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Abstract
With the increasing public attention to data security and pri-
vacy protection, privacy-preserving machine learning (PPML)
has become a research hotspot in recent years. Secure multi-
party computation (MPC) that allows multiple parties to
jointly compute a function without leaking sensitive data
provides a feasible solution to PPML. However, developing
efficient PPML programs with MPC techniques is a great
challenge for users without cryptography backgrounds.

Existing solutions require users to make efforts to port
machine learning (ML) programs by mechanically replacing
APIs with PPML versions or rewriting the entire program. Dif-
ferent from the existing works, we propose SecretFlow-SPU,
a performant and user-friendly PPML framework compatible
with existing ML programs. SecretFlow-SPU consists of a
frontend compiler and a backend runtime. The frontend com-
piler accepts an ML program as input and converts it into
an MPC-specific intermediate representation. After a series
of delicate code optimizations, programs will be executed
by a performant backend runtime as MPC protocols. Based
on SecretFlow-SPU, we can run ML programs of different
frameworks with minor modifications in a privacy-preserving
manner.

We evaluate SecretFlow-SPU with state-of-the-art MPC-
enabled PPML frameworks on a series of ML training tasks.
SecretFlow-SPU outperforms these works for almost all ex-
perimental settings (23 out of 24). Especially under the wide
area network, SecretFlow-SPU is up to 4.1× faster than MP-
SPDZ and up to 2.3× faster than TF Encrypted.

1 Introduction

Privacy-preserving machine learning (PPML) [24, 27, 34, 43,
44, 47, 49, 56, 57] has been gaining popularity due to the
pervasive usage of machine learning (ML) and attendant pri-
vacy problems. Secure multi-party computation (MPC) [39],
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a cryptographic technique that enables multiple parties to
jointly compute a function without leaking each party’s pri-
vate inputs, brings a provable and practical solution to ML
users with strong privacy concerns. For example, financial
and medical data analysts can collaboratively train a model
on private datasets that contain sensitive information.

However, incorporating MPC techniques in ML applica-
tions introduces great challenges due to the natural differences
between these two fields. MPC experts mainly focus on de-
signing performant cryptographic protocols for low-level com-
putation primitives. In contrast, ML practitioners are more
accustomed to constructing high-level ML models using user-
friendly frameworks that encapsulates commonly-used ML
building blocks. Consequently, it poses a massive obstacle for
ML users without cryptography expertise to achieve complex
PPML tasks efficiently in real-world scenarios.

A series of works have been proposed to eliminate this
obstacle. EzPc [9], ABY [15], MP-SPDZ [29], etc. [18] de-
sign domain-specific languages (or use high-level languages)
to provide general purpose MPC compilers and support ar-
bitrary computations upon MPC. These works significantly
reduce the difficulty of developing MPC programs and al-
low for MPC-specific compilation optimizations. Whereas,
these works remain a significant gap from mainstream ML
frameworks on API designs, thus lacking user-friendliness to
develop complex ML programs.

TF Encrypted [14] and CrypTen [33] take a step further in
this direction by providing general ML interfaces with MPC
implementations. These works mimic the existing ML frame-
works’ API designs (e.g., TensorFlow [5] and PyTorch [45])
to hide the underlying MPC cryptographic details and gain
further user-friendliness. However, efforts still need to be
made to port ML programs from TensorFlow/PyTorch by sub-
stituting PPML version APIs mechanically. Take CrypTen as
an example: given a pre-defined PyTorch model, the user must
manually re-write the model training/prediction programs by
replacing PyTorch tensors, loss function, and optimizer with
CrypTen counterparts. Besides, these frameworks rely on Ten-
sorFlow or PyTorch as their underlying runtime, which lacks
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MPC domain-specific knowledge for compilation optimiza-
tions.

A question then arises: can we efficiently run ML programs
of mainstream frameworks in a privacy-preserving manner?
As an attempt to answer this question, we propose SecretFlow-
SPU in this paper. For simplicity, we will refer to it as SPU
throughout the rest of this paper. SPU is a general-purpose
PPML framework designed to bridge the gap between ML
and MPC communities more naturally. The core components
of SPU include a frontend compiler and a backend MPC run-
time. SPU provides users with Python APIs to accept an ML
program (with minor modifications to specify protected data)
as input, and the frontend compiler emits a customized inter-
mediate representation (IR) named PPHLO (short for Privacy-
Preserving High-Level Operations) as output. The backend
runtime is a virtual device built on multiple connected com-
puting nodes, which receives PPHLO and executes it as MPC
protocol implementations among nodes to complete private
ML training or prediction.

