
This paper is included in the Proceedings of the
2023 USENIX Annual Technical Conference.

July 10–12, 2023 • Boston, MA, USA
978-1-939133-35-9

Open access to the Proceedings of the
2023 USENIX Annual Technical Conference

is sponsored by

TiDedup: A New Distributed Deduplication
Architecture for Ceph

Myoungwon Oh and Sungmin Lee, Samsung Electronics Co.; Samuel Just, IBM;
Young Jin Yu and Duck-Ho Bae, Samsung Electronics Co.; Sage Weil,

Ceph Foundation; Sangyeun Cho, Samsung Electronics Co.; Heon Y. Yeom,
Seoul National University

https://www.usenix.org/conference/atc23/presentation/oh

TiDedup: A New Distributed Deduplication Architecture for Ceph

Myoungwon Oh1 Sungmin Lee1 Samuel Just2 Young Jin Yu1 Duck-Ho Bae1

Sage Weil3 Sangyeun Cho1 Heon Y. Yeom4

1Samsung Electronics Co. 2IBM 3Ceph Foundation 4Seoul National University

Abstract

This paper presents TiDedup, a new cluster-level dedupli-

cation architecture for Ceph, a widely deployed distributed

storage system. Ceph introduced a cluster-level deduplica-

tion design before; unfortunately, a few shortcomings have

made it hard to use in production: (1) Deduplication of unique

data incurs excessive metadata consumption; (2) Its serial-

ized tiering mechanism has detrimental effects on foreground

I/Os, and by design, only provides fixed-sized chunking al-

gorithms; and (3) The existing reference count mechanism

resorts to inefficient full scan of entire objects, and does not

work with Ceph’s snapshot. TiDedup effectively overcomes

these shortcomings by introducing three novel schemes: Selec-

tive cluster-level crawling, an event-driven tiering mechanism

with content defined chunking, and a reference correction

method using a shared reference back pointer. We have fully

validated TiDedup and integrated it into the Ceph mainline,

ready for evaluation and deployment in various experimental

and production environments. Our evaluation results show

that TiDedup achieves up to 34% data reduction on real-world

workloads, and when compared with the existing dedupli-

cation design, improves foreground I/O throughput by 50%

during deduplication, and significantly reduces the scan time

for reference correction by more than 50%.

1 Introduction

Open source infrastructure management systems [18,30] have

helped cloud providers of different scales deliver services at

low costs [4, 7, 14, 37]. Progresses in corporate digitalization

and new classes of data-intensive applications are fueling fast

growth of data in the cloud and call for scalable and efficient

data storage [17, 34]. For such cloud serving storage, dedupli-

cation is expected to offer a means to mitigate the cost issue.

However, most general-purpose distributed storage systems

in use today do not provide cluster-level deduplication.

Several technical challenges partially explain why that is

the case. First of all, all components in a successful dedu-

plication architecture should be designed with scalability in

mind. Moreover, the architecture should consider various data

types, like file, block, and object, in search for data reduction

opportunities. Last but not least, the architecture must have

compatibility with existing services in the storage system, like

snapshot operation. More comprehensive research is needed

to make deduplication generally available in distributed stor-

age systems (see Section 8 for further discussions).

The situation is no different in Ceph [42]. It has become

a dominant open source distributed storage system in cloud

environments thanks to its design that takes reliability and

scalability as the first priority [7, 31]. However, capacity opti-

mizations like deduplication were not seriously considered in

early designs, and thus, Ceph has failed to meet growing data

demands in various installed configurations.

Recently, a cluster-level deduplication design was proposed

for Ceph [29]. While the work presents worthy efforts (and

is a baseline in our evaluation in Section 5), it contains criti-

cal technical issues that we believe will hold back its use in

production environments. We capture three of them here.

First, the prior design blindly performs deduplication re-

gardless of the amount of unique contents in a target object.

Deduplicating a unique object brings no benefit and only in-

creases computation and storage overheads. Since the amount

of unique contents in objects depends highly on the work-

load, this approach might undermine deduplication efficiency,

even more so in Ceph because it is a general purpose storage

system for diverse data sets.

Second, the prior design relies on a limited tiering architec-

ture that depends on coarse-grained processing and fixed size

chunking (FSC). A single background thread of Object Stor-

age Daemon (OSD) is responsible for all tasks required for

deduplication. This architecture suffers performance degrada-

tion due to time-consuming object enumeration with a lock

and a limitation on on-demand deduplication by external

agents. Moreover, FSC is not always the most effective way

to find duplicate chunks in real-world workloads [28, 47].

Lastly, the prior design approach has drawbacks in its ref-

erence management method. Specifically, it does not work

hand in hand with Ceph’s snapshot feature because it lacks

chunk reference management on an object snapshot. In addi-

tion, the reference counting method in the prior work takes a

significant amount of time to identify reference mismatches

on deduplicated chunks, because it requires full object search

in the storage pool to count references.

In this work, we propose a new cluster-level deduplication

USENIX Association 2023 USENIX Annual Technical Conference 117

architecture, called TiDedup, which does not have the afore-

mentioned issues while respecting the core design principles

of Ceph. Thanks to its design choices and implementation

strategies, TiDedup effectively targets a general purpose dis-

tributed storage system for both primary and backup stor-

age [10, 11], by providing file, object, and block services.

TiDedup incorporates three key design schemes:

1. Selective cluster-level crawling. TiDedup implements

a crawler process that incrementally searches and identifies

redundant chunks to selectively trigger deduplication. By do-

ing so, TiDedup successfully removes only redundant chunks

with minimum overheads.

2. Event-driven tiering mechanism with content defined

chunking (CDC). TiDedup eliminates background work in

OSD and is designed to execute reactions upon an event to

handle multiple requests concurrently. On top of that, new tier-

ing APIs (set_chunk, tier_flush, tier_evict, and tier_promote),

as well as control and data path with CDC, are introduced.

3. Object ID (OID) shared reference scheme. We propose

an efficient reference management method using OID. By

sharing OID reference information between adjacent snap-

shots, TiDedup not only makes deduplicated objects compat-

ible with snapshot, but also minimizes messages between

OSDs at snapshot creation time. In addition, by using OID

as a backpointer, scrub—a job to identify and fix inconsisten-

cies (e.g., reference mismatch)—is able to check whether the

reference is valid without performing a full object search.

Our evaluation results show that TiDedup effectively saves

storage space by up to 34% on real-world workloads includ-

ing industrial manufacture data and corporate cloud services.

Moreover, TiDedup outperforms the prior approach by 50% in

throughput during deduplication. Importantly, our implemen-

tation passes the teuthology test [38], Ceph’s quality test suite,

demonstrating the robustness and readiness of TiDedup for

real-world evaluation and production uses. This paper makes

the following contributions:

• We demonstrate the challenges in modern distributed stor-

age system when applying deduplication and overcome the

challenges by introducing TiDedup (Section 3 and 4). Com-

pared to the previous approach [29], TiDedup is scalable and

compatible with Ceph’s existing design philosophy and fea-

tures. TiDedup allows the use of various chunking algorithms

with extensibility, different from other tiering-based architec-

tures [9, 49]. Our cluster-level reference management design

is more efficient than existing reference count techniques [6].

• We propose a pluggable design that is applicable to Ceph

and show how the design works in detail (Section 4). Since

our proposal is based on a hash algorithm to locate objects, it

can be applied to other systems that build on a similar hash

algorithm, like GlusterFS [15], Swift [36] and Cassandra [19].

• We perform comprehensive evaluation using a realistic

experimental setup (Section 5). Our evaluation shows that

TiDedup effectively performs deduplication while having little

impact on foreground I/O, and achieves more than 50% scrub

time reduction, compared to the existing approach. We discuss

design trade-offs based on evaluation results (Section 6).

• TiDedup has been merged into the Ceph main branch and is

the default deduplication engine for Ceph. TiDedup is avail-

able to anyone for evaluation and production.

2 Background

This section provides a brief overview of Ceph and explains

several key terms that will be used throughout this paper.

2.1 Ceph

Ceph [42] is an industry-leading open-source distributed stor-

age system. It provides file, object, and block services to

clients on a unified distributed object store called a Reliable

Autonomic Distributed Object Store (RADOS), comprised

of multiple OSDs. Ceph exploits a decentralized hash algo-

rithm, known as CRUSH [43], to determine the object location

within RADOS. An OSD is responsible for serving, replica-

tion, and recovery of objects on top of a block device. In this

paper, we mainly deal with RADOS because it is the primary

component involved with all three services.

Ceph uses three terms—POOL (tier), Placement Group

(PG), and object name—to represent the object location. The

tier is a global namespace that consists of PGs, and PG indi-

cates a logical group of objects. In addition, every PG links a

replication group, which maps a set of OSDs. By using Ceph’s

OID format—this includes the tier and object name—as an

input argument of CRUSH calculation, Ceph can find out PG

ID. Therefore, if an OID is given, Ceph is able to look up

the OSD where the object is located. Note that objects that

belong to different PGs can co-exist in the same OSD.

2.2 Deduplication

Deduplication is a well-known data reduction technique to

eliminate redundancy in data [24, 44]. Its typical process is

composed of the following three steps: chunking (e.g., fixed

size chunking [33] and content-defined chunking [26, 46]),

fingerprinting (e.g., sha256), and comparison with existing

fingerprints [29,46]. However, performing deduplication does

not always lead to space savings because datasets have dif-

ferent amount of redundancy; for example, datasets of web

and mail servers [25] may have lower duplicate data than

backup [39] and registry workloads [16, 49].

