
milian Schwinger, Johannes Grohmann, Nikolas Herbst,
Cristina Abad, and Alexandru Iosup. The state of server-
less applications: Collection, characterization, and com-
munity consensus. IEEE Transactions on Software En-
gineering, 2021.

[36] Simon Eismann, Joel Scheuner, Erwin Van Eyk, Maxi-
milian Schwinger, Johannes Grohmann, Nikolas Herbst,
Cristina L Abad, and Alexandru Iosup. Serverless appli-
cations: Why, when, and how? IEEE Software, 38(1):32–
39, 2020.

[37] Sadjad Fouladi, Francisco Romero, Dan Iter, Qian Li,
Shuvo Chatterjee, Christos Kozyrakis, Matei Zaharia,
and Keith Winstein. From laptop to lambda: Outsourc-
ing everyday jobs to thousands of transient functional
containers. In 2019 USENIX Annual Technical Confer-
ence (USENIX ATC 19), pages 475–488, Renton, WA,
July 2019. USENIX Association.

[38] Sadjad Fouladi, Riad S. Wahby, Brennan Shacklett,
Karthikeyan Vasuki Balasubramaniam, William Zeng,
Rahul Bhalerao, Anirudh Sivaraman, George Porter, and
Keith Winstein. Encoding, fast and slow: Low-Latency
video processing using thousands of tiny threads. In
14th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 17), pages 363–376, Boston,
MA, March 2017. USENIX Association.

[39] Alexander Fuerst, Stanko Novaković, Íñigo Goiri, Go-
har Irfan Chaudhry, Prateek Sharma, Kapil Arya, Kevin
Broas, Eugene Bak, Mehmet Iyigun, and Ricardo Bian-
chini. Memory-harvesting VMs in cloud platforms. In
Proceedings of the 27th ACM International Conference
on Architectural Support for Programming Languages
and Operating Systems, page 583–594. ACM, 2022.

[40] Alexander Fuerst and Prateek Sharma. FaasCache:
Keeping serverless computing alive with greedy-dual
caching. In Proceedings of the 26th ACM International
Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’21, page
386–400. ACM, 2021.

[41] Philipp Gackstatter, Pantelis A. Frangoudis, and
Schahram Dustdar. Pushing serverless to the edge with
webassembly runtimes. In 2022 22nd IEEE Interna-
tional Symposium on Cluster, Cloud and Internet Com-
puting (CCGrid), pages 140–149, 2022.

[42] Samuel Ginzburg and Michael J Freedman. Server-
less isn’t server-less: Measuring and exploiting resource
variability on cloud FaaS platforms. In Proceedings of
the 2020 Sixth International Workshop on Serverless
Computing, pages 43–48, 2020.

[43] Jashwant Raj Gunasekaran, Prashanth Thinakaran, Mah-
mut Taylan Kandemir, Bhuvan Urgaonkar, George Ke-
sidis, and Chita Das. Spock: Exploiting serverless func-
tions for SLO and cost aware resource procurement in
public cloud. In 2019 IEEE 12th International Confer-
ence on Cloud Computing (CLOUD), pages 199–208,
2019.

[44] Jing Guo, Zihao Chang, Sa Wang, Haiyang Ding, Yihui
Feng, Liang Mao, and Yungang Bao. Who limits the
resource efficiency of my datacenter: An analysis of

892 2023 USENIX Annual Technical Conference USENIX Association

https://cloud.google.com/sdk/gcloud
https://github.com/Azure/AzurePublicDataset/blob/master/AzurePublicDatasetV1.md
https://github.com/Azure/AzurePublicDataset/blob/master/AzurePublicDatasetV1.md
https://github.com/Azure/AzurePublicDataset/blob/master/AzurePublicDatasetV1.md
https://www.datadoghq.com/state-of-serverless-2021/
https://www.datadoghq.com/state-of-serverless-2021/
https://www.datadoghq.com/state-of-serverless-2021/
https://www.datadoghq.com/state-of-serverless/
https://www.datadoghq.com/state-of-serverless/

Alibaba datacenter traces. In Proceedings of the Inter-
national Symposium on Quality of Service, IWQoS ’19.
ACM, 2019.

