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Abstract
Latency predictability of storage is one important QoS

target of the public clouds. Although modern storage virtual-
ization techniques are devoted to providing fast and scalable
storage for clouds, these works usually concentrate exclu-
sively on giving high IOPS throughput without eliminating
the device-level interference between multi-tenant virtualized
devices and providing latency predictability for cloud tenants
when the cloud infrastructures virtualize millions of the cur-
rent commercially-available but unpredictable NVMe SSDs.

To resolve this issue, we propose a novel local storage vir-
tualization system called LPNS to provide latency-predictable
QoS control for hybrid-deployed local cloud storage, includ-
ing virtualized machines, containers, and bare-metal cloud
services. The OS-level NVMe virtualization LPNS designs re-
liable self-feedback control, flexible I/O queue and command
scheduling, scalable polling design, and involves a determin-
istic network calculus-based formalization method to give
upper bounds to virtualized device latency. The evaluation
demonstrates that LPNS can achieve up to 18.72× latency
optimization of the mainstream NVMe virtualization with
strong latency bounds. LPNS can also increase up to 1.45×
additional throughput and a better latency bound than the
state-of-the-art storage latency control systems.

1 Introduction
Storage virtualization [23, 63] is critical to optimize lim-
ited hardware utilization and simplify storage management
by providing consistent and straightforward I/O manage-
ment interfaces in cloud systems. Since NVMe devices de-
ployed in cloud platforms are usually inadequately utilized
in terms of throughput [34, 35, 52], most previous works con-
centrated exclusively on achieving high-throughput targets,
including software-level virtualization such as SPDK [25]
and MDev-NVMe [55], the hardware-assisted virtualization
such as the direct pass-through [70] and Single Root I/O Vir-
tualization (SR-IOV) [14], and hardware/software co-design
researches such as LeapIO [41] and FVM [37]. However,

when more latency-critical businesses, in addition to the
throughput-intensive businesses, have been migrating to the
public cloud [12] for performance benefit, a fundamental con-
tradiction between predictable latency and efficiency of the
device sharing occurs when cloud platforms integrate stor-
age virtualization: On the one hand, cloud service providers
(CSP) tend to oversubscribe infrastructures by sharing them
among multiple tenants to achieve better Input/Output Op-
erations Per Second (IOPS) performance and higher energy
efficiency [28, 44, 45]. On the other hand, the latency-critical
tenants expect exclusive performance to ensure the latency
bound of their services without worrying about interference
from other guest machines that share the same NVMe SSD,
i.e., latency-predictable Quality of Service (QoS).

The mainstream storage solutions can usually ensure high
total throughput [25, 37, 41, 55, 57, 70] or fair bandwidth shar-
ing [21, 71] but lack support for latency performance isola-
tion between multi-tenant virtualized storage. For example,
we quote a contention scenario where two virtual machines
(VM1, VM2) share one Optane P5800X SSD [24] by using
SPDK, and we use Figure 1 to show how the interference
between these VMs hurts the average latency performance.
In VM1, an IOPS-lightweight but latency-sensitive workload
runs with a service level of agreement (SLA) at 30µs latency,
while VM2 generates a throughput-intensive workload every
10 seconds as a competitor. Unfortunately, VM1 suffers a
severe performance thrashing of over 250% additional latency
as the workload weight of VM2 fluctuates, missing the SLA
during its running time. The reason for this phenomenon is
that the general storage controller naively handles all hard-
ware queues used by different processes in a round-robin
fashion [66], so the hardware queues are saturated with the
I/O commands of the workload w2, resulting in a long queue
operation time and unpredictable latency of w1.

In order to solve the performance interference issue and pro-
vide latency-predictable QoS, we propose LPNS, an NVMe
virtualization solution that provides latency-predictable virtu-
alized storage in NVMe virtualization and sharing scenarios.
LPNS replaces the original static I/O queue allocation be-
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Figure 1: The workload w1 in the VM1 interfered by intensive
workloads w2 in the VM2 sharing the same SSD. The w1’s
average latency misses the 30µs SLA.

tween hardware and virtualized devices with dynamic queue
scheduling. LPNS introduces a fine-grained I/O command
scheduling to throttle the competing throughput-intensive
workloads to constrain the latency of latency-sensitive work-
loads. Moreover, we have pioneered the introduction of deter-
ministic network calculus [5, 38] into LPNS to provide math-
ematical modeling for the latency predictability of virtualized
storage, giving a definite latency bound by abstracting the
arrival/service curves for storage systems. The experiments
show that LPNS can guarantee the latency-predictable QoS
and achieve up to 11.57/18.72× latency optimization over the
SPDK/SR-IOV by eliminating the device-level interference.
LPNS can also achieve better latency bounds (50µs) than the
state-of-the-art mechanism K2 [48] (80µs) for real-world I/O
trace on P5800X and increase up to 1.45× additional total
throughput over K2 (1.61GB/s, equivalent to 47.66% of the
maximum throughput of a P5800X SSD).

To sum up, we make the following contributions:
(1) We analyze the device-level latency interference of the

commercially-available but unpredictable NVMe SSDs, and
we argue the significance of overcoming this interference
from the OS-level storage virtualization design aspects.

(2) We design LPNS, the first OS-level NVMe virtualiza-
tion solution with latency-predictable QoS enhancement for
unpredictable NVMe SSDs in clouds. LPNS designs a self-
feedback mechanism that adaptively provides predictable la-
tency according to the workload distributions of multi-tenant
VMs. LPNS involves deterministic network calculus to verify
the latency upper bound.

(3) We implement LPNS based on mediated pass-through
to enhance the original Linux NVMe driver in providing
latency-predictable QoS for hybrid-deployed local virtual-
ized and cloud-native storage. All the CSPs can directly use
the OS-level LPNS to provide latency-predictable NVMe stor-
age virtualization and sharing without hardware modification
and purchase costs.

(4) The evaluations prove the effectiveness of the latency-
predictable QoS control of LPNS, compared with previous
storage virtualization and other latency QoS control solutions.

The rest of the paper is organized as follows: Section 2 in-
troduces the technical backgrounds of NVMe, cloud storage,
and network calculus. Section 3 introduces the motivation for
designing scalable and latency-predicable cloud storage virtu-
alization. Section 4 describes the design and implementation

of LPNS. Section 5 demonstrates the evaluation results of
LPNS. Section 6 introduces the related works, and Section 7
concludes this paper.

2 Background and Motivation

2.1 NVMe Storage
The NVMe SSDs are now widely used in public clouds. The
NVMe specification [51] is an efficient and scalable interface
designed for high-performance SSDs. NVMe supports up to
65,535 I/O queues whose depth can be up to 65,535. Specifi-
cally, each queue pair contains a submission queue (SQ) and a
completion queue (CQ). During each I/O execution, the host
OS stores IO commands into the SQ and rings the doorbell,
and the completion messages are placed into the correspond-
ing CQ by the SSD controller. With the high-parallel SQ/CQ
interaction between the host and the SSD controller, NVMe
SSDs can obtain high throughput and micro-second-level la-
tency advantages over the traditional interfaces [9], wherein
both throughput and latency are extremely significant and
mutually restrictive QoS targets of the cloud storage systems.

2.2 Local NVMe Storage for Cloud Services
For better performance and resource utilization, public cloud
infrastructures usually adopt two types of solutions to manage
their millions of NVMe SSDs. One is running cloud instances
or workloads directly on the native servers and using the local
storage; another is providing efficient data access to a remote
storage pool or dedicated storage servers [36, 41, 46].