2.3 How deduplication works with Ceph

Previously, Ceph proposed selective post processing dedupli-

cation based on a tiering mechanism [29]. In this design, Ceph

divides a logical storage space into two groups: a base tier

and a chunk tier. They manage metadata objects and chunk

objects, respectively.

Upon a write request, every object is written to the base

tier first as a metadata object; at this time, it is considered

118 2023 USENIX Annual Technical Conference USENIX Association

Read data from

metadata object 2

Read data from

metadata object 1

Read
chunk

object B

Create

new chunk

object A

Increase

ref. count

Base Tier
Chunk Tier

OSD 1
Dedup

Daemon

Start: 0

Size: 4096
Fp A

Start: 4096

Size: 4096
Fp B

Metadata Object 1

Chunk Map

Cached Chunks Data

Start: 0

Size: 4096
Fp B

- -

Metadata Object 2

Chunk Map

Empty

Set chunk boundary

and generate Fps

OSD 2

Chunk Object A

Chunk Data

Ref. Count 1

Chunk Object B

Chunk Data

Ref. Count 1 → 2

…

…

Client 2 (Read)

Client 3 (Read)

Write

Read

Client 1 (Write)

Write

object 1

Figure 1: Ceph deduplication in prior work [29].

hot and is not eligible for deduplication. When the metadata

object becomes cold (by LRU), OSD divides its content into

several chunks using FSC, and generates a fingerprint from

the corresponding chunk (e.g., Fp A and Fp B of Metadata

Object 1 in Figure 1). Next, OSD stores the generated finger-

prints in a chunk map of the metadata object. Then, using the

fingerprint as OID, OSD stores the chunk as a chunk object

in the chunk tier (Chunk Object A and B). If the chunk object

already exists, OSD just increments the reference count by

one. If not, OSD writes the chunk object, and sets the number

of references to one.

To serve a read request, OSD searches metadata objects

using the original OID. If the cached data resides in an object

like Metadata Object 1 in Figure 1, the cached data is returned

to Client 2. Otherwise, like Metadata Object 2, OSD retrieves

the fingerprints from the chunk map, then it reads Chunk

Object B by using the fingerprint (Fp B) as an OID. Finally,

the OSD relays the data of Chunk Object B to Client 3.

Note that Ceph utilizes the CRUSH algorithm once again

to calculate the chunk object location instead of maintaining

a separate fingerprint index store. This technique is called

double hashing [29].

2.4 Snapshot in Ceph

Ceph handles object snapshots via explicit APIs such as cre-

ation and deletion. OSD creates a new snapshot when a user

makes a change on an object, at which point the version of

the modified object is increased while keeping existing OID.

3 Motivation

3.1 Deduplication on unique chunks

In the prior approach, OSD decides whether an object needs to

be deduplicated or not depending on which state the object is

in between hot and cold instead of its redundancy; if the object

is cold, OSD forces it to be deduplicated without checking its

%

0

25

50

75

100

M
B

0

175

350

525

700

Chunk Size

4KB 8KB 16KB 32KB 64KB 128 KB

Increased Metadata Size (MB) Metadata Size / Written Data Size (%)

Figure 2: Metadata space overhead when deduplicating on unique

objects. The total size of objects is 2 GB with 4 MB objects. Meta-

data size includes deduplication metadata (e.g., chunk information

and fingerprint) and object (chunk and metadata) metadata.

redundancy. Therefore, the deduplication procedure inevitably

generates unnecessary metadata even though the object has no

redundant chunks. In the worst case, the amount of metadata

could account for more than 30% of the total writes as shown

in Figure 2. To eliminate the space overheads of the metadata,

the best way is to remove only duplicate copies of chunks. To

do so, however, we face the following two challenges:

Lack of knowledge of duplicate chunks. Ceph does not

keep track of redundant objects. Moreover, to learn such in-

formation, each OSD would have to periodically check re-

dundancy of all the objects in other OSDs, resulting in high

overheads, interfering with foreground I/Os.

Object state and chunk-level management. The prior ob-

ject management approach is unable to handle the cold ob-

ject that has only unique chunks; when the object becomes

cold, OSD deduplicates the cold object implicitly, degrading

deduplication efficiency. To avoid this problem and maintain

compatibility with the existing Ceph implementation, an ad-

ditional state is needed to distinguish between unique and

duplicate during the state transition from hot to cold. More-

over, there is a chance that an object has too few duplicate

chunks to benefit from the reduced footprint of metadata. In

this case, it’s better not to deduplicate the object because the

majority of the chunks are not redundant.

3.2 Structural limitations

Coarse-grained tiering mechanism. Ceph uses a coarse-

grained tiering approach for deduplication; a background

thread in each OSD updates the object state (hot or cold)

and performs deduplication. However, it places a negative

impact on the OSD foreground performance. In fact, to en-

sure consistency, Ceph holds a lock on PG even within an

iterative loop for object enumeration to protect live objects in

PG. Note that this PG lock is required when OSD handles a

write operation to append a PG-level log for recovery. This is

not a problem when the number of objects is small. However,

if OSD contains a large number of objects, it is non-negligible

because even simple object enumeration is very costly.

Moreover, the proposed tiering method does not expose

the interfaces that allow other external modules to gather

chunk information and trigger deduplication on demand. This

strategy limits the effectiveness of deduplication.

USENIX Association 2023 USENIX Annual Technical Conference 119

No support for CDC. As an initial step, deduplication in

Ceph was proposed based on FSC. FSC has the benefit of

the low overhead calculation to determine chunk boundaries

because it uses a predefined chunk size. However, it is well

known that there is a boundary-shift problem [26] in some

workloads. To avoid the problem, many studies have exploited

CDC [10, 23, 24, 32]. We have tried complementing the fixed

chunking’s limitation using CDC. Unfortunately, applying

CDC to the existing system leads to another challenge.

In the FSC approach, the user should configure the size

of the chunk manually, then a background thread in OSD

deduplicates the content of the chunk. This method is quite

straightforward—there are only three operations: (1) set a

chunk range (e.g., 8 KB chunk), (2) generate a fingerprint

from the chunk, and 3) perform the content migration from

the base tier to the chunk tier. In other words, once a range is

set, the range remains valid until the range setting is changed.

However, it does not seem well suited in terms of CDC be-

cause CDC generates different chunk sizes depending on the

content; CDC may end up triggering multiple range changes

even when a single chunk is mutated, so that the chunk ranges

need to be recalculated.

Also, the prior approach uses three chunk states for dedu-

plication: MISSING, DIRTY, and CLEAN. MISSING means

that the content of the chunks does not exist in the base tier

(not cached). DIRTY represents that the object was updated

after the chunk was deduplicated, while CLEAN indicates

that nothing has changed since the last deduplication opera-

tion. However, in CDC, there is no DIRTY state. If the chunk

becomes dirty, its state becomes invalid as chunk range recal-

culation is required.

3.3 Inefficient reference management

The prior approach uses a false-positive based reference count-

ing design [29]—while a chunk object is allowed to have a

reference of deleted metadata object, the metadata object is

guaranteed to always point to a valid chunk object—to prevent

the failures. Nevertheless, it has other limitations, as follows:

Limitation of using the reference count. Reference mis-

matches may occur if OSD crashes and fails to successfully

complete operations to update reference counts. To check

reference mismatches in Ceph, the scrub process selects a

chunk object, then scans all metadata objects to examine how

many metadata objects have the reference of the chunk ob-

ject; the expected reference count should be less than or equal

to the reference count the chunk object holds. Note that the

chunk object holds its own reference count, as explained in

Section 2.3. Moreover, this behavior is repeated for all chunk

objects, which in turn causes a scalability problem as the

number of objects grows. The time complexity of the scrub

process is O(#chunk objects×#metadata objects).

Snapshot compatibility. In the previous approach, most of

the features work with deduplicated metadata objects, but the

chunk A chunk D chunk C

chunk A chunk B chunk C

chunk A chunk C

New HEAD

0 2

SNAP 8

HEAD
(HEAD will

become SNAP 10)

<Snapshot object>

4 6 8 10

<Chunk pool>

Modified region

chunk

C

chunk

B

chunk

A

①

②

③

chunk

D

Figure 3: Ceph reference management (1. Send reference increment

message, 2. ACK, 3. Update chunk information). SNAP represents a

snapshot.

T 1 32 64 128 256 512

Latency (sec.) 0.13 0.32 0.72 1.8 3.96 9.37

Table 1: Snapshot creation time (T: the number of chunks on 4MB

object, ten objects are used)

snapshot feature does not, because reference management is

missing for snapshot.

One straightforward yet naïve approach to supporting snap-

shot would be to increase (or decrease) the reference counts

of all chunks of a deduplicated object whenever its snapshot

is created (or deleted). However, this would generate an exces-

sive number of messages among OSDs. Figure 3 describes the

overhead. There is a HEAD that is the latest object version.

For an incoming write to update the HEAD, OSD creates a

snapshot (SNAP 10) in ascending order, excluding the new

write. At this time, all chunk information within unmodified

regions (chunks A and C) in the HEAD should be copied to

the new HEAD’s metadata ❸, after the reference increment

(❶ and ❷) is done. Therefore, the snapshot creation will be

delayed until OSD receives all ACKs for the reference in-

crement. Note that an operation to increase reference count

is synchronously done due to false-positive characteristics.