SPU’s architecture makes it friendly to both ML and MPC
developers. On the one hand, ML developers can conve-
niently run ML applications developed through mainstream
ML frameworks in a privacy-preserving manner on SPU (Sec-
tion 3.3) without the cryptographic knowledge of MPC. Be-
sides, SPU is not bound to one specific ML framework. Di-
verse frameworks and libraries can be supported in SPU if
there is a path from ML source code to PPHLO. On the other
hand, SPU provides great extensibility to MPC protocol de-
velopers, who only need to focus on designing fundamental
MPC primitives and implementing corresponding APIs de-
fined by SPU. New MPC protocol supports can be easily
supplemented without caring about high-level ML workflows
(Section 3.6.1).

Besides user-friendliness, PPHLO enables us to propose
and implement MPC-specific optimizations at both frontend
and backend to achieve high performance. At the frontend,
we observe that traditional ML frameworks usually generate a
computation graph that is not optimal for MPC computations.
The reason behind the observation is that MPC computations
have a rather different cost model than plaintext computations
due to additional communication overhead. Based on PPHLO,
we design and implement several compiler passes to generate
more efficient IR (Section 3.5). At the backend, we implement
strategies such as vectorization and streaming to reduce MPC
communication overhead. Meanwhile, SPU backend runtime
employs inter- and intra-operation concurrency to execute
PPHLO efficiently (Section 3.6.2).

We develop SPU frontend and backend in C++ and provide
PPML developers with Python APIs to run applications. We
mainly use ML programs written in JAX [8] to evaluate SPU’s
performance and user-friendliness. For performance, we use
three state-of-the-art MPC-enabled PPML frameworks (i.e.,
MP-SPDZ [29], TF Encrypted [14], and CrypTen [33]) as the
baseline. We train four common-evaluated neural networks

on the MNIST [37] dataset for image classification under
both local area network (LAN) and wide area network (WAN)
settings. SPU achieves comparable classification accuracy
and superior training speed. Concretely, SPU outperforms the
state-of-the-art works for almost all the settings (23 out of 24).
Especially under the WAN setting, SPU is up to 4.1× faster
than MP-SPDZ and up to 2.3× faster than TF Encrypted.

Regarding user-friendliness, we evaluate SPU by running
JAX programs from popular open-source JAX projects’ offi-
cial examples. We only need to modify a few lines of code to
make these examples run seamlessly on SPU. Experimental
results show that SPU can be easily applied to other mod-
els such as Long Short-Term Memory [23] and Variational
Auto-Encoder [32]. This compatibility is hard to achieve for
existing MPC-enabled frameworks. Moreover, we also vali-
date SPU’s feasibility in supporting different ML frameworks
by running TensorFlow and PyTorch programs.

The contributions we make in this paper are summarized
as follows:

• We design and implement SPU as the first MPC-enabled
PPML framework to support ML programs (with minor
modifications) from different mainstream ML frame-
works, significantly accelerating the development, test-
ing, debugging, and deployment of PPML applications.

• We design an MPC-specific IR, i.e., PPHLO, which con-
nects ML and MPC worlds. Besides, we propose/imple-
ment a series of compilation optimizations and develop
a high-performance runtime to execute PPHLO.

• We validate SPU with a series of experiments on perfor-
mance and user-friendliness. The experimental results
demonstrate SPU’s efficiency and ease of use.

• We open-source SPU to bolster the advancement of
PPML for academic and industry communities. The code
is available at https://github.com/secretflow/spu.

The remainder of this paper is organized as follows. Sec-
tion 2 gives a brief introduction to the background of ML
compilers and MPC. We describe the design details of SPU
in Section 3. Section 4 describes the system implementation
and evaluation results. Section 5 describes SPU’s limitations.
Related work is discussed in Section 6. Finally, we conclude
this paper in Section 7.