[45] Ori Hadary, Luke Marshall, Ishai Menache, Abhisek Pan,
Esaias E Greeff, David Dion, Star Dorminey, Shailesh
Joshi, Yang Chen, Mark Russinovich, and Thomas
Moscibroda. Protean: VM allocation service at scale.
In 14th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 20), pages 845–861.
USENIX Association, November 2020.

[46] Vatche Ishakian, Vinod Muthusamy, and Aleksander
Slominski. Serving deep learning models in a serverless
platform. In 2018 IEEE International Conference on
Cloud Engineering (IC2E), pages 257–262, 2018.

[47] Aman Jain, Ata F. Baarzi, George Kesidis, Bhuvan Ur-
gaonkar, Nader Alfares, and Mahmut Kandemir. Split-
Serve: Efficiently splitting apache Spark jobs across faas
and iaas. In Proceedings of the 21st International Mid-
dleware Conference, Middleware ’20, page 236–250.
ACM, 2020.

[48] Congfeng Jiang, Yitao Qiu, Weisong Shi, Zhefeng Ge,
Jiwei Wang, Shenglei Chen, Christophe Cerin, Zujie
Ren, Guoyao Xu, and Jiangbin Lin. Characterizing co-
located workloads in Alibaba cloud datacenters. IEEE
Transactions on Cloud Computing, 2020.

[49] Yuxuan Jiang, Mohammad Shahrad, David Wentzlaff,
Danny HK Tsang, and Carlee Joe-Wong. Burstable
instances for clouds: Performance modeling, equilib-
rium analysis, and revenue maximization. IEEE/ACM
Transactions on Networking, 28(6):2489–2502, 2020.

[50] Kostis Kaffes, Neeraja J. Yadwadkar, and Christos
Kozyrakis. Hermod: Principled and practical scheduling
for serverless functions. In Proceedings of the 13th Sym-
posium on Cloud Computing, SoCC ’22, page 289–305.
ACM, 2022.

[51] Jeongchul Kim and Kyungyong Lee. Functionbench: A
suite of workloads for serverless cloud function service.
In 2019 IEEE 12th International Conference on Cloud
Computing (CLOUD), pages 502–504. IEEE, 2019.

[52] Haneul Ko, Sangheon Pack, and Victor C. M. Leung.
Performance optimization of serverless computing for
latency-guaranteed and energy-efficient task offloading
in energy harvesting industrial IoT. IEEE Internet of
Things Journal, 2021.

[53] Alexey Kopytov. Sysbench: a system performance
benchmark. http://sysbench. sourceforge. net/, 2004.

[54] Samuel Kounev, Cristina Abad, Ian T. Foster, Nikolas
Herbst, Alexandru Iosup, Samer Al-Kiswany, Ahmed
Ali-Eldin Hassan, Bartosz Balis, André Bauer, André B.
Bondi, Kyle Chard, Ryan L. Chard, Robert Chatley, An-
drew A. Chien, A. Jesse Jiryu Davis, Jesse Donkervliet,
Simon Eismann, Erik Elmroth, Nicola Ferrier, Hans-
Arno Jacobsen, Pooyan Jamshidi, Georgios Kousiouris,
Philipp Leitner, Pedro Garcia Lopez, Martina Maggio,
Maciej Malawski, Bernard Metzler, Vinod Muthusamy,
Alessandro V. Papadopoulos, Panos Patros, Guillaume
Pierre, Omer F. Rana, Robert P. Ricci, Joel Scheuner,
Mina Sedaghat, Mohammad Shahrad, Prashant Shenoy,
Josef Spillner, Davide Taibi, Douglas Thain, Animesh
Trivedi, Alexandru Uta, Vincent van Beek, Erwin van
Eyk, André van Hoorn, Soam Vasani, Florian Wamser,
Guido Wirtz, and Vladimir Yussupov. Toward a Def-
inition for Serverless Computing. In Serverless Com-
puting (Dagstuhl Seminar 21201), volume 11, pages 34–
93. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
Dagstuhl, Germany, 2021.