Table 1 shows the snapshot creation time depending on the

number of chunks. If there are 512 chunks on objects, the

latency dramatically increases up to 9.37 seconds.

Aside from the delay, there is a redundant increase in the

chunk’s reference count if every snapshot has its own refer-

ence. For example, the reference count of chunks A and C will

be three because new HEAD, SNAP 8 and SNAP 10 have the

same chunks A and C in Figure 3. What is important is that

even if the new HEAD, SNAP 8 and SNAP 10 are deleted,

the reference count may not decrease due to the false-positive

based reference counting strategy used. Although this ref-

erence leak can be fixed via the scrub process, it consumes

additional space, until the scrub process is complete.

4 Design and Implementation of TiDedup

Figure 4 describes the overall structure of TiDedup. Basi-

cally, clients are not aware of the existence of the chunk tier

and issue I/Os to the metadata objects in the same way as

normal objects. For instance, the OSD stores content to the

metadata object (W1) on a write request. In addition, upon a

read request, OSD either returns the metadata object to the

client immediately if it is cached (R1) or reads the content

120 2023 USENIX Annual Technical Conference USENIX Association

Client 2

(Read)

Base Tier

OSD 1

Start: 0

Size: 4096
Fp A

Start: 4096

Size: 4096
Fp B

Metadata Object 1

Cached Data

Start: 0

Size: 3000

FLAG

NORMAL

Metadata Object 2

Empty

Start: 8192

Size: 4096
Fp C

Metadata Object 3

Cached Data

Chunk Tier

OSD 2

Ref. MOID 1

Chunk Object A

Chunk Data

Ref. MOID 1

Chunk Object B

Chunk Data

Normal Object

Client 1

(Write)

Data of MOID 2

Write (W)

Read (R)

Deduplicate Object (DO)

R1

W1

DO-1

Trimmed Chunk Data

Reference List

Reference List

Flush Cold State Object (FC)

FC

Deduplicate Chunk (DC)

Chunk Map

Chunk Map

Chunk Map

R2-2

DO-2

R2-1

Ref. MOID 3

Chunk Data

Reference List

Chunk Object C

Crawler
(Incremental / Full)DC-3

DC-2
DC-1

Figure 4: TiDedup architecture.

from the chunk object (R2-1 and R2-2). The crawler, which is

responsible for triggering deduplication, scans objects—the

scanning range is evenly divided and distributed to multiple

threads in the crawler—on the base tier in either an incre-

mental or full manner to look for redundant chunks. Then,

the crawler checks the state of the metadata object using stat;

stat retrieves the metadata object’s information about hot-

ness, deduplicated, and dirty. Depending on the state of the

metadata object, the crawler works as follows.

• If the metadata object is hot, the crawler skips performing

deduplication.

• If the metadata object is cold and contains more duplicate

chunks than the threshold, the crawler performs deduplication

if the object was not deduplicated before.

• If the metadata object is cold and has a few duplicate chunks,

the crawler makes sure that the cached data is moved to the

chunk tier (FC).

The crawler performs deduplication on the target object by

using either tier_flush (DO1 and DO2 in Figure 4)—triggering

CDC and moving chunks to chunk objects—or set_chunk—

copying a target chunk to a chunk object in chunk tier (DC1)

and setting a reference between metadata object and chunk

object (DC2). Then, the crawler calls tier_evict to trim a range

of the chunk in the metadata object, if necessary (DC3). These

APIs will be described fully in Section 4.2.1.

4.1 Selective cluster-level crawling

To reduce the overhead as described in Section 3.1, we

propose Selective cluster-level crawling, which crawls and

carefully deduplicates objects on a base tier. The crawler

is designed to run as a stand-alone application by decou-

pling a controller scheme—finding live objects and triggering

deduplication—from OSD. Furthermore, we adopt incremen-

tal and full modes of crawling; both modes are introduced

to figure out dedup-able objects on the base tier, but their

crawling costs are different. In incremental mode, by choos-

ing a small number of metadata objects gradually, the crawler

reduces the chances of overutilizing system resources; dur-

ing the daytime, it runs not to disturb user I/Os and unex-

pected high-priority I/Os, such as recovery and consistency

checks. However, the incremental mode can not determine all

dedup-able objects at once due to the limited range of search.

To complement this weak point, full mode applies the full

search without idle time. The drawback of the scheme is that

it consumes more resources than the incremental mode does.

Therefore, the crawler in full mode is scheduled to run once

a week or at a longer interval, mostly during the nighttime

when the system anticipates lower user I/O traffic.

In incremental mode, at first, the crawler gets a list of live

objects sorted by OID on the base tier, then chooses a small

group of objects from the list. Next, the crawler looks for

redundant chunks among the selected objects—the crawler

reads the objects, then runs CDC on the objects to calcu-

late the fingerprint from the chunk, checking if the finger-

print is identical to other fingerprints collected before. The

crawler considers the chunk a duplicate chunk if the chunk

meets the condition; we define chunk duplicate count,

which is the number of redundant chunks among the ob-

jects. If chunk duplicate count is higher than the thresh-

old value K, the crawler regards the chunk as a good can-

didate for deduplication. Once duplicate chunks are found,

the crawler has two tasks to do as follows. First, the crawler

performs chunk-level deduplication (DC1, DC2, and DC3

in Figure 4). Second, the crawler checks information about

how many duplicate chunks there are in an object. We call it

intra-object deduplication ratio. The object, which

has higher intra-object deduplication ratio than the

threshold value L, is deduplicated via tier_flush, which is ex-

plained in the next section, by the crawler. The crawler pauses

incremental mode when the tasks for the small group of ob-

jects are done, and resumes incremental mode, choosing the

next small group of objects after the user-configured time T,

30 seconds by default. If there are no remaining objects in

the list, the crawler refreshes a list of live objects. Then, it

repeats the procedure in reversed direction while clearing the

collected fingerprint list. In full mode, the differences from

the incremental mode are the time interval and the search

scope—it scans all objects in the base tier with a large time

interval.

The crawler manages an in-memory fingerprint store to

keep track of duplicate chunks; a key-value pair is used:

⟨fingerprint : redundant count⟩. The crawler updates the pair

value when a fingerprint is calculated in either incremental

USENIX Association 2023 USENIX Annual Technical Conference 121

object_info_t { // object’s metadata
manifest_info_t {

chunk_map <offset, chunk_info_t>;
}
version;
object state;

}
chunk_info_t {

chunk state;
destination offset;
length;
destination OID; // fingerprint value from

} chunk’s object

(A) Base data structure

Meta

data

Off
set chunk_info_t

Base tier

Metadata Object A

Meta

data

Ref.

Chunk tier

Chunk Object B

Meta

data

Off

set
chunk_info_t

Base tier

Metadata Object A

Meta

data

Ref.

Chunk tier

Chunk Object B

①

②

③ ④

Meta

data

Ref.

Chunk Object C

①,②

③

(B) set-chunk (C) tier-flush

{A}0 {CLEAN, 0, B, 4}

0

4

{CLEAN, 0, B, 4}

{CLEAN, 0, C, 4} {A} {A}

Crawler Crawler

Updated area after ack

Updated area after increment message

Updated area after

chunk_create_or_get_ref messages

Figure 5: Base data structure and two API procedures (set_chunk and tier_flush).

or full mode. If memory usage exceeds a given threshold

value configured at startup, the crawler deletes all entries

in the fingerprint store, except for duplicate fingerprints—

the number of redundancies is higher than the threshold—

information. This strategy might lose deduplication opportu-

nities; the crawler is likely to drop fingerprints that appear

once in a while under memory pressure. However, the crawler

can become stateless, which overcomes practical issues via

simple re-execution.

Object Management. A metadata object in a base tier can

be in one of the following states: hot, cold, or deduped. When

an object is newly created, its initial state is set to hot by

default; the hot object is not deduplicated because it is more

likely to be mutated in the near future. The transition from

hot to cold takes place over time when TiDedup determines

that a certain hot object needs to be evicted based on LRU.

Then, the cold object is deduplicated if the corresponding

object contains more duplicate chunks than intra-object

deduplication ratio by the crawler. Otherwise, the cold

object is migrated to the chunk tier without deduplication

process (no chunking and fingerprinting).

TiDedup promotes chunk objects to the base tier if they are

either updated or frequently accessed by read operations to

avoid decoding overhead of deduplication; the object state is

changed to a hot state at this time. Since we decide not to use

the background thread at all, as explained in the following

section, OSD keeps the object state using existing in-memory

object metadata (object_info_t) and updates its state when the

object is accessed.

4.2 Event-driven tiering mechanism with CDC

We design event-driven tiering to process multiple requests

concurrently and minimize interference to foreground I/Os.

Event-driven tiering does not perform any background works

that can affect incoming I/O requests. Instead, it exposes

APIs to the crawler to perform deduplication on demand. In

addition, we redesign the overall I/O path to support CDC.

Basic read and write. Upon a read request, OSD looks

up the metadata of the corresponding metadata object (ob-

ject_info_t) where manifest_info_t—metadata related to

deduplication—is stored. As shown in Figure 5 (A), man-

ifest_info_t has chunk_map, which is a map data structure

including source offset and chunk_info_t, to maintain map-

ping information between the source and destination chunk.

Plus, each chunk_info_t has a state variable that indicates

either MISSING or CLEAN. If the chunk state is MISSING,

OSD calls tier_promote to move the chunk object from the

chunk tier to the base tier in advance of responding to the user.