However, not all cloud services prefer remote storage so-
lutions, for example, Elastic Compute Services (ECS). We
infer there are three main reasons: (1) The remote storage
performance is influenced not only by the storage system but
also by network devices, which introduces an additional bot-
tleneck of latency performance incurred by the network. (2)
Remote storage uses expensive network devices, incurring
additional purchase costs to cloud infrastructures and finally
hurting the interests of the cloud tenants. (3) Cloud tenants
may lease the bare-metal servers or services to customize
their own distributed computing and storage clusters, which
conflicts with the remote storage architectures.

In contrast, the local storage technique route can provide
fast and cheap storage for the public clouds with the widely-
used storage virtualization [7, 25, 37, 55, 57, 70]. For example,
MDev-NVMe [55] proposes a novel I/O queue pass-through
of NVMe hardware queue resources to achieve near-native
performance for cloud instance storage. Moreover, local stor-
age virtualization is more flexible in providing QoS guaran-
tees for cloud services, especially the latency-sensitive ser-
vices that suffer the performance unpredictability of network
systems. Therefore, in this paper, we aim to provide latency-
predictable virtualized storage services by following the local
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storage virtualization technique route.

2.3 Deterministic Network Calculus

Deterministic Network Calculus (DNC) [38] is used to cal-
culate theoretical worst-case performance guarantees for net-
works of queues and schedulers, which is commonly used
for communication networks to provide predictable latency
in typical deterministic queuing systems [13, 40, 59, 65, 69].
The theory’s three basic concepts are suitable for providing
predictable-latency performance in NVMe virtualization: the
arrival curve, the service curve, and the virtual delay. The
arrival curve expresses the upper bounds of the number of
events that come from the sources over any time. The ser-
vice curve refers to the guarantee of flows offered by the
system and describes the service capability of the system. For
a definite system, if the arrival curve and service curve are
determined, the virtual delay referring to the delay that an
event arriving at a particular time will suffer, can be deduced.
The deterministic network calculus proves that the maximum
horizontal distance between a workload’s arrival curve and
service curve is a tight worst-case bound on latency.

According to the NVMe specification and the I/O per-
formance and behavior of the commercial-available NVMe
SSDs, we can make a performance assumption that the pro-
cessing capability of the modern NVMe SSD is stable and
constant at most of their working time except during garbage
collection and the SSDs serve the I/O command process-
ing in First-In-First-Out (FIFO) policies. Moreover, for the
multi-tenant virtual devices sharing the same NVMe SSD,
we assume that throughput-intensive workloads can use the
maximum queue depth and latency-sensitive processes use a
queue depth of 1. The arrival curve refers to the actual IOPS
of VM workloads, which determines the commands rate of
multiple-tenant workloads that the SSD receives. The service
curve guarantees the least command rate that the SSD can
process during a busy period. The virtual delay is precisely
the I/O latency of the latency-sensitive workload, which is the
focus of our attention for latency-predictable QoS in storage
virtualization.

3 Motivation
The clouds aim to provide latency-predictable Storage QoS
for VMs so their virtual storage devices can have a latency
bound for storage I/O operations. However, state-of-the-art
storage virtualization [14, 25, 37, 41, 55] cannot solve the
device-side latency interference issue and cannot provide
latency-predictable QoS. The device-side latency interfer-
ence refers to a phenomenon that the guarantee for the VM
with latency-predictable QoS fails when multiple VMs with-
out latency-predictable QoS run throughput-intensive work-
loads and compete for the same underlying NVMe SSD, in-
curring the latency deterioration, unbounded latency, and the

miss of latency QoS (or SLA) just like the Figure 1 example.
However, even the state-of-the-art NVMe virtualization

techniques (including SPDK, SR-IOV, and MDev-NVMe) ne-
glect the importance of eliminating performance interference
in multi-tenant storage-sharing scenarios. The more intensive
the competitor’s workload is, the more severe performance
interference happens. We use MDev-NVMe and SPDK vhost-
blk to share one Intel Optane P5800X SSD into two virtu-
alized devices. We also use one SR-IOV-capable Samsung
PM1735 to build two VFs and use MDev-NVMe as a compar-
ison. In the test cases, VM1 runs a latency-sensitive workload
(an FIO [26] random read or write benchmark with iodepth=1,
numjobs=1), with a growing-intensive 4K random write work-
load in VM2 by increasing the numjobs and iodepth param-
eters of FIO. We separately show the latency performance
of the latency-sensitive workload of VM1 in Figure 2, which
shows that there is an up to 4.7× latency overhead in MDev-
NVMe, 16.5 × overhead in SPDK, and up to 6.1× overhead
in SR-IOV over the VM1 workload.
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Figure 2: Latency interference between two virtualized de-
vices with the state-of-the-art NVMe virtualization. (If VM1
monopolizes one P5800X, the read/write latency of the VM1
workload is 11.9/13.1µs with MDev and 11.9/13.3µs with
SPDK. If VM1 monopolizes one PM1735, the read/write la-
tency is 71.9/17.6µs on MDev and 74.9/19.9µs with SR-IOV.)

We further analyze the latency distribution of different I/O
phases of NVMe virtualization. We choose MDev-NVMe as
a representative to virtualize a P5800X and summarize the
results in Table 1. We find that the VM1’s average latency
on the NVMe controller grows from 62.5% to 93.0% of the
total latency with the increasing IOPS of the VM2 workload.
This phenomenon proves that more severe I/O congestion
happens when more commands from the competitor work-
loads simultaneously arrive at the SSD controller and savagely
preempt the resources, causing a worse latency bound to the
latency-sensitive workloads. Since the hardware/software co-
designed virtualization [37, 41] usually attaches standard and
unpredictable NVMe SSDs to an accelerator card, we can
deduce that these solutions still meet this device-side latency
interference and fail to reach latency-predictable QoS.

To overcome the device-level latency interference, we aim
to design latency-predictable QoS control for NVMe virtu-
alization. Previous works (summarized in Table 2) usually
redesign the Flash Translation Layer (FTL) in the SSD con-
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Table 1: VM1 latency distribution in different phases

I/O phase
VM2 IOPS 50K 250K 500K

Guest OS submit commands 2.8% 1.9% 1.1%
Virtual SQ 1.9% 1.9% 0.8%

Physical SQ 1.4% 1.1% 0.4%
SSD controller 62.5% 80.1% 93.0%

Virtual CQ 23.0% 10.2% 2.9%
Virtual Interrupt handling 8.4% 4.8% 1.7%

troller [29,31,53,66] or introduce additional logic into the host
software stack [21,48,71] to achieve reliable high-throughput
or fair-bandwidth QoS control. FinNVMe [54] local NVMe
virtualization designs fine-grained queue-level scheduling
to achieve state-of-the-art throughput-oriented QoS control
for virtualized devices. For predictable latency, Prioritymeis-
ter [74] automatically and proactively configures workload
priorities and rate limits to provide tail Latency QoS for shared
networked storage. K2 [48] uses work-constraining schedul-
ing to trade reduced throughput for lower latency bound,
which is the state-of-the-art latency QoS control among the
previous solutions [15, 22, 29, 30, 33, 36, 50, 61, 64] for native
storage. However, Prioritymeister and K2 lack the customized
design for NVMe virtualization in multi-tenant cloud storage
systems. Moreover, K2 sacrifices too much throughput (up to
2.27GB/s, equivalent to 47.66% of the maximum throughput
of the P5800X SSD in Section 5 experiments) when reaching
predictable latency.