2 Background

SPU is an interdisciplinary work of ML compiler and MPC.
In order to better understand the motivation and design of
SPU, we give a more detailed description of the background
of ML compiler and MPC in this section.
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2.1 Machine Learning Compilers

In the past decade, artificial intelligence technologies driven
by ML have made numerous breakthroughs in many fields,
such as natural language processing [55], computer vi-
sion [19], and drug discovery [26]. As the key infrastructure
for implementing ML algorithms, an easy-to-use and efficient
ML framework is crucial. A large number of ML frameworks
(and libraries) are currently on the market, including Tensor-
Flow [5], PyTorch [45], JAX [8], and MxNet [11], providing
developers with similar capabilities to train and serve models.

Meanwhile, in addition to traditional CPU and GPU, many
application-specific integrated circuits for ML workloads have
been developed to accelerate program execution. Typical rep-
resentatives are Google TPU [25] and Hisilicon NPU [38].
Generating machine code for different ML frameworks to
adapt to different types of hardware requires substantial en-
gineering efforts, especially when the number of ML frame-
works and hardware devices keeps increasing. ML compilers
are proposed as the solution to this problem. Usually, the
compiler frontend will transform source code written with
the existing frameworks into hardware-independent IR, and
the compiler backend will further transform IR into hardware-
dependent machine code. With ML compilers, frontend frame-
works only need to focus on generating IR, and backend hard-
ware vendors only need to pay attention to supporting IR
instructions.

The IR used in ML compilers is typically expressed as
a computation graph (i.e., a directed acyclic graph). Graph
nodes are ML operations (such as matrix multiplication and
convolution) whose input and output are tensors (i.e., multi-
dimensional arrays). Graph edges show the data dependen-
cies between operations. One widely-used ML compiler is
Google’s XLA [4]. XLA defines its IR as HLO (High-Level
Operations) to represent computation graphs. A series of
frontends, including TensorFlow, PyTorch, and JAX, support
XLA. ML programs written in these frameworks can be com-
piled into HLO. After performing hardware-independent and
hardware-dependent optimizations, HLO is finally lowered to
machine code by the XLA backend to run on the CPU, GPU,
or TPU.

2.2 Secure Multiparty Computation

MPC originates from the Yao’s Millionaires’ problem [59] in
the 1980s, where two rich people want to compare their wealth
without giving away the exact value. Beyond this, MPC has
shifted from an academic theory to practical usage in more
complicated tasks, such as training ML models [30, 44, 56].

One fundamental technique used in MPC is secret shar-
ing [6, 51]. A secret value is divided into multiple random
shares and distributed to several parties. Each party only gets
a subset of the shares and cannot reconstruct the original value
independently. These parties jointly compute pre-defined com-

putations (e.g., ML training) without leaking any sensitive
information of the inputs or intermediate computation results.
Usually, the final computation result (e.g., the trained model)
are revealed to some designated parties. At that time, all par-
ties put together their holding shares to reconstruct the result.

The private inputs, including integer and boolean values,
are typically encoded over an algebraic ring or finite field.
For integers, arithmetic secret sharing encrypts a secret over
the ring Z2k and supports efficient arithmetic operations, in-
cluding additions and multiplications. Correspondingly for
boolean values, binary secret sharing provides a scheme to
encrypt a secret over the ring Z2 and supports more effi-
cient boolean operations, including XOR and AND compu-
tations. Addition (resp., XOR) operation of two arithmetic
(resp., boolean) secret shares is equal to add (resp., XOR) the
share of the two secrets locally. Operations with similar local-
computation properties include a secret value adding a public
value and a secret value multiplying a public value. In con-
trast, the multiplication (resp., AND) of two secret values is
more complicated, which requires additional communication
among the participating parties to exchange extra information.
The heavy communication overhead has weakened the perfor-
mance of MPC, especially in handling complex computations
in real-world scenarios.

To improve the efficiency, mixed-protocols [15,43,46] that
use arithmetic and binary secret sharing interchangeably shed
light on MPC. With dedicated protocols, arithmetic and binary
secret shares can be transformed back and forth to handle
complex computations, including both arithmetic and non-
arithmetic computations. However, these conversions also
need communication. Despite the great efforts that have been
made, the performance of MPC operations is still heavily
communication-bound and sensitive to the network environ-
ment. Such characteristic makes MPC significantly different
from traditional plaintext computations over CPU.