If the chunk state is CLEAN, OSD replies to the user with the

existing content the metadata object has.

For a write request, before storing content to the metadata

object, OSD clears the chunk information (chunk_info_t in

chunk_map) within modified range, while sending delete mes-

sages; if the write request overwrites a whole range of the

object, no chunk_info_t exists. This is because modifying

content means that the corresponding chunks are no longer

meaningful—all chunk boundaries should be recalculated by

CDC.

4.2.1 APIs with CDC

Set_chunk. The purpose of set_chunk is to set a chunk bound-

ary within a metadata object for deduplication to support

a case that only a specific range of the metadata object is

redundant. To do so, set_chunk stores the given input argu-

ment—<source OID, destination OID, source version, source

offset, length, and destination offset>—to the corresponding

chunk_info_t in chunk_map. Set_chunk has two main roles:

(1) to increase the target chunk’ reference count, and (2) to

update the chunk information.

As soon as OSD receives a set_chunk message from the

crawler (❶ in Figure 5 (B)), it sends a message to add the

reference of the source object ❷. Since calling set_chunk

implies that the source object takes a reference of the tar-

get chunk object, reference increment should be conducted

before the chunk information is stored. We will describe ref-

erence management in more detail in the next section. After

the reference increment is completed ❸, TiDedup updates

chunk_info_t. For example, when a user calls set_chunk with

<source OID, fingerprint OID, v2, 4096, 8192, and 4096>,

the OSD adds chunk_info_t (CLEAN, 4096, fingerprint OID,

8192) to chunk_map at offset 4096 if the object’s version is

v2; note that OID includes tier information where the object

is located and OSD increases the object’s version number

whenever the object is changed. The crawler is required to

maintain the target version to deduplicate objects correctly.

122 2023 USENIX Annual Technical Conference USENIX Association

Meta

data

Base tier

Metadata Object A

Crawler

0

Meta

data

Base tier

Metadata Object A

0
{CLEAN, 0, B, 4}

②
Meta

data

Ref.

Chunk tier

Chunk Object B

{A}

(A) tier-evict (B) tier-promote

④

Cached data

Trimmed chunk data②

(tier-evict)

①
read

Promoted chunk data

Cached data
③

data
Chunk data

{MISSING, 0, B, 4}
↓

Off
set chunk_info_tOff

set
chunk_info_t

{MISSING, 0, B, 4}

{CLEAN, 0, B, 4}
↓①

Crawler or Internal OSD

(tier-promote)

Figure 6: Procedure of tier_evict and tier_promote.

Set_chunk presumes that the target chunk is already copied

to the destination OID before calling set_chunk, so the initial

state of chunk_info_t is CLEAN.

Tier_flush. The crawler invokes tier_flush to remove redun-

dancy on a metadata object, not a chunk; tier_flush dedupli-

cates all contents on a metadata object explicitly if the object

is not hot. Once tier_flush is called (❶ in Figure 5 (C)), OSD

reads all contents from the metadata object, then executes

CDC to generate chunks. After that, OSD generates a finger-

print value from each chunk ❷. Using given the fingerprint

values as OID (B and C), OSD sends other OSDs in the chunk

tier a compound operation, called chunk_create_or_get_ref

❸—this operation either increases the reference count if the

target object is present or creates a new object with setting

the reference count to one through transaction if the ob-

ject does not exist. Once OSD receives all completion re-

sponses of the chunk_create_or_get_ref, it stores the meta-

data changes (e.g., chunk_info_t), and set the metadata ob-

ject to deduped ❹. Although a failure can occur on rare

occasions during tier_flush, TiDedup maintains consistency,

because the metadata changes caused by tier_flush are not

persistent until all the chunk_create_or_get_ref operations

are completed. Note that tier_flush only updates metadata in

terms of the metadata object. For example, if two out of ten

chunk_create_or_get_ref are only successfully completed,

TiDedup never updates the corresponding chunk_info_t. In-

stead, the crawler will retry to deduplicate the metadata object

because it is not marked as deduped.

Tier_evict. Tier_evict removes the object’s content using the

punch-hole technique [20,22]. Figure 6 (A) demonstrates how

tier_evict works. There is chunk B on the metadata object A.

Once tier_evict is called, chunk B is marked as MISSING ❶,

and then chunk B is trimmed from the metadata object A ❷,

thereby resulting in a transition from a normal file to a sparse

file. Note that the remaining parts of the metadata object A,

which are not used as a chunk, remain on the metadata object

A without removal. If a user tries to access the trimmed chunk,

OSD in the base tier retrieves the original content from the

chunk tier, before handling the user request.

Tier_promote. Tier_promote performs chunk migration from

the chunk tier to the base tier even if a single chunk of meta-

data object is MISSING. Upon tier_promote, TiDedup finds

chunks that have MISSING state in the metadata object ❶,

as shown in Figure 6 (B), then sends read requests to corre-

sponding chunk objects ❷. After the read requests are com-

pleted, TiDedup stores the given chunks in the base tier ❸.

Unlike tier_flush, tier_promote updates chunk’s content, and

changes the chunk state from MISSING to CLEAN as soon

as each read is succeeded ❹. For instance, although two out

of ten reads are completed, TiDedup keeps the two completed

chunks up-to-date.

4.3 OID shared reference management

To minimize scrub overhead and provide snapshot compati-

bility, we propose OID shared reference management design

based on false-positive reference counting.

Data format for reference management. As described in

the previous section, reference management using the number

of references causes the scrub process to take a significant

time to complete. To reduce the execution time for the scrub

process, TiDedup makes use of Ceph’s OID format to repre-

sent the reference instead of using a simple number. Since

Ceph’s OID contains location information, as described in

Section 2.1, TiDedup can efficiently retrieve objects by their

OID. In other words, if OID is used as a reference, TiDedup

is able to recognize which metadata object refers to chunk

objects like a back pointer and vice versa.

Scrub worker. TiDedup deploys a scrub worker as a separate

thread in the crawler. Scrub worker wakes up periodically (the

default value of wake-up period is equal to that in the full

mode), then it begins to get a list of stored chunk objects on

chunk tier and read their extended attributes one by one, each

of which storing the reference information. Since the chunk

object has its source OIDs, scrub worker does not need to

read all metadata objects on the base tier to find reference

mismatch. Instead, it just reads the metadata object whose

OID is the source OID of the chunk object, then examines that

the object has a reference to the chunk object. If the metadata

object has a corresponding chunk object’s OID, scrub worker

repeats this until no more source OIDs that have not been

checked present in the chunk object. If not, scrub process

corrects the metadata object by removing the destination OID

which is identical to the chunk object’s OID.

Snapshot. To overcome snapshot-related limitations as de-

scribed in Section 3.3, we introduce OID shared reference

within an object. The key idea is that TiDedup does not gener-

ate an add/delete reference message if a chunk is identical—

same offset, length, and destination OID—to a chunk in the

adjacent snapshot. For instance, the reference count of BBB

in Figure 7 is one; this means that only one add reference

message is sent to chunk object BBB, because the chunk

BBB in SNAP 7 is identical to chunk BBB in the new HEAD

and SNAP 5, respectively. Note that we use the number of

references here for the explanation.

USENIX Association 2023 USENIX Annual Technical Conference 123

CCCSNAP 5

DDDNew HEAD

0 2 4 6 8 10

AAA BBB

BBBAAA

Offset

DDD
SNAP 7

AAA BBB

➔ Create a snapshot

➟

HEAD

Figure 7: Snapshot reference management on snap creation.

CCCSNAP 5

DDDSNAP 7

DDD➝CCCHEAD

0 2 4 6 8 10

AAA BBB

BBB

BBB

AAA

AAA

Modified region Clean region

Offset

Figure 8: Snapshot reference management on overwrite (chunk

DDD at offset 8 is changed to chunk CCC).

Figure 8 shows another example of a write operation. There

is a modified region and clean regions in HEAD. TiDedup

performs an add reference operation for chunk CCC—sending

an add reference message then updating the corresponding

chunk_info_t after the add reference message is done—, but

does not generate a delete reference message for chunk DDD

because SNAP 7 includes chunk DDD at offset 8. In addition,

TiDedup does not do anything regarding all chunks in the

clean region because each of the chunks is the same as the

one in the previous snapshot.

However, a simple OID shared reference, as mentioned

above, is insufficient to maintain consistency in reference man-

agement when the snapshot is removed. In Figure 8, SNAP

7 has a different chunk DDD compared to both SNAP 5 and

HEAD at offset 8, so the reference count of chunk CCC is

two, not one. At this point, if SNAP 7 is then removed, the ref-

erence count of chunk CCC will still remain two, even though

it should be adjusted to one. To prevent this inconsistency,

TiDedup checks both the prior snapshot and the next snapshot

(SNAP 5 and HEAD in Figure 8) when the deletion occurs. If

both chunks are identical, TiDedup sends a delete reference

message.

As such, with OID shared reference, TiDedup generates

only a limited number of add reference messages, regardless

of many snapshot creations. Although TiDedup requires an

additional search operation to identify the same chunks on the

adjacent snapshots, this operation is relatively cheaper than

handling the add reference operation.