Table 2: Storage resource sharing and scheduling systems.
Systems Virtualization

Optimized
QoS
Control

Predictable
Latency

VirtIO [57], SPDK [25] PV ✗ ✗

MDev-NVMe [55] MPT ✗ ✗

FinNVMe [54] MPT ✓ ✗

WA-BC [29], LeapIO
[41], FVM [37]

SR-IOV ✓ ✗

AutoSSD [31], FIOS
[53], FLIN [66]

N/A ✓ ✗

K2 [48] N/A ✓ ✓

MQFQ [21], D2FQ [71] N/A ✓ ✗

LPNS (Our work) MPT ✓ ✓

*PV: Para-Virtualization. MPT: Mediated Pass-through.

4 LPNS Design and Implementation

4.1 System Overview

Motivated by the analysis of device-side latency interference,
we aim to provide predictable latency and overcome the in-
terference problems from the aspect of the OS-level NVMe
virtualization design. The QoS levels of different VMs should
be determined at initialization and can only be changed when
storage service tenants agree. Since the strict predictabil-
ity generalizing the notion of isolation comes at the overall
throughput expense, we should give an upper bound to the
latency of NVMe virtualization under definite system settings
with a slight total throughput loss of the SSD.
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Figure 3: The system architecture of LPNS.

Scalable architecture. We briefly introduce the LPNS ar-
chitecture in Figure 3. LPNS is designed based on mediated
pass-through [27], which has been proven to be excellent in
both performance and scalability [54, 55, 67]. LPNS is imple-
mented as a kernel module to provide virtualized storage with
full NVMe features to guest VMs, and it can coexist and coop-
erate with the original nvme.ko module (the NVMe driver) to
support the hybrid deployment of host processes, contain-
ers, VMs on each single NVMe SSD. So it is cheaper, more
flexible, and user-friendly for cloud vendors to use LPNS than
SR-IOV-capable SSDs or the hardware/software co-designed
solutions. Specifically, LPNS designs a performance detector,
a queue scheduler, and a command scheduler for predictable
latency enhancement, and it provides a flexible polling mech-
anism for better virtualization scalability.

Full virtualization. LPNS inherits the advantages of phys-
ical I/O queues pass-through and active I/O polling from the
previous NVMe mediated pass-through solution [55]. LPNS
supports full virtualization and does not modify the guest
drivers. In the hypervisor (kernel module), the hardware I/O
queues (HWQs) can be directly passed-through to VMs, so
I/O commands from VMs can be stored in the HWQs through
fast I/O paths. The hypervisor maintains a virtual IOMMU
structure in shared memory for translating the GPA (Guest
Physical Address) of different virtual devices into the IOVA
(IO virtual address) of the underlying SSD. Cloud vendors
can create partitions and bind each partition with a virtualized
storage device with the hypervisor, and the hypervisor can
easily do LBA translation between guest and host OS based
on the partition information.

Self-feedback QoS control. LPNS has the ability to dis-
tinguish QoS targets of VMs to provide latency-predictable
QoS. The hypervisor gives each virtual storage a tag when
creating the VM to recognize if the workload from this VM
should be provided with a predictable latency guarantee 1.
LPNS can periodically trigger resource scheduling between
VMs based on runtime performance detection. We place a

1We use SVM to represent the VM with latency-predictable QoS guaran-
tees, and use IVM to represent the VM without latency-predictable QoS.
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performance probe in the polling thread to periodically col-
lect the index, submission, and completion timestamps of all
virtual I/O commands, along with real-time submission and
completion command counts. With these statistics, LPNS can
calculate the primary execution time of every command and
the average latency within a time interval for the scheduler to
enhance predictable latency and build an entire self-feedback
QoS control system. Specifically, we choose 10 ms as a mon-
itoring interval and 200 ms as a scheduling period in the
current implementation.

Flexible and scalable polling. LPNS uses polling threads
to process I/O commands and poll the virtual SQ (VSQ) tail,
the HWQs, and the virtual CQ (VCQ) head of all VMs for
better I/O performance. To reach a balance between perfor-
mance optimization and CPU overhead, LPNS can arrange
only one polling thread for all IVMs, and the thread can fully
utilize the high throughput ability of the NVMe SSD; or ar-
range one dedicated polling thread for each SVM to reach a
predictable latency (performance discussed in §4.5). All the
polling threads are adaptively triggered on or off according to
runtime workload detection of the VMs to reduce unnecessary
CPU overhead.

Hardware queue pools (§4.2.) LPNS designs an I/O queue
scheduling mechanism with a dynamic queue allocation to
achieve a flexible mapping and multiplexing of hardware I/O
queue resources. All HWQs are organized into a queue pool
as two types of queues, wherein the 1-1 HWQs are exclusive
queues for one single VM, and the 1-N HWQs are the shared
queues for multiple VMs. The hypervisor implements an
HWQ scheduler as a global controller for the HWQ resources.
The queue scheduler can periodically schedule the 1-N HWQs
between VMs for better virtualization scalability.

I/O command throttling (§4.3.) We implement a virtual
I/O command throttling mechanism in the LPNS hypervisor
to control the I/O path of each VM and eliminate the device-
level latency interference at the OS level. The polling threads
can perform the throttling between VMs from the global view.
Specifically, the hypervisor provides an interface to adjust the
threshold for command throttling, which can control the I/O
rate received by the hardware at each scheduling period to
reach predictable latency guarantees. The I/O command throt-
tling follows the constraint of deterministic network calculus.

4.2 Scalable I/O Queue Handling

Since previous NVMe virtualization solutions usually use
static I/O queue shadowing between virtualized devices and
the hardware SSD, the total number of HWQs exposed by the
SSD will limit the maximum number of VMs sharing the same
underlying SSD. To increase the virtualization scalability,
LPNS supports the flexible remapping between HWQs and
virtual queues (VQ). Specifically, LPNS can allocate any
number of the HWQs (but less than the maximum number
of HWQs exposed by the SSD controller) from the nvme.ko

kernel module into a Hardware Queue Pool for I/O queue
scheduling, and the rest HWQs can be used by the native
applications and containers.

We design an I/O queue scheduler to manage the Time
Division Multiplexing (TDM) [16] of the HWQs in the Hard-
ware Queue Pool. We abstract the HWQs of the pool into
two types: 1-1 HWQs and 1-N HWQs. An 1-1 HWQ refers to
an HWQ that can only be bound to one VQ. The 1-N HWQs
refer to the I/O queues to maintain the necessary I/O capa-
bilities for the other multiple VQs. The total number of 1-1
and 1-N HWQs should be configured when the host system
initializes the LPNS module. Specifically, the configuration
will not directly change the priority of these HWQs, so it can
still work when using the NVMe Weighted-Round-Robin-
with-urgent-priority (WRR) feature of the HWQs.

When multiple SVMs and IVMs share the same underlying
SSD, LPNS only assign 1-1 HWQs to the SVMs for better
latency performance, so the number of 1-1 HWQs should not
be less than the number of total VQs owned by all the SVMs.
The queue scheduler can schedule the idle 1-1 HWQs and all
the 1-N HWQs among the other IVMs.

Since LPNS can monitor and collect real-time performance
and workload data of VMs in each period, the I/O queue sched-
uler follows a hierarchical workload-aware HWQ schedul-
ing policy wherein it takes the QoS target and runtime work-
loads of VMs as the algorithm inputs. The scheduling mainly
consists of a hierarchical VQ weight calculating phase and an
HWQ switching phase. During each scheduling period, the
scheduler first respectively calculates the weight of VQs of
all VMs. For any SVM VQ, the weight is set as 0 or the top
weight, depending on if this VQ is empty or not. For the VQs
of IVMs, their weights are equal to the number of their back-
logged commands so that VQs with heavier workloads can
get higher priority to be drained quickly. The HWQ switch-
ing phase works after the weight updating phase. It sorts
the weights of all VQs in descending order, and those high-
priority VQs will first use 1-1 HWQs, and the low-priority
VQs will be bound to 1-N queues. After switching, the I/O
queue scheduler will sleep until the next period.