[55] Alok Gautam Kumbhare, Reza Azimi, Ioannis
Manousakis, Anand Bonde, Felipe Frujeri, Nithish
Mahalingam, Pulkit A. Misra, Seyyed Ahmad Javadi,
Bianca Schroeder, Marcus Fontoura, and Ricardo
Bianchini. Prediction-Based power oversubscription
in cloud platforms. In 2021 USENIX Annual Techni-
cal Conference (USENIX ATC 21), pages 473–487.
USENIX Association, July 2021.

[56] Zijun Li, Quan Chen, Shuai Xue, Tao Ma, Yong Yang,
Zhuo Song, and Minyi Guo. Amoeba: QoS-awareness
and reduced resource usage of microservices with server-
less computing. In 2020 IEEE International Parallel
and Distributed Processing Symposium (IPDPS), pages
399–408, 2020.

[57] Zijun Li, Linsong Guo, Jiagan Cheng, Quan Chen, Bing-
sheng He, and Minyi Guo. The serverless computing
survey: A technical primer for design architecture. ACM
Comput. Surv., 54(10s), September 2022.

[58] Álvaro López García, Jesús Marco De Lucas, Marica
Antonacci, Wolfgang Zu Castell, Mario David, Mar-
cus Hardt, Lara Lloret Iglesias, Germán Moltó, Marcin
Plociennik, Viet Tran, Andy S. Alic, Miguel Caballer,
Isabel Campos Plasencia, Alessandro Costantini, Ste-
fan Dlugolinsky, Doina Cristina Duma, Giacinto Don-
vito, Jorge Gomes, Ignacio Heredia Cacha, Keiichi Ito,
Valentin Y. Kozlov, Giang Nguyen, Pablo Orviz Fernán-
dez, Zděnek Šustr, and Pawel Wolniewicz. A cloud-
based framework for machine learning workloads and
applications. IEEE Access, 8:18681–18692, 2020.

[59] Ashraf Mahgoub, Edgardo Barsallo Yi, Karthick
Shankar, Eshaan Minocha, Sameh Elnikety, Saurabh

USENIX Association 2023 USENIX Annual Technical Conference 893

Bagchi, and Somali Chaterji. WiseFuse: Workload
characterization and DAG transformation for serverless
workflows. Proc. ACM Meas. Anal. Comput. Syst., 6(2),
June 2022.

[60] Stefan Majiros. Nightly and serverless builds in MS
appcenter for React native - async mobile DevOps ex-
ample, 2021. https://stefan-majiros.com/blog/
nightly-serverless-builds-with-app-center-
for-react-native-async-mobile-devops/.

[61] Aleksander Maricq, Dmitry Duplyakin, Ivo Jimenez,
Carlos Maltzahn, Ryan Stutsman, and Robert Ricci.
Taming performance variability. In 13th USENIX Sym-
posium on Operating Systems Design and Implementa-
tion (OSDI 18), pages 409–425, Carlsbad, CA, October
2018. USENIX Association.

[62] Djob Mvondo, Mathieu Bacou, Kevin Nguetchouang,
Lucien Ngale, Stéphane Pouget, Josiane Kouam, Renaud
Lachaize, Jinho Hwang, Tim Wood, Daniel Hagimont,
Noël De Palma, Bernabé Batchakui, and Alain Tchana.
OFC: An opportunistic caching system for FaaS plat-
forms. In Proceedings of the Sixteenth European Confer-
ence on Computer Systems, EuroSys ’21, page 228–244.
ACM, 2021.

[63] Joe H. Novak, Sneha Kumar Kasera, and Ryan Stutsman.
Cloud functions for fast and robust resource auto-scaling.
In 2019 11th International Conference on Communica-
tion Systems Networks (COMSNETS), pages 133–140,
2019.

[64] Diego Ongaro and John Ousterhout. In search of an
understandable consensus algorithm. In 2014 USENIX
Annual Technical Conference (USENIX ATC 14), pages
305–319, Philadelphia, PA, June 2014. USENIX Asso-
ciation.