OID shared reference can also work with proposed APIs,

such as set_chunk (described in Section 4.2.1). In the

set_chunk case; TiDedup exploits set_chunk to make a dedu-

plicated chunk at any position in snapshots, as shown in Fig-

ure 9 (A), TiDedup performs an add operation for chunk AAA

because there is no same chunk on the two snapshots (HEAD

and SNAP 30), but nothing occurs in Figure 9 (B) because

the HEAD includes chunk CCC. On the other hand, TiDedup

generates a delete reference message for chunk CCC in Fig-

AAASNAP 20

ABCSNAP 30

CCCHEAD

0 2 4

(A)

CCC

ABC

CCC

0 2 4

(B)

CCC

CCC

CCC

0 2 4

(C)

Configured by set_chunk

Offset

Figure 9: set_chunk (gray are new chunks by set_chunk).

DDD CCCHEAD

BBBSNAP 20

AAA EEEHEAD

BBBSNAP 20

0 2 4 6 8 10

(A) Before rollback

Offset

AAA EEESNAP 30

AAA EEESNAP 30

(B) After rollback

0 2 4 6 8 10Offset

Figure 10: Rollback (HEAD is rollbacked to SNAP 30).

ure 9 (C) because both HEAD and SNAP 30 have the same

chunk CCC.

Rollback. Rollback replaces the HEAD with a given snap-

shot version. Upon rollback, TiDedup promotes all MISSING

chunks both the HEAD and a given snapshot have from the

chunk tier to the base tier. Then, the current HEAD is removed

to make a correct clone into the HEAD. Figure 10 shows

how shared reference count works with rollback. SNAP 30’s

chunks (chunks AAA and EEE) are copied to the HEAD

(in Figure 10 (A)). Then, add operations for both AAA and

EEE are needed because SNAP 20 has no identical chunks

compared to the updated HEAD.

Crash consistency. OID shared reference management can

maintain consistency after the crash because it is based on

false-positive design. TiDedup guarantees the chunk object

must exist if its metadata object has a reference. For this, the

add operation for deduplicated chunks and update operation

for relevant metadata are performed atomically. Moreover,

TiDedup does not generate a delete reference message unless

all shared chunk references in the object are unreferenced. Al-

though TiDedup deletes chunk_info_t on sending a delete ref-

erence message without checking the completion of a delete

operation—removing the metadata OID from the chunk ob-

ject’s extent attribute, this potential mismatch (a chunk object

has a reference to a metadata object, but not vice versa) can

be fixed by the scrub worker.

Reference set/get APIs. To set/get the reference, TiDedup

adds four APIs that can be called by external clients and

internal OSDs. chunk_create_or_get_ref creates a chunk ob-

ject if the chunk object is not present, then adds a reference,

which is the metadata OID. There are reference_get and ref-

erence_put to add/delete the reference of the chunk object.

read_reference returns the list of references either the meta-

124 2023 USENIX Annual Technical Conference USENIX Association

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10111213141516

D
ed

u
p

.
ra

ti
o

 (
%

)

Days

Type
Workload 1 Workload 2 Workload 3 Workload 4

Total Size 44 TiB 70 TiB 37 TiB 20 TiB

Figure 11: Space saving on factory data.

(A) Throughput (B) Read average latency (C) Write average latency

40
60
80

100
120
140
160
180
200
220
240

0

9
0

1
8
0

2
7
0

3
6
0

4
5
0

5
4
0

6
3
0

7
2
0

8
1
0

9
0
0

9
9
0

1
0

8
0T

h
ro

u
g
h
p
u
t

(K
IO

P
S

)

Timestamp (sec)

NoDedup Fixed TiDedup

4

40

0

9
0

1
8
0

2
7
0

3
6
0

4
5
0

5
4
0

6
3
0

7
2
0

8
1
0

9
0
0

9
9
0

1
0
8
0

L
o
g

-s
ca

le
d
 l

at
en

cy

Timestamp (sec)

NoDedup Fixed TiDedup

4

40

0

9
0

1
8
0

2
7
0

3
6
0

4
5
0

5
4
0

6
3
0

7
2
0

8
1
0

9
0
0

9
9
0

1
0

8
0

L
o
g

-s
ca

le
d
 l

at
en

cy

Timestamp (sec)

NoDedup Fixed TiDedup

(m
se

c)

(m
se

c)

Incremental
mode

Incremental
mode

Incremental
mode

Full
mode

Full
mode

Full
mode

Figure 12: YCSB throughput (Workload a, record count is 500K, operation count is 20M).

data or the chunk object has. One important thing here is that

the metadata object must return a reference list according to

OID shared reference design; for example, in Figure 8, the

reference list is {chunk AAA, BBB, CCC, CCC, and DDD}.

On the other hand, the chunk object returns all references

without considering OID shared reference.

5 Evaluation

5.1 Environmental setup

We use 10 machines in total, each of which is equipped with

a 2-way AMD EPYC 7543 32-cores (80 threads) per NUMA

node and 512 GB of DRAM. All nodes are connected with

a 100 GbE network. Six nodes are used as storage nodes.

Four nodes are clients to issue I/Os for evaluation. The latest

version (Reef) of the Ceph storage cluster is configured by

default parameters, except that the replication factor is two.

Each machine has six BM1733 QLC SSDs (4 TB) and runs

an OSD daemon on a single SSD. Note that we use high-

performance equipments for evaluation to eliminate other

performance factors. We use FastCDC [46] with the average

chunk size set to 16KB. SHA1 is used to generate finger-

print value among the available fingerprint algorithm options

(e.g., SHA1, SHA128, and SHA256). We set Intra-object

deduplication ratio as 30% and chunk duplication

count as four empirically. NoDedup represents default Ceph

[42] without deduplication. Fixed means a prior deduplica-

tion approach for Ceph [29].

5.2 Deduplication ratio and throughput

5.2.1 Space saving

Internal cloud dataset. As shown in Table 2, Fixed shows

limited data reduction compared to TiDedup. In Logs dataset,

the data, which is partially mutated without data alignment,

continues to be appended to Ceph cluster—the system mon-

itor records similar logs from the cluster every 30 seconds,

so that CDC is more effective than Fixed. In addition, CDC

can save more space on Virtual disks dataset even if the

dataset includes not only OS partitions but also user data. The

reason is that the dataset is gathered from the internal devel-

oper cloud service, so user data includes duplicate data, such

as mail, source code, and large images.

Virtual disks Logs

Chunk size 8K 16K 32K 8K 16K 32K

Fixed 21% 12% 10% 5.7% 5.4% 5.3%

TiDedup 45% 36% 27% 18.5% 16% 12.6%

Table 2: Space saving on real-world datasets depends on the chunk-

ing algorithm and average chunk size. Virtual disks represents

VMware vSphere images (10.1 TB) from a developer cloud service

(67 users). Logs represents service logs (560 GB) for cloud infras-

tructure including monitoring and device state.

Factory dataset. We replay factory dataset generated during

the semiconductor manufacturing on Ceph’s object service

(RGW). The factory dataset is normally used to detect or pre-

dict malfunctions of semiconductor products. We collect four

types of data in total on a daily basis. As shown in Figure 11,

TiDedup can achieve a high deduplication ratio (up to 30%)

on Workload 2 (chip information during manufacturing). This

is because Workload 2 has time-series monitoring logs having

periodic values—the similar structured data is consistently

appended. Unlike Workload 2, Workload 1 (equipment sta-

tus) also includes time-series logs but has a smaller entry

size—small tables with timestamps. This leads to less data

reduction. Workload 3 (logs for photo lithography) has daily

archive files stored in an incremental manner. It contains a

large amount of redundant data and shows a high deduplica-

tion ratio. Workload 4 consists of metrology and inspection

image files which are already compressed and contain little

redundancy. Thus, it is not affected by deduplication at all.

5.2.2 Throughput

YCSB. We use YCSB workload a (read/write ratio is 50:50)

to generate foreground I/Os. YCSB runs on four clients with

sixteen threads using Ceph’s block device service (RBD). As

shown in Figure 12, the crawler is launched with incremental

(at 180 seconds) and full mode (at 720 seconds), respectively—

each of which runs for 300 seconds. Note that the elapsed

time for incremental mode includes user idle time.

Figure 12 (A), (B), and (C) shows throughput and aver-

age latency. With TiDedup, throughput is not degraded sig-

nificantly compared to NoDedup because TiDedup does not

trigger the deduplication aggressively until the object is cold.

TiDedup also achieves near-constant throughput unlike Fixed,

which suffers a significant performance drop because a back-

ground thread blocks foreground OSD I/Os. Moreover, TiD-

USENIX Association 2023 USENIX Annual Technical Conference 125

D
ed

u
p

.
ra

ti
o

0%

13%

25%

38%

50%

Second

0 40 80 120 160 200 240 280 320

8 KB 16 KB 32 KB 64 KB

M
et

ad
at

a
/

T
o

ta
l

cl
ie

n
t

w
ri

tt
en

 d
at

a

0%

3%

5%

8%

10%

Average chunk size

64 KB 32 KB 16 KB 8 KB

(A) Deduplication ratio (B) Metadata usage

Figure 13: Space saving depending on the average chunk size.