When one 1-1 HWQ needs to switch to a new VQ, it may
still have unfinished commands from the former VQ. Direct
forwarding of these stranded commands in VSQs will cause
an I/O error because the completion message cannot be han-
dled correctly. So we design a seamless switching mechanism
in the I/O queue scheduler. Specifically, LPNS extends the
virtual NVMe command structure with an index of the VM
to enable the HWQs to interact with different VQs from dif-
ferent VMs simultaneously in the seamless switching. When
we want to unbind a 1-1 HWQ from a VQ, the VQ should be
bound to another backup 1-N HWQ before the commands in
the 1-1 HWQ are executed by the SSD. During the switching,
both the 1-1 HWQ and the backup 1-N HWQ can write back
the completion information into the original VCQs. Specifi-
cally, the VCQ should be locked to ensure data consistency
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when two HWQs access the same VCQ simultaneously. The
seamless switching operations run in the background, and
each VQ can continuously send commands to an HWQ with-
out the perception of queue scheduling operations until a new
HWQ-VQ binding relationship is established. So it will not
disturb the high-parallel fetch of I/O commands from VMs.

4.3 I/O Command Throttling

We design a fine-grained I/O command throttling in LPNS
and involve a deterministic network calculus to provide a
latency bound of the I/O command for multi-tenant shared
virtualized storage. Network calculus has been proven effec-
tive in providing latency control for shared network storage
systems in previous research, such as Prioritymeister [74]. In
our LPNS, we use deterministic network calculus to help to
solve the intensive resource and performance competition for
different virtual devices sharing the same SSD so that a stor-
age hypervisor can directly eliminate the device-level latency
interference from the OS and virtualization layer by schedul-
ing queue resources between different virtual devices and
control the I/O command throttling inside a kernel module.

The deterministic network calculus gives a definite bound
to the command latency by abstracting the arrival and ser-
vice curves for storage systems. We can fix the I/O block
size to the most widely-used 4K for simplification of the pre-
dictable latency deduction. The arrival curve expresses the
upper bounds of the number of events from the sources over
any time. It refers to the I/O command submission rate by
all VMs in our system. The service curve refers to the guar-
antee of flows offered by LPNS wherein it describes the I/O
capability of the NVMe devices. The service curve may be
modified by internal functions (like garbage collection and
block relocation) of SSDs, so we simplify the mathematical
model of LPNS by concentrating on the normal working time
without triggering internal functions. And we believe LPNS
can cooperate with some future SSDs, such as AutoSSD [31],
that try to control the tail latency inside the SSD controller
so that LPNS can provide a more robust latency-predictable
storage virtualization on the future NVMe SSDs. Once the
arrival and service curve of an NVMe SSD is determined, we
can deduce the virtual delay at a particular time t, which is
the latency bound of SVMs in LPNS virtualization.

Arrival Curve. If the total command submission rate of
an intensive VM exceeds θ times the slowest submission rate
of a VM with predictable latency QoS guarantee, its I/O will
be suspended. The polling threads in the hypervisor of LPNS
can trigger the suspension based on the command count of
each VM recorded by the performance detector. Using this
I/O command throttling threshold is incredibly effective in
guaranteeing the latency stability of the VMs with predictable
latency guarantees because we can control the command sub-
mission rate precisely as we expect. Suppose there are j
VMs with intensive workloads co-running with i VMs run-

ning latency-sensitive workloads whose IOPS is p and its
command queue depth d , the real-time total command sub-
mission rate sent to the SSD hardware is:

v = p · ( j ·θ+ i), (1)

where the I/O command submission rate v of LPNS is propor-
tional to the IOPS of latency-sensitive workloads.

Similarly, we can get the number of commands b that the
sources can send at one time:

b = d · ( j ·θ+ i). (2)

Then we formulate the arrival curve of LPNS as:

α(t) = v · t +b = (p · ( j ·θ+ i)) · t +d · ( j ·θ+ i). (3)

Service Curve. The service curve is straightforward be-
cause the processing capability of the NVMe SSD is constant
(according to the types of NVMe SSDs). We use R to rep-
resent the parallel speed of which the hardware processes
random write commands per second (since most SSDs has
lower random write performance than random read), and Lh
to represent the minimum completion latency of an I/O com-
mand. So the service curve is:

β(t) = R · t +Lh. (4)

Latency Upper Bound. Call ∆(t) = inf{τ ≥ 0 : α(t) ≤
β(t + τ)}. Let h(α,β) be the supremum of all values of ∆(t),
then the virtual delay for all t satisfies: L(t)<= h(α,β). Given
the arrival curve and service curve of LPNS above, we deduce
the upper bound of latency Lmax as (according to [5, 38]):

Lmax ⩽ b/R+Lh = d · ( j ·θ+ i)/R+Lh, (5)

where we let Ω = j ·θ+ i to control the predictable latency
performance of a latency-sensitive workload p and the total
submission rate (which can finally decide the total throughput)
on each type of the NVMe SSDs. Specifically, LPNS can
adaptively change the θ parameter with the numbers of VMs
(i and j) when the performance detector checks if each VM
generates active I/O operations when the Ω is determined.

The choice of threshold Ω is essential to the effect of throt-
tling in the real-world system. A smaller Ω value can pro-
vide better predictability, but it restricts the throughput of
the VMs running throughput-intensive workloads without
predictable latency requirements. So the most proper alterna-
tive of Ω should be figured out by the optimal upper limit of
the hardware processing speed, which needs to be specified
and updated by the system administrator because different
NVMe SSD may have various R/W performances. Moreover,
the requirements for the latency QoS level of each latency-
sensitive workload can be stricter and looser in practice, so
as the constraints for Ω. Therefore, LPNS can let VMs intro-
duce a tenant-defined latency target in advance and help to
tune the Ω parameter. And the decision-maker can increase
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or decrease Ω by comparing the detected latency with the
target during the running time for a better trade-off between
throughput and predictable latency. In the evaluation section,
we will verify the effectiveness of this latency bound through
adequate experiments on different types of NVMe SSDs.

4.4 Latency-Predictable I/O Processing

We use Figure 4 to represent how LPNS enhances latency-
predictable I/O processing of the SVMs. The left part of this
figure shows the I/O path of a VM with the latency-predictable
QoS (the SVM). The LPNS module maintains the shadow
I/O queue data structure (directly corresponding to the virtual
queue) for each virtual storage in the shared memory between
the host kernel and QEMU, which can store I/O commands
from guest SQs and generate completion messages into the
guest CQs. When guest applications generate I/O operation on
the virtualized storage (❶), the command will be stored in the
shadow I/O queue. The polling thread will immediately poll
the head of the queue (❷), and translate the DMA and LBA
addresses in commands, store it into the 1-1 HWQ, and finally
ring the hardware doorbell register. (❸) - (❺) represents the
process that the SSD controller fetches command, generates
DMA, and stores the completion messages into HWQs. The
polling thread will continuously check if the doorbell register
of the hardware CQs updates to accelerate the I/O operation
instead of waiting for the SSD controller to inject interrupts
(❻). And the polling thread will compose the completion
message of the VMs and store the message into the shadow
queue (❼), and inject a virtual interrupt into the VM. Finally,
the guest VM driver can complete the I/O operation (❽).
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Figure 4: I/O work flow of LPNS virtualized storage.