Besides integer and boolean operations, MPC also supports
decimal computations, which are common in ML. It is more
common and efficient to encode decimals as fixed-point num-
bers, which can be interpreted as the integer value multiplying
a scaling factor. This factor is configurable and indicates how
many bits represent the fractional part, and the remaining
bits (except the sign bit) represent the integer part. When a
fixed-pointed value multiplies another fixed-pointed value, the
fractional bits double. In order to maintain that the result has
consistent fractional bits with the input, a truncation operation
is required.

The addition and multiplication of integers, fixed-point
numbers, and boolean logic operations constitute MPC’s most
fundamental building blocks. ML scenarios require more com-
plex and high-level operations. For linear operations such as
matrix multiplication and convolution, a combination of those
basic building blocks can accomplish them. For non-linear
operations such as activation functions, we can approximate
these functions using mathematical algorithms like Newton-
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Raphson method [60]. Based on the linear and non-linear
operations, complex ML tasks can be completed.

3 System Design

We describe the detailed system design of SPU in this sec-
tion. The threat model of SPU is given first, followed by an
overview of SPU’s architecture and individual descriptions of
SPU’s main components, including programming interfaces,
PPHLO, frontend, and backend.

3.1 Threat Model
SPU follows a standard MPC threat model and runs pre-
defined programs among multiple parties, protecting input
data and all intermediate results, typically only revealing the
final results to some designated parties. Taking ML model
training as an example, MPC can protect participating parties’
training datasets and intermediate results like gradients, and
reveal the trained model weights as the final results.

Furthermore, as an MPC computing engine, SPU is not re-
stricted to any specific MPC threat models, such as the number
of participating parties or if participants behave honestly [39].
The underlying MPC protocol used in SPU is configurable,
allowing the threat model of the entire SPU system to be deter-
mined by the selected MPC protocol at runtime. For instance,
using the semi-honest (with honest majority) ABY3 [43] pro-
tocol in SPU indicates SPU inherits ABY3’s threat model, i.e.,
all participants follow the protocol honestly but may attempt
to gain additional information from exchanged messages.

3.2 Architecture Overview
The goal of SPU is to run ML programs in a privacy-
preserving manner. To complete this goal, we propose SPU’s
architecture, as illustrated in Figure 1. In the rest of this sec-
tion, we use JAX as an example ML framework to describe
SPU’s design although SPU is not limited to JAX. We give
evaluations on SPU’s support to other frameworks in Sec-
tion 4.2.3. Given an ML program written in JAX, our pro-
gramming interfaces will implicitly call JAX API to convert
this program into HLO (Section 2.1). This HLO graph and
data visibility defined by users will be passed to SPU frontend,
which compiles HLO to SPU’s customized IR, i.e., PPHLO.
After generating PPHLO, the frontend will further perform
MPC-specific optimizations. The optimized PPHLO will then
be sent to SPU backend, a virtual device built on multiple
networked computing nodes. These nodes host SPU runtime
responsible for executing MPC operations, and their number
should match the supported parties of the configured MPC
protocol.

SPU employs the SPMD (Single-Program-Multiple-Data)
programming model. All nodes receive the same PPHLO to
execute. The data consumed by each node are secret shares
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Figure 1: SPU architecture.

derived from original data held by data providers. Following
the workflow described above, sensitive data from different
sources can be jointly used to finish a PPML job by simply
running a JAX program on SPU.

The design of SPU has the following advantages:

• By supporting ML programs of mainstream ML frame-
works, SPU is extremely easy to use. SPU does not
require users to learn a new library or language, or have
MPC expertise.

• SPU frontend consumes HLO generated by ML pro-
grams rather than the source code. This design choice
makes SPU can support a series of existing frameworks
that have a lowering path to HLO directly. Moreover,
SPU can benefits from platform-independent optimiza-
tions from existing ML compilers.

• SPU backend is also extensible. We can implement mul-
tiple pluggable MPC protocols in the backend without
modifying PPHLO and frontend programs.

• PPHLO allows SPU to do systematic optimizations at
the granularity of the high-level computational graph,
which enables it to generate high-performance code for
MPC execution.