[65] Tapti Palit, Yongming Shen, and Michael Ferdman. De-
mystifying cloud benchmarking. In 2016 IEEE interna-
tional symposium on performance analysis of systems
and software (ISPASS), pages 122–132. IEEE, 2016.

[66] Haoran Qiu, Saurabh Jha, Subho S. Banerjee, Ar-
chit Patke, Chen Wang, Franke Hubertus, Zbigniew T.
Kalbarczyk, and Ravishankar K. Iyer. Is function-as-
a-service a good fit for latency-critical services? In
Proceedings of the Seventh International Workshop on
Serverless Computing (WoSC7) 2021, WoSC ’21, page
1–8. ACM, 2021.

[67] Ali Raza, Zongshun Zhang, Nabeel Akhtar, Vatche Isa-
hagian, and Ibrahim Matta. LIBRA: An economical
hybrid approach for cloud applications with strict SLAs.
In 2021 IEEE International Conference on Cloud Engi-
neering (IC2E), pages 136–146, 2021.

[68] Francisco Romero, Gohar Irfan Chaudhry, Íñigo Goiri,
Pragna Gopa, Paul Batum, Neeraja J. Yadwadkar, Ro-
drigo Fonseca, Christos Kozyrakis, and Ricardo Bian-
chini. Faa$T: A transparent auto-scaling cache for
serverless applications. In Proceedings of the ACM Sym-
posium on Cloud Computing, SoCC ’21, page 122–137.
ACM, 2021.

[69] Rohan Basu Roy, Tirthak Patel, and Devesh Tiwari. Ice-
breaker: Warming serverless functions better with het-
erogeneity. In Proceedings of the 27th ACM Interna-
tional Conference on Architectural Support for Program-
ming Languages and Operating Systems, ASPLOS ’22,
page 753–767. ACM, 2022.

[70] Marco Savi, Alessandro Banfi, Alessandro Tundo, and
Michele Ciavotta. Serverless computing for NFV: Is it
worth it? a performance comparison analysis. In 2022
IEEE International Conference on Pervasive Computing
and Communications Workshops and other Affiliated
Events (PerCom Workshops), pages 680–685, 2022.

[71] Mohammad Shahrad, Jonathan Balkind, and David
Wentzlaff. Architectural implications of function-as-a-
service computing. In Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitec-
ture, MICRO ’52, page 1063–1075. ACM, 2019.

[72] Mohammad Shahrad, Rodrigo Fonseca, Íñigo Goiri, Go-
har Chaudhry, Paul Batum, Jason Cooke, Eduardo Lau-
reano, Colby Tresness, Mark Russinovich, and Ricardo
Bianchini. Serverless in the wild: Characterizing and
optimizing the serverless workload at a large cloud
provider. In Proceedings of the 2020 USENIX Confer-
ence on Usenix Annual Technical Conference, USENIX
ATC’20, USA, 2020. USENIX Association.

[73] Vaishaal Shankar, Karl Krauth, Kailas Vodrahalli, Qifan
Pu, Benjamin Recht, Ion Stoica, Jonathan Ragan-Kelley,
Eric Jonas, and Shivaram Venkataraman. Serverless lin-
ear algebra. In Proceedings of the 11th ACM Symposium
on Cloud Computing, SoCC ’20, page 281–295. ACM,
2020.

[74] Prateek Sharma, Ahmed Ali-Eldin, and Prashant Shenoy.
Resource deflation: A new approach for transient re-
source reclamation. In Proceedings of the Fourteenth
EuroSys Conference 2019, EuroSys ’19. ACM, 2019.

[75] Myungjun Son, Shruti Mohanty, Jashwant Raj Gu-
nasekaran, Aman Jain, Mahmut Taylan Kandemir,
George Kesidis, and Bhuvan Urgaonkar. Splice: An
automated framework for cost-and performance-aware
blending of cloud services. In 2022 22nd IEEE In-
ternational Symposium on Cluster, Cloud and Internet
Computing (CCGrid), pages 119–128, 2022.