The right part of Figure 4 shows that the IVMs get the
HWQ resources from HWQ scheduling, and the polling thread
can throttle the command distribution from the VQ to HWQ
(where ❾ replaces the ❷). With the I/O path designs, the
intensive workloads in these VMs will not hurt the latency of
the VM with the predictable latency guarantees because of
the device-level latency interference.

4.5 Discussion
Polling effectiveness. We discuss the polling effectiveness of
LPNS by comparing the throughput of LPNS with MDev-
NVMe, SPDK, and SR-IOV when multiple VMs share a
P5800X/PM1735 SSD. Figure 5 demonstrates the total
throughput where increasing numbers of VMs running an
FIO workload with the “numjobs=1, iodepth=1" parameters
share the same NVMe SSD. The results prove that LPNS can
fully utilize the P5800X or PM1735 for multiple IVMs with
only one polling thread and provide better scalability than
MDev-NVMe, SPDK, and SR-IOV.
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Figure 5: Polling effectiveness for high throughput (SPDK
and LPNS both use one polling thread shared by all VMs.)

We also run an FIO test with “numjobs=1 or 4, iodepth=1"
on the host OS and inside a VM with MDev-NVMe, SPDK
and SR-IOV. Figure 6 demonstrates how one dedicated polling
thread can achieve promising and near-native average latency.

1
1

.0
5

1
1

.9
4

1
1

.3
4

1
1

.3
6

7
7

.4
5

1
5

.8
8

8
0

.2
9

1
8

.8
0

1
1

.1
0

1
1

.0
3

1
2

.6
6

1
2

.7
8

7
2

.3
9

1
7

.7
2

7
3

.7
0

2
0

.3
8

1
1

.3
8

1
0

.1
0

1
2

.6
5

1
2

.8
6

7
2

.6
5

1
7

.9
8

7
3

.8
2

2
1

.8
2

7
4

.4
8

1
9

.9
1

7
3

.4
9

2
0

.1
6

0
20
40
60
80

100
120
140

Read
(n1d1)

Write
  (n1d1)

Read
  (n4d1)

Write
 (n4d1)

Read
(n1d1)

Write
  (n1d1)

Read
  (n4d1)

Write
 (n4d1)

P5800X (No SR-IOV) PM1735

Native LPNS
SPDK SR-IOV

A
ve

ra
ge

 L
at

en
cy

 (
μ
s)

FIO 4K random read or write workload (iodepth=1, numjobs=1 or 4) 

Figure 6: One dedicated polling thread for one SVM.

Performance overhead. In the self-feedback QoS control,
each polling thread uses a two-phase array to achieve real-
time performance data feedback for the SVMs. While the
thread reads data from one phase of the array for computation,
the probes record current I/O data into the other phase. It is
lock-free, and only a writing-array operation is added into the
origin command execution time. So the performance over-
head of our self-feedback mechanism is negligible. Figure 5
and 6 prove that the active polling in LPNS can ensure no
utilization overhead of the total IOPS and near-native idle
latency performance for SVMs.

Resource overhead. (1) The choices of the performance
detection are critical for resource overhead. The detection ex-
acerbates kernel memory consumption because tens of thou-
sand of commands can occupy hundreds of KBs of memory to
store the performance data. Therefore, we cut the one-period
detection into 10 ms intervals (much shorter than the schedul-
ing period), we can calculate the average command latency
for each interval, and finally sum up the results of a whole
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period so we can reduce kernel memory overhead. (2) The
polling threads in LPNS can be adaptively turned into an idle
status when there are no I/O operations generated from the
guest machines in a recent 500 ms. When performance detec-
tion finds there are burst I/O operations, LPNS will turn on
the polling thread immediately. This helps reduce the CPU
overhead of polling.

Limitation. The deterministic network calculus of LPNS
needs tunning when cloud workloads use different NVMe
SSDs or block sizes instead of the most commonly-used 4K.
Also, for the SSDs whose random write IOPS is much lower
than random read, the deterministic network calculus will be
more strict to provide latency bound, and LPNS may sacrifice
more throughput performance than when running LPNS on
SSDs with equivalent random read and write performance,
such as Intel Optane NVMe SSDs.

5 Evaluation

In this section, we evaluate LPNS on different NVMe SSDs
and compare LPNS with several famous related works.

Firstly, we want to compare LPNS with mainstream NVMe
virtualization solutions. We start with the following NVMe
virtualization mechanisms: MDev-NVMe, VirtIO, SPDK with
vhost-blk interfaces, and SR-IOV 2.

We also compare LPNS with state-of-the-art QoS control
systems, MQFQ, D2FQ, and K2. Specifically, (1) we build a
K2 kernel module with its source code [68]; (2) We implement
MQFQ with 1125 Lines of Code according to the description
in [21] since the original source [20] is no longer accessible.
(3) We modify 19 lines of the D2FQ source codes [62] for
bug fixing according to the description in [71].

5.1 Experiment Setup

Hardware configuration. We evaluate LPNS on two servers.
One server has two 20-core Intel Xeon Gold 6248 CPUs
(2.5GHz), 384GB DDR4 memory, and one 400GB Optane
P5800X SSD [24]. Another server has two 20-core Intel Xeon
Gold 6230 CPUs (2.1GHz), 128GB DDR4 memory, and one
1.6TB SR-IOV-capable Samsung PM1735 SSD [58]. The
parameters Ω we choose for the P5800X and PM1735 are
190 and 100 (the choices are discussed in §5.5.)

System configuration. We implement LPNS based on
Linux kernel 5.0.0. The two host servers run a Ubuntu 18.04.3
LTS 64bit OS and boot VMs with the same OS image version
based on KVM/QEMU. There are different numbers of SVMs
and IVMs in micro and real-world benchmarks. Each VM has
4 VCPUs, 4GB memory, 40GB virtual NVMe storage, and
4VQs equal to the number of VCPUs. Each virtual storage is
created on a logical partition of the SSD, and the VM uses

2The hardware/software co-designed FVM [37] and LeapIO [41] are not
open-sourced and available.

the original NVMe driver of Linux. In all experiments, the
total number of HWQs used for virtualization is less than the
total number of VQs to mimic a resource shortage scenario
in the real-world cloud environments.

Workload configuration. The micro-workloads are gen-
erated by FIO [26], which is widely used in both industry
and research. The FIO version is 3.1, and libaio is selected
as the default I/O engine. We set the I/O mode as Direct
I/O. We set the block size of random read/write as 4K. In
application benchmarks, we first replay the webuser service
of open-sourced production systems at Florida International
University (FIU) [6]. We also use YCSB [8] as another ap-
plication benchmark and choose RocksDB [3] to test the I/O
performance of K-V store. The YCSB version is 0.17.0, and
we use the embedded RocksDB database of YCSB [2].

5.2 Micro Benchmarks
In the micro benchmarks, we let one SVM to share a P5800X
SSD with one or multiple IVMs on LPNS, MDev-NVMe,
SPDK with vhost-blk, and VirtIO. We also compare LPNS
with MDev-NVMe and SR-IOV on a PM1735. In each test
case, the SVM runs the lightest FIO workloads in a general
sense by setting both the two standard decisive FIO parame-
ters “numjobs" and “iodepth" as 1 (n1d1). The other IVMs
run throughput-insensitive workloads as competitors, and we
let their workloads grow from as light as the SVM to heavy
enough to reach the throughput limit of the SSD by increas-
ing the “numjobs" and “iodepth" parameters. We observe the
latency of the “n1d1" workload in the SVM when the SVM
faces serious interference.