3.3 Programming Interface
In order to achieve ease of use, we provide simple Python
APIs so that developers can run ML programs on SPU with
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1 i m p o r t j a x . numpy as j n p
2 i m p o r t numpy as np
3 i m p o r t spu . b i n d i n g . u t i l . d i s t r i b u t e d as ppd
4

5 # i n i t SPU backend nodes
6 wi th open ( " / p a t h / t o / c o n f i g " , ’ r ’ ) a s f i l e :
7 con f = j s o n . l o a d ( f i l e )
8 ppd . i n i t ( con f [ " nodes " ] , con f [ " d e v i c e s " ] )
9

10 # s p e c i f y d a t a v i s i b i l i t y
11 @ppd . d e v i c e ( " P1 " )
12 d e f d a t a _ f r o m _ a l i c e ( ) :
13 r e t u r n np . random . r a n d i n t ( 1 0 0 , s i z e = ( 4 , ) )
14

15 # s p e c i f y d a t a v i s i b i l i t y
16 @ppd . d e v i c e ( " P2 " )
17 d e f da ta_ f rom_bob ( ) :
18 r e t u r n np . random . r a n d i n t ( 1 0 0 , s i z e = ( 4 , ) )
19

20 # s p e c i f y a p r i v a t e f u n c t i o n
21 @ppd . d e v i c e ( "SPU" )
22 d e f compare ( x , y ) :
23 r e t u r n j n p . maximum ( x , y )
24

25 # x & y w i l l be a u t o m a t i c a l l y
26 # f e t c h e d by SPU ( as s e c r e t s h a r e s )
27 x = d a t a _ f r o m _ a l i c e ( )
28 y = da ta_ f rom_bob ( )
29

30 # compare w i l l be e v a l u a t e d p r i v a t e l y by SPU
31 z = compare ( x , y )
32

33 # r e v e a l t h e r e a l v a l u e o f z
34 p r i n t ( f " z = { ppd . g e t ( z ) } " )

Figure 2: A demonstration of how to use SPU’s API run JAX
programs privately. Developers use decorators to specify data
visibility and functions to be protected.

a few lines of code modifications. An example is given in
Figure 2. We use SPU to solve Yao’s Millionaires’ problem
as a simple demonstration.

We assume the two participants are called Alice and Bob.
In line 3, at the start of this code, we import SPU’s APIs as
module ppd. In lines 6 to 8, we initialize the backend SPU
nodes and data providers (i.e., P1 and P2 are to represent
Alice and Bob). The decorators in lines 11 and 16 are data
visibility marks that specify these data come from P1 and P2,
which means that the two functions can only be evaluated
locally on P1 and P2. The derived results are private data to
be protected on SPU. The decorator on line 21 is a private
function mark that specifies the function compare is private
and should be evaluated on SPU. Lines 27 to 31 compare
Alice and Bob’s data. Variables x and y will be automatically
fetched by SPU as secret shares, and the compared result z is
also secret shares. To get the plaintext result of z, developers

should use ppd.get() to reconstruct z as shown in line 34.
As we can see, the most crucial part of SPU’s APIs is the

decorator @ppd.device(), which is used to specify protected
data and private functions. In the example demonstrated in
Figure 2, the private function is a JAX maximum function. In
fact, this can be extended to more complex JAX functions,
such as an ML model training function from JAX libraries.
Decorator @ppd.device() is the entry point for using SPU as
the workflow described in Section 3.2, which will trigger HLO
generation, compilation to PPHLO, and PPHLO execution.
We can have SPU do all the stuff in the background by putting
the decorator on top of a JAX function.

3.4 Privacy-Preserving High-Level Operations

We design PPHLO based on HLO as a customized IR for SPU
because HLO lacks MPC-related semantics for optimization
and efficient execution. In general, PPHLO represents a com-
putational graph consisting of a series of operations. Each
operation’s input and output are tensors. The tensor type sys-
tem is the most significant difference between PPHLO and
other ML counterparts. A tensor’s type in PPHLO can be rep-
resented by a triple <Shape, Data Type, Visibility>. Shape is
a tensor’s dimensionality. As for data type, PPHLO currently
supports boolean, integer, and fixed-point numbers. Visibility
is a unique tensor attribute in PPHLO. It can be either secret
or public. Secret means that the tensor needs to be protected,
and its real value is not visible to any node in SPU backend
nodes. In contrast, public means that the tensor does not need
to be protected, and any backend node can get its value.