0

10

20

30

40

50

60

70

80

90

0

3
4

6
8

1
0
2

1
3
6

1
7
0

2
0
4

2
3
8

2
7
2

3
0
6

3
4
0

3
7
4

4
0
8

4
4
2

4
7
6

T
h
ro

u
g
h
p
u
t

(K
IO

P
S

)

Timestamp (sec)

 NoDedup TiDedup

0

5

10

15

20

25
0

3
4

6
8

1
0
2

1
3
6

1
7
0

2
0
4

2
3
8

2
7
2

3
0
6

3
4
0

3
7
4

4
0
8

4
4
2

4
7
6

T
h
ro

u
g
h
p
u
t

(K
IO

P
S

)

Timestamp (sec)

NoDedup TiDedup

(A) Read (B) Write

Figure 14: Recovery performance (Average IOPS of four clients).

edup with incremental mode has nearly no effect on both

throughput and average latency due to a limited search scope.

However, TiDedup with full mode badly affects performance,

due to two reasons: (1) cold or deduped objects are accessed

frequently in full mode, and, (2) YCSB’s request can be

blocked during tier-flush.

5.3 The impact of average chunk size

Figure 13 shows how much storage space can be saved de-

pending on the average chunk size [46]. We generate 50%

of redundant contents by fio with varying chunk sizes, then

launch the crawler to perform deduplication. In the case of

a large chunk (>16K), the amount of reduced data increases

rapidly because the number of generated chunks is less than

the small chunk’s size, so the deduplication job can be done

early. Also, we observe that the deduplication ratio does not

reach 50% due to additional metadata for deduplication, as

shown in Figure 13 (B). Interestingly, CDC generates non-

aligned data, unlike FSC; for instance, a 8,200 byte chunk—

not aligned by block size (4,096 byte)—can be generated by

CDC, causing non-aligned data allocation. As a result, 12 KB

is allocated even though the requested object size is 8,200

byte. This aggravates metadata consumption.

5.4 Worst-case recovery performance

We run fio with 8KB random read/write workload—the ratio

between reads and writes is 8:2. During the mixed workload,

the crawler issues bursty traffic—64 threads submit object

reads and tier_flush concurrently—to the base tier, and trig-

gers scrub using 16 threads. On top of that, 4 out of 36 OSDs

are suddenly down during the test, resulting in generating

recovery I/Os for data rebalance. Figure 14 (A) and (B) show

TiDedup’s read and write IOPS over time. Overall, we observe

performance fluctuation due to the bursty traffic from the

1

10
100

1000

10000

100000

1000000

10000000

10000000
1E+09

1

10

100

1000

10000

100000

1000000

10000000

1 2 3 4 5

#
 C

h
u

n
k

 o
b

je
ct

s

S
cr

u
b

 t
im

e
(s

ec
)

Metadata objects

TiDedup (SS) Fixed (SS) TiDedup (SR) Fixed (SR) # chunk objects

103

104

105

106

107

108

100 1,000 10,000 100,000 1,000,000

109

10⁶

103

10⁴
10⁵

10⁷

102

102

Figure 15: Scrub time comparison (SS: Scrub-search, SR:

Scrub-repair). SR time includes SS time.

crawler. At around 50 seconds, two OSDs are pulled out from

the storage cluster and the performance decreases rapidly due

to the recovery I/Os. After 50 seconds, two more OSDs are

out and the fluctuation gets worse. However, at around 350

seconds, all four OSDs rejoin the cluster and the performance

of foreground I/Os are recovered eventually. Compared to

NoDedup, even in the worst case, TiDedup only reduces the

performance by 25% on average. It is noteworthy that we can

further mitigate foreground performance drop if the crawler

employs a flow control technique in the event of congestion.

5.5 Scrub time

To compare scrub time between Fixed and TiDedup, we run

a crawler, which spawns sixteen scrub threads (each thread

issues six scrub requests asynchronously), with varying the

number of metadata objects as shown in Figure 15. Each

Scrub thread searches objects in the chunk tier and reads

chunk information as described in Section 4. If the chunk

object has a reference to the metadata object, the scrub thread

reads either all metadata objects (Fixed) or a corresponding

metadata object (TiDedup) in the base tier to check if the ref-

erence for chunk object is valid (Scrub-search). If the refer-

ence is invalid, TiDedup fixes the mismatch (Scrub-repair).

In Fixed, scrub time increases considerably due to a full scan

for metadata objects. TiDedup also takes considerable time for

scrub, but the execution time is significantly reduced because

TiDedup needs only a single read to check if the referenced

metadata object is valid. In the case of one million metadata

objects, TiDedup takes about four hours to complete, while

we could not measure the Fixed scrub time because even

after five days, the job had not been done.

5.6 Snapshot creation and deletion

Figure 16 (A) shows snapshot creation time (ten objects) as

the number of deduplicated chunks grows. To measure snap-

shot creation time, we create deduplicated chunks on a meta-

data object and issue snapshot creation requests to the meta-

data object. In Fixed, the execution time to create a snapshot

increases linearly because the more deduplicated chunks the

snapshot has, the more operations (chunk_create_or_get_ref)

OSD needs to handle. On the other hand, TiDedup takes a

constant time even thanks to the OID shared reference count.

126 2023 USENIX Annual Technical Conference USENIX Association

(A) Creation (B) Deletion
T

h
e

n
u
m

b
er

 o
f

m
es

sa
g
es

0

300

600

900

1200

The number of chunks

1 32 64 128 256 512

Fixed TiDedup-best TiDedup-worst

S
ec

o
n
d
s

0

2.5

5

7.5

10

The number of chunks

1 32 64 128 256 512

Fixed TiDedup

Figure 16: Snapshot creation/deletion comparison.

YAML Description

dedup-io-mixed read, write, set_chunk, tier_promote, tier_evict,

tier_flush

dedup-io-snap read, write, set_chunk, tier_promote, tier_evict,

tier_flush, snap_create, snap_remove, rollback

Table 3: Integration test description.

Figure 16 (B) shows the number of generated messages

from an OSD during snapshot deletion. TiDedup-best is the

best-case scenario where no chunk differs from adjacent snap-

shots (e.g., chunk AAA at offset 0 in Figure 8). On the other

hand, TiDedup-worst represents the extreme case where all

chunks are different from adjacent snapshots and both the

prior and next snapshots are identical (e.g., chunk DDD at

offset 8 in Figure 8). In TiDedup-best, no messages are gener-

ated. However, compared to Fixed, TiDedup-worst generates

a higher number of messages because TiDedup needs to re-

duce the references due to the same adjacent snapshots. But,

these additional messages are proactively generated. Unlike

TiDedup, Fixed would eventually generate the messages if

further deletion occurs on either the prior or the next snapshot.

5.7 Integration test

We improve existing stress test coverage in Ceph to make TiD-

edup stable. With yaml as shown in Table 3 and the test code

we added, Ceph’s integration test framework, called teuthol-

ogy [38], can perform the tests with/-without other tests (e.g.,

network disconnection and OSD fail) for reliability. More-

over, to ensure reference reliability, the workload generator

also checks if the live chunk object’s source reference is valid

after all operations are done. TiDedup passes the combination

tests conducted by teuthology.

6 Discussions

Small chunk vs. large chunk. Small chunk sizes (< 8KB)

would result in numerous small chunk objects and potentially

large space overheads. On the other hand, the use of a large

chunk size may lead to a lower deduplication ratio. In order to

hit a desirable trade-off point, TiDedup provides an estimate

CLI, which shows how much storage space can be saved

depending on options, to users. TiDedup allows the users to

select suitable options (e.g., FSC, CDC, and chunk size) or

even decide not to use deduplication at all.

How scalable is crawler? We did not fully address how our

crawler design works at scale. In Section 5, we deploy a single

application that has multiple threads for crawling. However,

if the cluster has a large number of objects, this application

may not be able to cover all objects properly. To solve this

problem, the system administrator can deploy many crawlers

on demand where each crawler is in charge of a sub-dataset

of the storage cluster depending on the workload. This task is

easily done by using container-based deployment because the

crawler is stateless.

Additional space overhead for OID reference. Since the

OID-shared reference scheme uses OID to represent a ref-

erence, chunk objects should maintain all metadata object’s

OIDs referring to the chunk objects, requiring more storage

space than the reference count method. We limit the number

of chunk object’s references to a threshold value. TiDedup

forces OSD to stop performing deduplication on the chunk

objects in case their number of references is over the threshold

value.

Applicability of TiDedup. TiDedup relies on two schemes

that are prerequisites for integration with other distributed

storage systems: (1) two separate address spaces (base and

chunk tier), and (2) chunk object lookup by using a hash-based

mapping between those two tiers. While the two address

spaces scheme is easily applicable to other storage systems,

the lookup method is tightly coupled with the hash-based

object placement scheme [15, 19, 36, 43].

7 Lessons Learned

Rethinking a tiering mechanism in a distributed storage

system with strong consistency. Ceph originally imple-

mented the tiering structure where a background thread reads

and migrates objects between tiers for cache tiering, so we

anticipated that adding a deduplication feature on top of the

existing architecture would be straightforward. However, we

needed to consider recovery scenarios against a variety of

failure types. Also, the deduplication jobs not only required

holding a PG lock for an extended period, especially as the

number of objects grew, but also introduced a new lock do-

main. Note that a strong consistency storage system, such as

Ceph, handles I/O operations in strict order while holding

locks. Unfortunately, this approach eventually led to an imbal-

ance in I/O loads across different PGs, resulting in significant

degradation of user-perceived performance and tail latency.

Considering these challenges, we made the decision to dep-

recate the existing tiering mechanism. Instead, we opted to

delegate the responsibility of the tiering mechanism within

OSD to other components, such as the crawler.

Deduplication is promising only when data is dedup-able.