894 2023 USENIX Annual Technical Conference USENIX Association

https://stefan-majiros.com/blog/nightly-serverless-builds-with-app-center-for-react-native-async-mobile-devops/
https://stefan-majiros.com/blog/nightly-serverless-builds-with-app-center-for-react-native-async-mobile-devops/
https://stefan-majiros.com/blog/nightly-serverless-builds-with-app-center-for-react-native-async-mobile-devops/

[76] Chris Spencer. CriticalPath Python package, Accessed:
2023-01-05. https://pypi.org/project/critica
lpath/.

[77] Sari Sultan, Imtiaz Ahmad, and Tassos Dimitriou. Con-
tainer security: Issues, challenges, and the road ahead.
IEEE Access, 7:52976–52996, 2019.

[78] Amoghavarsha Suresh and Anshul Gandhi. Servermore:
Opportunistic execution of serverless functions in the
cloud. In Proceedings of the ACM Symposium on Cloud
Computing, SoCC ’21, page 570–584. ACM, 2021.

[79] Ajay Tirumala. Iperf: The TCP/UDP bandwidth mea-
surement tool. http://dast. nlanr. net/Projects/Iperf/,
1999.

[80] Yawen Wang, Kapil Arya, Marios Kogias, Manohar
Vanga, Aditya Bhandari, Neeraja J. Yadwadkar, Sid-
dhartha Sen, Sameh Elnikety, Christos Kozyrakis, and
Ricardo Bianchini. SmartHarvest: Harvesting idle CPUs
safely and efficiently in the cloud. In Proceedings of the
Sixteenth European Conference on Computer Systems,
EuroSys ’21, page 1–16. ACM, 2021.

[81] Yanan Yang, Laiping Zhao, Yiming Li, Huanyu Zhang,
Jie Li, Mingyang Zhao, Xingzhen Chen, and Keqiu Li.
INFless: A native serverless system for low-latency,
high-throughput inference. In Proceedings of the 27th
ACM International Conference on Architectural Support
for Programming Languages and Operating Systems,
ASPLOS ’22, page 768–781. ACM, 2022.

[82] Shanhe Yi, Zijiang Hao, Qingyang Zhang, Quan Zhang,
Weisong Shi, and Qun Li. LAVEA: Latency-aware video
analytics on edge computing platform. In Proceedings
of the Second ACM/IEEE Symposium on Edge Comput-
ing, SEC ’17. ACM, 2017.

[83] Hanfei Yu, Hao Wang, Jian Li, Xu Yuan, and Seung-
Jong Park. Accelerating serverless computing by har-
vesting idle resources. In Proceedings of the ACM Web
Conference 2022, WWW ’22, page 1741–1751. ACM,
2022.

[84] Chengliang Zhang, Minchen Yu, Wei Wang, and Feng
Yan. MArk: Exploiting cloud services for Cost-
Effective, SLO-Aware machine learning inference serv-
ing. In 2019 USENIX Annual Technical Conference
(USENIX ATC 19), pages 1049–1062, Renton, WA, July
2019. USENIX Association.

[85] Lu Zhang, Weiqi Feng, Chao Li, Xiaofeng Hou, Pengyu
Wang, Jing Wang, and Minyi Guo. Tapping into NFV
environment for opportunistic serverless edge func-
tion deployment. IEEE Transactions on Computers,
71(10):2698–2704, 2022.

[86] Yanqi Zhang, Íñigo Goiri, Gohar Irfan Chaudhry, Ro-
drigo Fonseca, Sameh Elnikety, Christina Delimitrou,
and Ricardo Bianchini. Faster and cheaper serverless
computing on harvested resources. In Proceedings of the
ACM SIGOPS 28th Symposium on Operating Systems
Principles, SOSP ’21, page 724–739. ACM, 2021.

[87] Ziming Zhao, Mingyu Wu, Jiawei Tang, Binyu Zang,
Zhaoguo Wang, and Haibo Chen. BeeHive: Sub-second
elasticity for web services with semi-FaaS execution. In
Proceedings of the 28th ACM International Conference
on Architectural Support for Programming Languages
and Operating Systems, Volume 2, ASPLOS 2023, page
74–87. ACM, 2023.