Application developers specify the visibility of PPHLO’s
initial input tensors. As we described in Section 3.3, the vari-
ables generated by functions with decorator @ppd.device()
are secret tensors, such as x and y in Figure 2. Otherwise,
variables are public tensors. For each operation in PPHLO,
we use the following rules to determine the output’s type ac-
cording to the input’s type (shape is not considered here as
it is determined by operation semantics). 1) Data Type Pro-
motion: if one of the operands is a fixed-point number, the
result is also a fixed-point number; 2) Visibility Narrowing:
if one of the operands is a secret, the result is also a secret.
Based on the two rules, we can deduce the types of all tensors
in PPHLO.

Figure 3 gives an example of PPHLO in static single assign-
ment form [50]. This code snippet corresponds to the JAX
maximum function in Figure 2. The symbol @main is the
program entry point. Lines 1 and 2 represent the program has
two input arguments and one return value. The symbol ten-
sor<4x!pphlo.sec<i32>> describes a tensor whose shape is 4,
and that is a 32-bit integer secret value. Inside the braces
is the program body, which contains two operations, i.e.,
pphlo.greater and pphlo.select (lines 3 to 6). An operation’s
output is assigned to the symbol on the left, which can be used
as the operand of subsequent operations. When all operations
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1 f u n c . f u n c @main(% arg0 : t e n s o r <4x ! p p h l o . s e c < i32 > > , %arg1 : t e n s o r <4x ! p p h l o . s e c < i32 > >)
2 −> t e n s o r <4x ! p p h l o . s e c < i32 >> {
3 %0 = " p p h l o . g r e a t e r " (%arg0 , %arg1 ) : ( t e n s o r <4x ! p p h l o . s e c < i32 > > , t e n s o r <4x ! p p h l o . s e c < i32 > >)
4 −> t e n s o r <4x ! p p h l o . s e c < i1 >>
5 %1 = " p p h l o . s e l e c t " (%0 , %arg0 , %arg1 ) : ( t e n s o r <4x ! p p h l o . s e c < i1 > > , t e n s o r <4x ! p p h l o . s e c < i32 > > ,
6 t e n s o r <4x ! p p h l o . s e c < i32 > >) −> t e n s o r <4x ! p p h l o . s e c < i32 >>
7 r e t u r n %1 : t e n s o r <4x ! p p h l o . s e c < i32 >>
8 }

Figure 3: An example of PPHLO. Generated from JAX maximum function shown in Figure 2.

are finished, the return value is given at line 7. PPHLO opera-
tions are extended from HLO operations [3]1. An operation
can accept public or secret tensors as its operands and has cor-
responding plaintext or MPC computation implementations
on SPU backend runtime.

3.5 Frontend
SPU frontend is responsible for PPHLO generation and opti-
mization. The frontend first receives an ML program’s HLO
and initial data visibilities as inputs and applies rules pro-
posed in Section 3.4 to deduce the entire graph’s data types
and visibilities. After this step, a legal PPHLO representation
is generated. The frontend will further perform code optimiza-
tions to modify PPHLO. PPHLO optimizations come from
this insight: an ML computational graph generated for non-
MPC hardware may not be optimal in the MPC scenario. We
propose/implement the following compilation optimizations
based on analyzing initially-generated PPHLO and our MPC
expertise.

convert

mul/dot

int

fxp

fxp

mul/dot

fxp

int fxp

fxp

Figure 4: Mixed-data-type multiplication fusion.

Mixed-data-type multiplication fusion. In regular ML
computations, when multiplying an integer to a decimal num-
ber, a convert operation will be called first to convert this
integer to a floating-point number. Then the multiply oper-
ation can be dispatched to the floating-point multiplication
kernel. A computation graph is illustrated in Figure 4. If we

1Supported PPHLO operations can be found at
https://github.com/secretflow/spu/blob/main/docs/reference/pphlo_op_doc.md

use this graph directly in SPU, an integer will be converted
to a fixed-point number first, followed by a fixed-point multi-
plication which requires a truncation to maintain fractional
bits (Section 2.2). However, an integer can directly multiply
with a fixed-point number. Therefore, we can fuse the two
operations into one multiply operation to reduce redundant
truncation and conversion. This optimization applies to other
similar operations like dot.

public
fxp2

secret
fxp1

mul

mul

secret fxp1

public
fxp1

public
fxp2

mul

mul

public fxp

secret fxp

      secret fxp

public fxp1

secret fxp

Figure 5: Mixed-visibility multiplication operands reorder.