In a distributed storage system, storing data entails duplicate

copies to ensure availability through replication or erasure

coding. However, this increases storage space overheads more

than we expected due to the following two reasons: (1) ad-

ditional metadata space for deduplication, and (2) unaligned

existing metadata caused by the small size of the new meta-

USENIX Association 2023 USENIX Annual Technical Conference 127

Table 4: Comparison of previous deduplication architectures and this work.

TiDedup CephDedup [29] Data Domain [9] DupHunter [49] Nitro [21] idedup [35]

Processing post post post post in-line in-line

Selective dedup O X X O X O

Chunking CDC, FSC FSC CDC unknown FSC FSC

Scale global global local global local local

Interface file/object/block file file block block

Storage type general general backup docker image general primary

Implementation Ceph mainline research only proprietary research only research only proprietary

data added for deduplication. Moreover, a general purpose

storage system cannot predict in advance whether incoming

data is always dedup-able or not. As a result, based on the

observation, we decided to perform deduplication only if the

storage system is able to secure enough free space after dedu-

plication is done.

Flexible namespace architecture for TiDedup. A single

global namespace (tier) is not optimal for efficiently han-

dling different types of data streams, as each stream may have

its own unique access pattern. Considering that a general-

purpose storage system must cater to diverse workloads, we

have designed a flexible namespace architecture that allows

users to create custom namespaces tailored to their specific

workloads. With this architecture, users are able to create one

or more custom namespaces, enabling them to handle multi-

ple data streams while maintaining isolation between them.

For example, users can align their custom namespaces (base

tiers) with the corresponding services, such as object, file, and

block, while utilizing a shared chunk tier.

8 Related Work

Although there is rich literature on deduplication [1,2,5,8,13,

27,40,41,48,50,51], few studies evaluate their architecture in

terms of scalability in real distributed storage systems and/or

open their code for third party reproduction of results. In

the next, we touch on the most relevant studies to our work.

Table 4 gives a quick summary of their key properties.

Data Domain Cloud Tier [9] proposes a deduplication ar-

chitecture based on two tiers, where it performs deduplication

in the local tier first, and then backs up data in the remote

tier. Unlike our work, Data Domain Cloud Tier targets a lo-

cal storage and does not selectively performs deduplication

according to redundancy. TiDedup is a cluster-level solution

with scalability as key design consideration. To that end, TiD-

edup reduces the fingerprint index lookup overheads by using

double hashing [29] and pursues selective deduplication.

DupHunter [49] builds on a multi-layer tier and employs

a cache algorithm utilizing domain-specific knowledge (con-

tainer image registry). Also, it takes a selective deduplication

approach. We note that DupHunter targets a specific environ-

ment where container images are stored and distributed by

docker registry. On the other hand, TiDedup is designed for

more general environments where file, object, and block ser-

vices are needed. It is unclear how DupHunter addresses the

fingerprint index problem [12,45] and whether the design can

coexist with other existing features in a real storage system.

Deduplication could hurt read performance when an object

is scattered throughout the cluster. Several studies suggest

techniques (e.g., prefetching and rewriting) [3, 11] to over-

come degraded read performance. Among them, we believe

that caching is the most efficient way to resolve the read per-

formance problem. TiDedup exploits a caching technique and

migrates chunk objects from chunk tier to base tier if the

chunk object is frequently accessed. As a result, hot data will

be served quickly with no overhead whereas serving cold data

entails forwarding overheads between base and chunk tier.

Inline deduplication [13,21,35] eliminates data redundancy

immediately. However, TiDedup adopts a post-processing

technique along with caching. By doing so, TiDedup employs

on-demand deduplication, allowing for minimizing perfor-

mance degradation. We believe that it is more suitable for a

general purpose distributed storage system.

9 Conclusion

This paper presents TiDedup towards efficient cluster-level

deduplication for a general-purpose distributed storage sys-

tem. TiDedup incorporates three new design schemes to over-

come the scalability issues found in a prior proposal. We have

a complete, fully validated implementation of the design and

have integrated TiDedup into the Ceph main branch. Our com-

prehensive evaluation study reveals that TiDedup achieves

storage space savings without hurting the scalability of Ceph.

We hope that our work will become a foundation on which

further research and development are undertaken.

Acknowledgement

We would like to thank the anonymous reviewers and our

shepherd, Vasily Tarasov, for their valuable comments. This

work was supported in part by the National Research Founda-

tion of Korea(NRF) grant funded by the Korea government

(MSIT) (No. NRF-2021R1A2C2003618).

128 2023 USENIX Annual Technical Conference USENIX Association

References

[1] D. Bhagwat, K. Eshghi, D. D. E. Long, and M. Lillib-

ridge. Extreme binning: Scalable, parallel deduplication

for chunk-based file backup. In IEEE International Sym-

posium on Modeling, Analysis Simulation of Computer

and Telecommunication Systems (MASCOTS), pages 1–

9, 2009.

[2] Z. Cao, H. Wen, X. Ge, J. Ma, J. Diehl, and D. H. C.

Du. TDDFS: A tier-aware data deduplication-based file

system. ACM Trans. Storage, 15(1):4:1–4:26, 2019.

[3] Z. Cao, H. Wen, F. Wu, and D. H. C. Du. ALACC: accel-

erating restore performance of data deduplication sys-

tems using adaptive look-ahead window assisted chunk

caching. In USENIX Conference on File and Storage

Technologies, (FAST), pages 309–324, 2018.

[4] CERN. CERN cloud home page. https://clouddocs.

web.cern.ch/. Accessed 2023-06-09.

[5] F. Chen, T. Luo, and X. Zhang. CAFTL: A content-

aware flash translation layer enhancing the lifespan of

flash memory based solid state drives. In USENIX Con-

ference on File and Storage Technologies (FAST), pages

77–90, 2011.

[6] Z. Chen and K. Shen. Ordermergededup: Efficient,

failure-consistent deduplication on flash. In USENIX

Conference on File and Storage Technologies (FAST),

pages 291–299, 2016.

[7] CNCF. CNCF user survey 2020. https:

//www.cncf.io/wp-content/uploads/2020/

11/CNCF_Survey_Report_2020.pdf. Accessed

2023-06-09.

[8] W. Dong, F. Douglis, K. Li, R. H. Patterson, S. Reddy,

and P. Shilane. Tradeoffs in scalable data routing for

deduplication clusters. In 9th USENIX Conference on

File and Storage Technologies (FAST), pages 15–29,

2011.

[9] A. Duggal, F. Jenkins, P. Shilane, R. Chinthekindi,

R. Shah, and M. Kamat. Data domain cloud tier:

Backup here, backup there, deduplicated everywhere!

In USENIX Annual Technical Conference (ATC), pages

647–660, 2019.

[10] A. El-Shimi, R. Kalach, A. Kumar, A. Ottean, J. Li, and

S. Sengupta. Primary data deduplication - large scale

study and system design. In USENIX Annual Technical

Conference (ATC), pages 285–296, 2012.

[11] M. Fu, D. Feng, Y. Hua, X. He, Z. Chen, W. Xia,

F. Huang, and Q. Liu. Accelerating restore and garbage

collection in deduplication-based backup systems via

exploiting historical information. In USENIX Annual

Technical Conference (ATC), pages 181–192, 2014.

[12] M. Fu, D. Feng, Y. Hua, X. He, Z. Chen, W. Xia,

Y. Zhang, and Y. Tan. Design tradeoffs for data dedupli-

cation performance in backup workloads. In USENIX

Conference on File and Storage Technologies (FAST),

pages 331–344, 2015.

[13] Y. Fu, H. Jiang, and N. Xiao. A scalable inline cluster

deduplication framework for big data protection. In

Middleware 2012, pages 354–373, 2012.

[14] gke. google kubernetes engine. https://cloud.

google.com/kubernetes-engine. Accessed 2023-

06-09.

[15] glusterfs. glusterfs home page. https://www.

gluster.org/. Accessed 2023-06-09.

[16] K. Jin and E. L. Miller. The effectiveness of dedupli-

cation on virtual machine disk images. In The Israeli

Experimental Systems Conference (SYSTOR), page 7,

2009.

[17] S. Kaisler, F. Armour, J. A. Espinosa, and W. Money.

Big data: Issues and challenges moving forward. In

Hawaii International Conference on System Sciences,

pages 995–1004, 2013.

[18] kubernetes. kubernetes home page. https://

kubernetes.io/. Accessed 2023-06-09.

[19] A. Lakshman and P. Malik. Cassandra: a decentralized

structured storage system. ACM SIGOPS Operating

Systems Review, 44(2):35–40, 2010.

[20] E. Lee, Y. Han, S. Yang, A. C. Arpaci-Dusseau, and

R. H. Arpaci-Dusseau. How to teach an old file system

dog new object store tricks. In USENIX Workshop on

Hot Topics in Storage and File Systems (HotStorage),

2018.

[21] C. Li, P. Shilane, F. Douglis, H. Shim, S. Smaldone, and

G. Wallace. Nitro: A capacity-optimized SSD cache for

primary storage. In USENIX Annual Technical Confer-

ence (ATC), pages 501–512, 2014.

[22] H. Liu, W. Ding, Y. Chen, W. Guo, S. Liu, T. Li,

M. Zhang, J. Zhao, H. Zhu, and Z. Zhu. CFS: A dis-

tributed file system for large scale container platforms.

In International Conference on Management of Data,

page 1729–1742, 2019.