The micro benchmark results are demonstrated in Figure
7. Firstly, we let one SVM (VM1) and IVM (VM2) to share
one underlying P5800X or PM1735 SSD and show the perfor-
mance results in Figure 7a to 7d. The bar charts in the upper
part of the sub-figures represent the latency performance of
the FIO n1d1 workload in VM1, and the tables in the lower
part are the throughput of the competitor workloads of VM2
in the same test cases. We also let one SVM (VM1) and mul-
tiple (2-7) IVMs to share the same SSD and demonstrate the
latency of the VM1 workload in Figure 7e.

P5800X. We let the VM1 and the VM2 share one P5800X
SSD, and the performance of 4K random read and write
test cases are depicted in Figure 7a and 7b. Optane SSDs
use 3D XPoint technology [17] (the most advanced storage
medium), and their hardware controllers usually have stable
storage service capability in latency and throughput, which is
more friendly to latency-predictable systems. Because Optane
SSDs also have similar random read and write performance,
the results shown in Figure 7a and 7b have similar features.

LPNS can bound the latency of VM1 workload at a low
level (less than 25 µs) in both 4K random read and write cases.
LPNS can only sacrifice the throughput of VM2 workload
within 7.0% of MDev-NVMe and within 8.2% of SPDK when
VM2 runs n464 or n832 cases, and in most cases, the sacrifices
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are less than 1%. Moreover, LPNS successfully eliminates
the device-level interference observed in Figure 2.

n1d1 n2d1 n4d1 n4d2 n4d4 n4d8 n4d16 n4d32 n4d64 n8d32

LPNS 11.86 12.33 13.25 13.29 15.4 22.85 23.14 23.17 23.68 21.48

MDev 13.63 14.03 14.75 15.35 17.58 26.1 48.34 57.86 60.46 63.91

SPDK 15.05 16.29 17.99 17.8 22.17 27.86 42.29 66.39 206.72 248.68

Virtio 91.58 46.21 52.81 48.87 52.53 51.95 54.31 52.49 55.47 53.06
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(a) One SVM & One IVM, 4K random read (P5800X).

n1d1 n2d1 n4d1 n4d2 n4d4 n4d8 n4d16 n4d32 n4d64 n8d32

LPNS 13.45 14.4 14.79 16.01 18.32 23.78 24.55 24.33 24.49 23.65

MDev 15.22 15.88 16.68 18.66 19.96 26.88 36.41 48.41 57.06 66.69

SPDK 16.29 17.53 17.99 20.55 22.17 27.86 42.29 66.39 171.88 239.11

Virtio 88.29 72.8 84.4 63.25 59.4 58.44 64.2 67.79 66.89 81.32
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(b) One SVM & One IVM, 4K random write (P5800X).

n1d1 n2d1 n4d1 n4d2 n4d4 n4d8 n4d16 n4d32 n4d64 n8d32

LPNS 72.89 73.28 74.09 75.8 79.22 86.79 86.68 85.7 85.79 85.48

MDev 71.93 72.31 73.36 75.31 78.89 87.25 105.37 131.64 146.4 221.82

SRIOV 74.95 75.92 76.97 77.65 80.4 86.32 96.99 100.33 100.18 100.38

7
2

.8
9

 

7
3

.2
8

 

7
4

.0
9

 

7
5

.8
0

 

7
9

.2
2

 

8
6

.7
9

 

8
6

.6
8

 

8
5

.7
0

 

8
5

.7
9

 

8
5

.4
8

 

7
1

.9
3

 

7
2

.3
1

 

7
3

.3
6

 

7
5

.3
1

 

7
8

.8
9

 

8
7

.2
5

 

1
0

5
.3

7
 

1
3

1
.6

4
 

1
4

6
.4

0
 

2
2

1
.8

2
 7

4
.9

5
 

7
5

.9
2

 

7
6

.9
7

 

7
7

.6
5

 

8
0

.4
0

 

8
6

.3
2

 

9
6

.9
9

 

1
0

0
.3

3
 

1
0

0
.1

8
 

1
0

0
.3

8
 

0

100

200

300

400

V
M

1
 A

ve
ra

ge
 

La
te

n
cy

 (
μ
s)

LPNS MDev SRIOV

54.3 198 214 417 779 1371 1797 1772 1756 1760

56.6 111 219 423 791 1386 2177 2736 2787 2562

63.1 125 261 509 961 1699 2490 2539 2549 2547

V
M

2
 

B
an

d
w

id
th

 
(M

B
/s

)

(c) One SVM & One IVM, 4K random read (PM1735).

n1d1 n2d1 n4d1 n4d2 n4d4 n4d8 n4d16 n4d32 n4d64 n8d32

LPNS 18.29 19 20.47 22.81 28.07 42.06 65.67 67.27 66.56 66.22

MDev 17.59 18.42 20.54 23.02 28.11 41.43 69.3 124.42 211.07 217.57

SRIOV 19.91 19.49 23.1 26.36 31.31 44.44 67.43 94.25 135.72 121.06
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(d) One SVM & One IVM, 4K random write (PM1735).
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Figure 7: The average latency of LPNS compared with the
other NVMe virtualization on P5800X and PM1735.

In MDev-NVMe and SPDK, the increasing throughput of
the competitor workload in VM2 will lead to latency deteriora-
tion of the VM1 workload. For example, when using n4d64 or
n8d32 parameters, LPNS can reach up to 11.57/2.98× latency
optimization over SPDK/MDev-NVMe. The main reason is
that their polling threads cannot provide strong performance
isolation between different virtualized devices to overcome
latency interference. VirtIO can obtain stable average latency

and better latency bound for VM1 than SPDK, but the VM1
latency and VM2 throughput are not comparable with LPNS
because VirtIO is generic virtualization for block devices and
not optimized for NVMe.

Figure 7e shows that LPNS can provide latency-predictable
QoS with promising scalability for the SVM when we in-
crease the number of IVMs from 2 to 7. The latency results of
VM1 are very stable and low, and bounded by 50 µs, which can
achieve up to 7.40× latency optimization of MDev-NVMe.

Figure 8 demonstrate the tail latency of the n8d32 test
cases in Figure 7a and 7b. LPNS can reach up to 3.84/6.70×
optimization of 99.9th/99.99th 4K random read tail latency
of SPDK and 3.73/9.96× optimization of 99.9th/99.99th 4K
random write tail latency of SPDK.

0

200

400

600

800

1000

10th 50th 90th 99th 99.9th 99.99th

R
ea

d
 L

at
en

cy
 (

μ
s)

Tail Latency Percentage

LPNS MDev
SPDK Virtio

(a) Random Read Tail Latency

0

200

400

600

800

1000

10th 50th 90th 99th 99.9th 99.99th

W
ri

te
 L

at
en

cy
 (

μ
s)

Tail Latency Percentage

LPNS MDev
SPDK Virtio

(b) Random Write Tail Latency

Figure 8: Tail Latency of micro benchmarks on P5800X .