USENIX Association 2023 USENIX Annual Technical Conference 895

https://pypi.org/project/criticalpath/
https://pypi.org/project/criticalpath/

A Appendix

A.1 Dynamic Concurrency Feedback Details
As mentioned in §7.3, the execution agent uses a feedback
mechanism to dynamically set the concurrency limit.
Execution time changes during the time (∆ExecTime), which
is used as feedback in Equation 2, is calculated as:

En
t ← Current Average Execution Time for Functionn

En
t ← Current Execution Time for Functionn

En
t+1

= 0.8×En
t
+0.2×En

t

∆En
t = En

t −En
t−1

∆ExecTime = ∑
n∈functions

∆En
t

In order to prevent frequent changes in the concurrency
limit, we quantized the value of the µ calculated by Equation 2
into [0.33,0.66,1]. The weight of the exponential term in
Equation 2 (0.03) was determined empirically, considering
this quantization. Figure 14 shows the feedback mechanism
used for setting the concurrency limit.

Execution
Agent

Monitoring
Agent

CPU Util per
Container

Δ Execution Time

μ Concurrency Limit
(Core Count /μ)

Figure 14: The feedback mechanism for dynamic concur-
rency.

A.2 Sample DAG JSON description file

1 {
2 "workflow": "Text2SpeechWorkflow",
3 "workflowFunctions": [
4 "Text2SpeechWorkflow_GetInput",
5 "Text2SpeechWorkflow_TransferInput",
6 "Text2SpeechWorkflow_Profanity",
7 "Text2SpeechWorkflow_Text2Speech",
8 "Text2SpeechWorkflow_Conversion",
9 "Text2SpeechWorkflow_Compression",

10 "Text2SpeechWorkflow_MergeFunction",
11 "Text2SpeechWorkflow_Censor"
12],
13 "initFunc":"Text2SpeechWorkflow_GetInput",
14 "successors": [
15 ["Text2SpeechWorkflow_TransferInput"],
16 ["Text2SpeechWorkflow_Profanity",
17 "Text2SpeechWorkflow_Text2Speech"],
18 ["Text2SpeechWorkflow_MergeFunction"],
19 ["Text2SpeechWorkflow_Conversion"],
20 ["Text2SpeechWorkflow_Compression"],
21 ["Text2SpeechWorkflow_MergeFunction"],
22 ["Text2SpeechWorkflow_Censor"],
23 []
24],
25 "predecessors": [
26 [],
27 ["Text2SpeechWorkflow_GetInput"],
28 ["Text2SpeechWorkflow_TransferInput"],
29 ["Text2SpeechWorkflow_TransferInput"],
30 ["Text2SpeechWorkflow_Text2Speech"],
31 ["Text2SpeechWorkflow_Conversion"],
32 ["Text2SpeechWorkflow_Compression",
33 "Text2SpeechWorkflow_Profanity"],
34 ["Text2SpeechWorkflow_MergeFunction"]
35]
36 }

Figure 15: A sample DAG JSON description file.

896 2023 USENIX Annual Technical Conference USENIX Association

	Introduction
	Background
	The Status Quo
	The Serverless Cost Model

	UnFaaSener Design Challenges
	Enabling Flexible Offloading
	Asynchronous Scheduler
	Offloading Solver
	Host Agents
	Resource Monitor Agent
	Resource Predictor Agent
	Execution Agent

	Log Collection
	Evaluation
	Setup, Methodology, and Benchmarks
	Benchmark Applications
	Workload Invocation and Traffic
	Ensuring fair comparisons

	Latency Mode vs. Cost Mode
	Latency Mode and Tolerance Window
	Impact of Host Size
	Comparison to Alternative Solutions
	Adaptive Cost Saving
	Host Interference
	Pub/Sub Latency Overhead
	VM Resource Prediction Policy

	Related Work
	Discussion
	Conclusion
	Acknowledgements
	Appendix
	Dynamic Concurrency Feedback Details
	Sample DAG JSON description file