[23] D. Meister, J. Kaiser, A. Brinkmann, T. Cortes, M. Kuhn,

and J. Kunkel. A study on data deduplication in hpc

storage systems. In International Conference on High

Performance Computing, Networking, Storage and Anal-

ysis (SC), pages 1–11, 2012.

USENIX Association 2023 USENIX Annual Technical Conference 129

https://clouddocs.web.cern.ch/
https://clouddocs.web.cern.ch/
https://www.cncf.io/wp-content/uploads/2020/11/CNCF_Survey_Report_2020.pdf
https://www.cncf.io/wp-content/uploads/2020/11/CNCF_Survey_Report_2020.pdf
https://www.cncf.io/wp-content/uploads/2020/11/CNCF_Survey_Report_2020.pdf
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://www.gluster.org/
https://www.gluster.org/
https://kubernetes.io/
https://kubernetes.io/

[24] D. T. Meyer and W. J. Bolosky. A study of practical

deduplication. In USENIX Conference on File and Stor-

age Technologies (FAST), 2011.

[25] J. Min, D. Yoon, and Y. Won. Efficient deduplication

techniques for modern backup operation. IEEE Trans-

actions on Computers, 60(6):824–840, 2011.

[26] A. Muthitacharoen, B. Chen, and D. Mazières. A low-

bandwidth network file system. In ACM Symposium on

Operating Systems Principles (SOSP), pages 174––187,

2001.

[27] A. Nachman, G. Yadgar, and S. Sheinvald. GoSeed:

Generating an optimal seeding plan for deduplicated

storage. In USENIX Conference on File and Storage

Technologies (FAST), pages 193–207, 2020.

[28] F. Ni and S. Jiang. Rapidcdc: Leveraging duplicate

locality to accelerate chunking in cdc-based deduplica-

tion systems. In ACM Symposium on Cloud Computing

(SoCC), pages 220–232, 2019.

[29] M. Oh, S. Park, J. Yoon, S. Kim, K.-w. Lee, S. Weil, H. Y.

Yeom, and M. Jung. Design of global data deduplication

for a scale-out distributed storage system. In IEEE 38th

International Conference on Distributed Computing Sys-

tems (ICDCS), pages 1063–1073, 2018.

[30] openstack. openstack home page. https://www.

openstack.org/. Accessed 2023-06-09.

[31] openstack. openstack user survey. https://www.

openstack.org/analytics/. Accessed 2023-06-09.

[32] C. Policroniades and I. Pratt. Alternatives for detecting

redundancy in storage systems data. In USENIX Annual

Technical Conference (ATC), pages 73–86, 2004.

[33] S. Quinlan and S. Dorward. Venti: A new approach to

archival data storage. In Conference on File and Storage

Technologies (FAST), pages 89–101, 2002.

[34] D. R.-J. G.-J. Rydning, J. Reinsel, and J. Gantz. The dig-

itization of the world from edge to core. Framingham:

International Data Corporation, 16, 2018.

[35] K. Srinivasan, T. Bisson, G. R. Goodson, and K. Voru-

ganti. idedup: latency-aware, inline data deduplication

for primary storage. In USENIX conference on File and

Storage Technologies (FAST), page 24, 2012.

[36] Swift. Welcome to swift’s documentation! https:

//docs.openstack.org/swift/latest/. Accessed

2023-06-09.

[37] TencentCloud. Tencent cloud home page. https:

//www.tencentcloud.com/solutions/tstack. Ac-

cessed 2023-06-09.

[38] Teuthology. Teuthology GitHub. https://github.

com/ceph/teuthology. Accessed 2023-06-09.

[39] G. Wallace, F. Douglis, H. Qian, P. Shilane, S. Smal-

done, M. Chamness, and W. Hsu. Characteristics of

backup workloads in production systems. In USENIX

conference on File and Storage Technologies (FAST),

page 4, 2012.

[40] C. Wang, Q. Wei, J. Yang, C. Chen, Y. Yang, and M. Xue.

NV-Dedup: high-performance inline deduplication for

non-volatile memory. IEEE Transactions on Computers,

67(5):658–671, 2017.

[41] Q. Wang, J. Li, W. Xia, E. Kruus, B. Debnath, and P. P.

Lee. Austere flash caching with deduplication and com-

pression. In USENIX Annual Technical Conference

(ATC), pages 713–726, 2020.

[42] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. Long, and

C. Maltzahn. Ceph: A scalable, high-performance dis-

tributed file system. In Symposium on Operating Sys-

tems Design and Implementation (OSDI), pages 307–

320, 2006.

[43] S. A. Weil, S. A. Brandt, E. L. Miller, and C. Maltzahn.

CRUSH: Controlled, scalable, decentralized placement

of replicated data. In ACM/IEEE Conference on Super-

computing, pages 31–31, 2006.

[44] W. Xia, H. Jiang, D. Feng, F. Douglis, P. Shilane, Y. Hua,

M. Fu, Y. Zhang, and Y. Zhou. A comprehensive study

of the past, present, and future of data deduplication.

Proceedings of the IEEE, 104(9):1681–1710, 2016.

[45] W. Xia, H. Jiang, D. Feng, and Y. Hua. Silo: A similarity-

locality based Near-Exact deduplication scheme with

low RAM overhead and high throughput. In USENIX

Annual Technical Conference (ATC), 2011.

[46] W. Xia, Y. Zhou, H. Jiang, D. Feng, Y. Hua, Y. Hu,

Q. Liu, and Y. Zhang. FastCDC: A fast and efficient

content-defined chunking approach for data deduplica-

tion. In USENIX Annual Technical Conference (ATC),

pages 101–114, 2016.

[47] Y. Zhang, H. Jiang, D. Feng, W. Xia, M. Fu, F. Huang,

and Y. Zhou. AE: an asymmetric extremum content

defined chunking algorithm for fast and bandwidth-

efficient data deduplication. In IEEE Conference on

Computer Communications (INFOCOM), pages 1337–

1345, 2015.

[48] Y. Zhang, W. Xia, D. Feng, H. Jiang, Y. Hua, and

Q. Wang. Finesse: Fine-Grained feature locality based

fast resemblance detection for Post-Deduplication delta

compression. In USENIX Conference on File and Stor-

age Technologies (FAST), pages 121–128, 2019.

130 2023 USENIX Annual Technical Conference USENIX Association

https://www.openstack.org/
https://www.openstack.org/
https://www.openstack.org/analytics/
https://www.openstack.org/analytics/
https://docs.openstack.org/swift/latest/
https://docs.openstack.org/swift/latest/
https://www.tencentcloud.com/solutions/tstack
https://www.tencentcloud.com/solutions/tstack
https://github.com/ceph/teuthology
https://github.com/ceph/teuthology

[49] N. Zhao, H. Albahar, S. Abraham, K. Chen, V. Tarasov,

D. Skourtis, L. Rupprecht, A. Anwar, and A. R. Butt.

DupHunter: Flexible high-performance deduplication

for docker registries. In USENIX Annual Technical Con-

ference (ATC), pages 769–783, 2020.

[50] X. Zou, W. Xia, P. Shilane, H. Zhang, and X. Wang.

Building a high-performance fine-grained deduplication

framework for backup storage with high deduplication

ratio. In USENIX Annual Technical Conference (ATC),

pages 19–36, 2022.

[51] X. Zou, J. Yuan, P. Shilane, W. Xia, H. Zhang, and

X. Wang. The dilemma between deduplication and

locality: Can both be achieved? In USENIX Confer-

ence on File and Storage Technologies (FAST), pages

171–185, 2021.

A Artifact Appendix

Abstract

We provide the artifact that includes the source code and

instructions to explain how to run TiDedup on Ceph. The

artifact also includes a document to describe how TiDedup is

applied to Ceph.

Scope

TiDedup is a cluster-level deduplication architecture for Ceph,

so the goal of the artifact is to describe how to perform dedu-

plication on Ceph cluster using either the artifact or mainline

Ceph. As explained in README.md, we provide instructions

to build, deploy, and run TiDedup on Ceph. In addition, the

README.md also provides an explanation of how to run

TiDedup using the latest Ceph without the artifact.

Contents

The artifact contains TiDedup’s source code integrated into

Ceph and a README.md file to build source code and run

Ceph while enabling deduplication.

Hosting

TiDedup is available at https://github.com/ssdohammer-

sl/ceph/tree/tidedup with detailed instructions. Since TiDedup

has been merged to Ceph mainline, the source code is also

available at https://github.com/ceph/ceph.

USENIX Association 2023 USENIX Annual Technical Conference 131

https://github.com/ssdohammer-sl/ceph/tree/tidedup
https://github.com/ssdohammer-sl/ceph/tree/tidedup
https://github.com/ceph/ceph

	Introduction
	Background
	Ceph
	Deduplication
	How deduplication works with Ceph
	Snapshot in Ceph

	Motivation
	Deduplication on unique chunks
	Structural limitations
	Inefficient reference management

	Design and Implementation of TiDedup
	Selective cluster-level crawling
	Event-driven tiering mechanism with CDC
	APIs with CDC

	OID shared reference management

	Evaluation
	Environmental setup
	Deduplication ratio and throughput
	Space saving
	Throughput

	The impact of average chunk size
	Worst-case recovery performance
	Scrub time
	Snapshot creation and deletion
	Integration test

	Discussions
	Lessons Learned
	Related Work
	Conclusion
	Artifact Appendix