PM1735. We let the VM1 and the VM2 share one PM1735
SSD, and the performance results are shown in Figure 7c and
7d. These results show that LPNS can provide better latency
than MDev-NVMe and SR-IOV in all cases and achieve up
to 3.27× latency optimization. Moreover, when we increase
the number of IVMs from 2 to 7 on PM1735, the IVMs cause
serious latency interference on the VM1 when using SR-IOV.
LPNS can bound the VM1 workload’s latency under 90µs,
with up to 18.72× latency optimization over SR-IOV. To
be mentioned, the throughput performance loss of IVMs on
PM1735 is worse than P5800X, which is less than 7.07% in
the 4K random write cases, but up to 31.11% in the 4K random
read cases. The main reason is that the random read service
capability of the PM1735 controller is much better than the
random write, and LPNS must choose a more conservative
configuration to ensure latency-predictable QoS but incur
more throughput loss.

In general, LPNS can perform better in both latency bound
and low throughput loss than VirtIO. LPNS can provide ultra-
low latency and ensure latency-predictable QoS compared to
MDev-NVMe, SPDK, and SR-IOV.

5.3 Real-world I/O trace Replay
In the real-world I/O trace replay, we run a webuser workload
in the SVM(s) and let the SVM share one Optane P5800X
and PM1735 SSD with one or multiple IVMs running inten-
sive workloads (FIO 4K random write with numjobs=4 and
iodepth=32). The raw data of the latency-sensitive webuser
server comes from [6]. We extract the throughput and the pro-
portion of reading and writing operations from the raw data.
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The running time of each webuser test case is 2000 seconds,
and we report latency results every 10 seconds.
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Figure 9: The latency of real-workload webuser on LPNS,
MDev-NVMe, SPDK, MQFQ, D2FQ, and K2 with 32, 16,
and 8 max_inflight when 4 VMs share one NVMe SSD (VM1
is an SVM and VM2-4 are IVMs), compared with a baseline
that only VM1 monopolizes the NVMe SSD. The lower-part
charts in the figures are the enlargement of the data from the
red boxes of the upper-part charts.

We choose MDev-NVMe and SPDK with vhost-blk as the
representative of the state-of-the-art virtualization, and we
design eight groups of experiments with different numbers of
SVM (s) and IVM(s), including “1SVM & 1IVM" to “1SVM
& 6IVM", “2SVM & 2IVM", and “3SVM & 1IVM".

We choose K2, MQFQ, and D2FQ for comparison. Since
LPNS, MDev-NVMe, and SPDK can prove near-native la-
tency for each virtualized storage and K2, MQFQ, and D2FQ
are not designed for NVMe virtualization, we deduce that this
latency performance comparison are typical and persuasive.
We build the K2 module and insmod k2-scheduler into the
original 4.15.0-175-generic kernel of the public Ubuntu 18.04
system. We implement MQFQ and D2FQ in a Linux 5.3.10
kernel. We run the same real-world webuser workloads and
intensive FIO random write workloads on the host OS, just
like inside the SVM(s) and IVM(s). We use the ionice [10]
commands to give the webuser a high priority for latency QoS
control on K2, MQFQ, and D2FQ scheduler. Specifically, we
configure the max_inflight parameters of K2 as 32, 16, and
8, and the parameters of MQFQ and D2FQ are set as default
values according to the papers.

Latency fluctuation. We firstly choose the “1 SVM & 3
IVMs" cases on PM1735 and P5800X as a typical example
of all the cases to show the overall latency control effects
of the related works compared with a baseline where only
VM1 running the webuser monopolizes the entire SSD. We

demonstrate the latency results of the webuser in Figure 9.
On both PM1735 and P5800X SSD, the latency of LPNS

can nearly coincide with the baseline fluctuation line, and it
successfully ensures the webuser’s latency-predictable QoS.
SR-IOV and K2 can also provide better latency performance
than MQFQ, D2FQ, and SPDK because the main purpose
of MQFQ and D2FQ is to reach a fair queue scheduling and
SPDK does not involve reliable performance isolation. On
P5800X, K2 with max_inflight=32 can successfully bound
the latency within 50µs. However, SR-IOV and K2 cannot
bound latency within 50µs level as LPNS does on PM1735.

Latency interference elimination. We count the latency
distributions of the eight groups of LPNS and K2 (providing
better latency bound effect in the example case) in Figure 10
with box charts.
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Figure 10: The latency distribution results of test cases where
different numbers of SVMs and IVMs share one P5800X SSD
on the LPNS system or on a system using K2.

In general, LPNS can bound the latency by 50 µs in all
the test cases. K2 can bound the latency by 50 µs when there
are small numbers (1∼4) of IVMs. However, the outliers
of latency results in the box chart prove that the latency
of VM1 webuser workload grows over 50 µs on K2 with
max_inflight=32 when there are more than 5 IVM as competi-
tors. When there are more SVM but less IVM (for example,
Figure 10c and 10d), K2 with max_inflight=32 or 16 can
effectively bound the latency by 50 µs just as LPNS does.

Throughput sacrifice. Figure 11 demonstrates the total
throughput of the IVM(s) that compete for resources with the
SVM in the “1SVM & 1IVM" to “1SVM & 6IVM" cases.
We choose the maximum throughput of the P5800X as the
baseline. LPNS throughput loss to MDev-NVMe is 18.46%
in average and less than 19.88%. Figure 11 also proves that
LPNS can reach latency-predictable QoS with less throughput
loss of the IVMs than K2 when multiple VMs share the one
SSD. For example, when there are 6 IVMs (or 6 native inten-
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sive workloads), LPNS can increase up to 1.45 × additional
total throughput over K2 with max_inflight=32 (equivalent to
47.66% of the maximum throughput of the P5800X SSD.)
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Figure 11: The total throughput of the one to six IVMs (or
native workloads) on LPNS and K2 (max_inflight=32) in
Figure 10a and 10b (MDev-NVMe as the baseline).

We deduce that LPNS will be an excellent choice to achieve
their latency-predictable QoS with less sacrifice of the SSD
maximum throughput when cloud vendors want to increase
the scalability of virtualized devices on each single SSD with
heavier over-subscription of storage resources.

5.4 YCSB Key-Value Store on RocksDB
We use the YCSB to generate K-V store workloads on the
RocksDB databases in one SVM, and use several IVMs run-
ning intensive FIO random read/write workloads to generate
serious interference and demonstrate that LPNS can provide
latency-predictability for K-V store applications. Specifically,
we build an ext4 [1] file system on the virtualized NVMe
storage device in the SVM to run the RocksDB database. We
run the generic configuration of YCSB from the workloada
to workloadf, which uses Zipfian [18] distributions. We set
up 20M requests on 4GB database by enlarging the “record-
count” and “operationcount”.

Figure 12 demonstrates the average latency performance
results of YCSB benchmarks on the RocksDB databases, in-
cluding the baseline where the benchmark monopolizes the
entire P5800X SSD, or using MDev to support 1SVM +3IVM,
or using LPNS to support 1SVM +3IVM. In the six YCSB
tests, LPNS can efficiently reduce the latency interference
from the IVMs and provide promising average latency perfor-
mance for the Read, Update, Insert, or Scan operations. For
example, the YCSB-A and YCSB-B workloads are identi-
cal mix Read and Update operations, which will bring chal-
lenges to the latency QoS control systems. The results prove
that LPNS can achieve up to 7.41 × latency optimization of
MDev-NVMe in the YCSB-B workloads. In YCSB-C, E, and
F, MDev-NVMe and LPNS can provide latency similar to the
monopolized baselines. We infer the reasons: YCSB-C is a
100% read case, which is very friendly to the cache systems,
so it is not seriously interfered by the device-level congestion;
YCSB-E and YCSB-F are more performance-critical about
the computation ability of the K-V store databases, so the
storage system is not a performance bottleneck in these cases.