Mixed-visibility multiplication operands reorder. An-
other scenario where truncation can be optimized is multiply-
ing consecutive fixed-point numbers with mixed visibilities.
As shown in Figure 5, a secret fixed-point number multiplying
two public fixed-point numbers involves two multiplication
operations. Each operation generates a secret product requir-
ing a truncation that have a high communication overhead
under some MPC protocols [24,43]. However, we can reorder
the operands without affecting the correctness. The multipli-
cation of two public fixed-point numbers can be calculated
first. The product is also public, so we can truncate the result
by shifting bits locally. Then the result is used to multiply
the secret fixed-point number. By reordering multiplication
operands, one expensive truncation can be saved.

Inverse square root transformation. This optimization is
demonstrated in Figure 6. When SPU frontend detects a com-
putation of y/(

√
x+u) where u is a tiny constant to prevent a

division-by-zero problem, it will transform the computation
to y∗ rsqrt(x+eps()). In the transformed computation, eps is
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Figure 6: Inverse square root transformation.

a unique operation that will generate a minimum fixed-point
number. The reason behind this transformation is that the
inverse square root rsqrt operation has a fast MPC imple-
mentation than computing the reciprocal of the sqrt result
(an approximation is needed). This computation pattern is
observed in state-of-the-art optimizers such as Adam [31]
and AMSGrad [48] when they update weights in each learn-
ing step. This optimization technique was first used by Lu et
al. [41] and applied in related systems like MP-SPDZ [30] and
TF Encrypted [14]. These frameworks must re-implement cus-
tomized Adam and AMSGrad optimizers to employ this opti-
mization. However, as we do the optimization at the PPHLO
level, original Adam and AMSGrad optimizers in the existing
JAX libraries can be directly reused.

select

select

a

pred

pred

c

b

d

select

select

a

pred'

c

b

d

prefer_a
pred

Figure 7: Select predicate reuse.

Select predicate reuse. Select is a commonly-used ML
operation that receives a predicate and a pair of values a and
b. If the predicate is true, then a is returned. Otherwise, b is
returned. The predicate usually is generated with a previous
comparison or logical operations and is represented as a bi-
nary secret sharing. The secret select operation works as a
computation listed in Equation 1, where the predicate is trans-
formed into 0 (false) and 1 (true) as a multiplier that demands
converting binary secret sharing to arithmetic secret sharing.
The conversion requires communication and is expensive [15].
We observe that a predicate may be used by multiple select

operations when training some convolutional neural networks.
Once SPU frontend detects this pattern, a prefer_a operation
that explicitly converts binary secret sharing to arithmetic
secret sharing will be inserted before the first select operation
to reduce redundant conversions (as shown in Figure 7).

Select(pred,a,b) = b+ pred ∗ (a−b) (1)

Max-pooling transformation. Max-pooling is a widely-
used layer in convolutional neural networks, usually con-
nected behind the convolutional layer for downsampling in-
put features. In the forward propagation stage, max-pooling
needs to find the maximum value in a window of values.
In the backpropagation stage, max-pooling needs to replace
the maximum value with its gradient while other values are
set to zeros. We observe that the two stages are computed
by two independent operations (i.e., reduce_windows and
select_and_scatter in Figure 8) when ML frameworks train
models. Although the reduce_window operation has found the
maximum value in a window, select_and_scatter will do the
same to find the index of the maximum value. Redundant and
expensive comparisons would be called in both operations.
Therefore, SPU frontend transforms this computation pattern
to two new operations we proposed in PPHLO, i.e., argmax
and maxpool_scatter. In the argmax operation, we will get
the maximum value and its index in the window. The index
can be directly reused by maxpool_scatter operation. We use
a one-hot vector to represent the index. The maximum value
can be updated by multiplying the index by the gradient.

reduce_

window

select_

and_


scatter

input

input

output 1

output 2

scatter value

argmax

maxpool_

scatter

inputs output 1

output 2

scatter value

index

Figure 8: Max-pooling transformation.