In Table 3, we count the tail latency results of YCSB-A
and YCSB-B benchmarks of MDev-NVMe and LPNS from
Figure 12. From these results, we can find that LPNS can
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Figure 12: The average latency of YCSB A to F workloads.

achieve up to 4.44 × optimization of the 95th tail latency and
up to 4.27 × optimization of the 99th tail latency compared
with MDev-NVMe, which can provide the most advanced
tail latency among the traditional NVMe virtualization in the
Section 5.2 experiments.

Table 3: YCSB tail latency in YCSB-A and YCSB-B
Read Update

MDev LPNS MDev LPNS

YCSB-A P95 (us) 419 242 453 260
P99 (us) 896 366 934 399

YCSB-B P95 (us) 907 204 961 225
P99 (us) 969 317 1060 358

With these experimental results, we imply that LPNS can
provide latency-predictable QoS for the latency-sensitive ap-
plications such as the K-V store databases in cloud services.

5.5 Predictability Trade-off
We discuss the trade-off between latency and throughput to
guide the choice of the proper predicted value, which refers
to the value of the I/O command scheduling parameter Ω in
LPNS. The Ω value is related with the hardware SSD and can
be flexibly determined by the cloud storage administrators to
make an optimal alternative according to the hardware and
workload scenarios. We observe the latency performance of
SVM and the total throughput of IVMs to evaluate the effect
of different Ω values and choose the proper Ω.

Figure 13 plots the latency of VM1 (SVM) and total
throughput of IVMs at different Ω values on the P5800X
and PM1735 SSDs. We use the dot lines to indicate the la-
tency performance and bars to indicate the total throughput
performance.

0.0k

0.5k

1.0k

1.5k

2.0k

2.5k

3.0k

3.5k

4.0k

0 3
0

6
0

9
0

1
2

0

1
5

0

1
8

0

2
1

0

2
4

0

2
7

0

3
0

0

0

50

100

150

200

250

Ω for P5800X 

Total throughput

VM1 latency

In
te

n
si

ve
 V

M
 T

o
ta

lT
h

ro
u

gh
p

u
t 

(M
B

/s
)

La
te

n
cy

-s
en

si
ti

ve
 V

M
 L

at
en

cy
 (

μ
s)

(a) Intel Optane P5800X.

0.0k

0.5k

1.0k

1.5k

2.0k

2.5k

3.0k

0 2
0

4
0

6
0

8
0

1
0

0

1
2

0

1
4

0

1
6

0

0

100

200

300

400

500

Ω  for PM1735

Total throughput

VM1 latency

La
te

n
cy

-s
en

si
ti

ve
 V

M
 L

at
en

cy
 (

μ
s)

In
te

n
si

ve
 V

M
 T

o
ta

lT
h

ro
u

gh
p

u
t 

(M
B

/s
)

(b) Samsung PM1735.

Figure 13: Performance trade-off for different SSDs.

On P5800X, the R is 800K IOPS (0.8 iopµs) and Lh of
the workload is 11.05 µs (measured when there is only one
workload that monopolizes the SSD). When we choose Ω as
10, the latency can be bounded within 23.55µs according to
Eq. 5, which matches the results in Figure 13a.
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However, when Ω is smaller than 160, keeping decreasing
Ω can not significantly improve the latency, but the throughput
will continue to decline. When Ω is larger than 240, keeping
increasing Ω is also uneconomic because the throughput is
close to the ceiling while the latency is still growing. So an
appropriate Ω value must be between 160 and 240, depending
on the trade-off between the latency requirements and the
acceptability of bandwidth degradation. We choose 190 on
P5800X in all our experiments to bound the latency in micro
and application benchmarks and get a balance between the
latency bound (50µs) and the throughput sacrifice. With these
configurations, we use Figure 14 to prove that LPNS can
successfully bound the latency of the workload in Figure 1.
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Figure 14: Latency bounded within 30µs without SLA miss.

Compared with P5800X, it is more difficult to reach a
promising balance between latency and throughput on the
PM1735. The Ω parameter when Ω is smaller than 60, keep-
ing decreasing Ω can not significantly improve the predictable
latency but only decline the throughput. And when we choose
larger Ω, the latency grows faster than on P5800X. We finally
choose 100 as the Ω to provide an upper bound of latency at
100µs for the latency-sensitive workloads on PM1735. How-
ever, it will incur more serious throughput loss than using
LPNS on P5800X. And this will be one of our future work to
reach a better balance of latency prediction and throughput
by upgrading our design and implementation.

6 Related Work

Local NVMe virtualization. The state-of-art local NVMe
virtualization mechanisms include para-virtualization Vir-
tIO [57], a userspace NVMe driver VFIO [70], and SPDK [25],
MDev-NVMe [55], FinNVMe [54], FVM [37]. VirtIO is an
I/O para-virtualization framework, which provides an abstrac-
tion of a set of common simulation devices suffers from the
poor performance of virtualized devices. Fam Zheng [73]
used VFIO to implement the NVMe driver to work with the
modified user-space NVMe driver in Qemu. The SPDK is
a userspace and lockless NVMe driver that provides an ef-
ficient and scalable interface to access various storage de-
vices. MDev-NVMe uses mediated pass-through and the ac-
tive polling mode to achieve high I/O performance. FVM
implements a storage virtualization layer on an FPGA card
to offload virtualization overhead, and FVM can ensure high
throughput but incurs about 25% latency overhead over native
performance.

Storage QoS. Many researches concentrate on NVMe
resource sharing and scheduling by modifying the device
controller or host software stack [4, 11, 19, 32, 39, 42, 43, 56,
60, 72]. FIOS [53] achieves the fairness of resource shar-
ing through the per-task timeslices. AutoSSD [31] employs
a self-management mechanism to schedule device-internal
background jobs to prevent the SSD from falling into a critical
condition that causes long tail latency. PartFTL [49] splits
flash storage into separate read and write sets to ensure writes
never block reads. FLIN [66] is a lightweight transaction
scheduler using a three-stage scheduling algorithm to provide
fairness, implemented within the SSD controller firmware.
For performance isolation [15, 22, 30, 33, 36, 50, 61, 64] and
QoS, workload-aware budget compensation (WA-BC) [29]
provides a device-level scheduler with SR-IOV for perfor-
mance isolation and fairness among multiple VMs by penal-
izing noisy neighbors. Differentiated Storage Services [47]
propose an I/O classification architecture to close the gap
between computer systems and storage systems, and improve
end-to-end performance, reliability, and security of storage.
More recent schedulers have evolved to guarantee isolation
at OS-level without modification to the hardware. K2 [48]
is a lightweight and device-agnostic I/O scheduler for Linux
targeting NVMe-attached storage. Multi-Queue Fair Queue-
ing (MQFQ) [21] is a fair and work-conserving scheduler for
multi-queue systems. D2FQ [71] uses the device-side schedul-
ing feature (NVMe WRR) to reach low-CPU-overhead fair
queue scheduling.

7 Conclusion
In this paper, we propose LPNS, a latency-predictable NVMe
virtualization mechanism for local cloud storage. Based on the
mediated pass-through mechanism, LPNS retains high virtual-
ization performance with I/O queue and command scheduling.
To prove latency-predictable QoS, we model LPNS as a deter-
ministic queuing system and deduce the latency upper bound
referring to the deterministic network calculus. The evalua-
tions demonstrate that LPNS can achieve the goal of latency
predictability and prove to be an efficient cloud storage virtual-
ization mechanism. In our future work, we will also improve
the balance between latency prediction and throughput on
more types of NVMe SSDs, and we are devoted to integrat-
ing LPNS into a hardware/software co-designed solution to
offload overhead and improve scheduling efficiency.
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