In this section, we share observations on generated PPHLO
from the ML computation graph and operation optimization
strategies we implemented. Optimization techniques for ML
computational graphs are much more mature with the efforts
of countless experts and engineers. However, MPC compu-
tations introduce a different cost model compared to CPU or
GPU computing, which enables us to adopt novel optimiza-
tion techniques on PPHLO. We believe that more optimiza-
tion opportunities are waiting to be discovered in this new
interdisciplinary field.
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3.6 Backend

SPU backend consists of multiple computing nodes, and each
node contains a runtime to execute PPHLO operations. The
number of nodes should match the parties of the underlying
MPC protocol. The design goal of SPU backend is scalable to
support different MPC protocols with a pluggable experience
and efficiently execute PPHLO operations as MPC protocols.
This section describes the operation dispatching mechanism
and runtime optimizations used in SPU backend.

3.6.1 Operation Dispatching

We design the layered dispatching mechanism to achieve
extensibility to different MPC protocols, as shown in Fig-
ure 9. For each PPHLO operation, the SPU runtime will first
dispatch it to the PPHLO layer, which has a one-to-one map-
ping function acting as the operation entrance. The PPHLO
mapping function will further dispatch the operation to fine-
grained HAL (Hardware Abstraction Layer) functions. We
borrow the concept of HAL from traditional operating system
implementation which is mean to eliminate the boundary be-
tween hardware and software. We use HAL to hide the MPC
implementation details from PPHLO operations. Specifically,
at the HAL level, the SPU runtime will decompose an op-
eration into a set of MPC-primitive functions according to
the data type and visibility of operands. As the example in
Figure 9, a secret fixed-point number multiplication will be
decomposed to a secret integer multiplication function and a
truncation function. Each MPC-primitive function will be fi-
nally dispatched to the MPC layer, corresponding to a specific
implementation of fundamental MPC protocols. Adding a
new MPC protocol in SPU only needs to implement the MPC-
primitive function set. When users configure a new backend
protocol, SPU’s runtime will dispatch PPHLO operations to
the new MPC implementation.

3.6.2 Runtime Optimizations

We employ the following techniques in SPU runtime to
achieve high performance.

Vectorization. Vectorization is a standard technique used
on CPUs supported by SIMD (Single Instruction, Multiple
Data) instructions. Applying one instruction to multiple data
enables parallelism and improves program execution effi-
ciency. SPU implements a similar vectorization mechanism
by running one operation on a list of data to reduce the number
of executed operations. For example, there are two operations
mul(a,b) and mul(c,d) where mul stands for an element-wise
multiplication operation and a, b, c, d are tensors. SPU will
pack a, b, and c, d together and execute one mul operation
on these tensors. As MPC multiplication needs communica-
tions, SPU can reduce the number of communication rounds
through vectorization.

pphlo.multipy(sfxp, sfxp)

pphlo::mul(x,y)

// pphlo entrance


hal::mul(x,y)

// general multiplication


hal::f_mul(x,y)

// fixed-point multiplication


hal::_trunc(hal::_mul(x,y))

// multiplication and truncation


hal::_truncpr_s(x)

// secret truncation


aby3::TruncPrA(x)

// aby3 protocol implementation


mpc::truncpr_s(x)

// mpc truncation entrance


PPHLO

Layer


HAL

Layer


MPC
Layer

Figure 9: The dispatching path from a PPHLO operation to
an MPC protocol in SPU. Different protocols can reuse the
same PPHLO/HAL layer code and diverge at the final MPC
layer.

Streaming. Many MPC operations involve both intensive
network I/O activities and local computations. If such an
MPC operation processes a very large tensor, a more efficient
method is to tile the tensor into sub-tensors and use multiple
operations to process them concurrently. We illustrate this
problem with the toy model in Figure 10. An ML model train-
ing stage consists of many iterations. When a processed tensor
is enormous, the processing operations repeatedly block net-
work I/O and local computing, affecting the overall execution
efficiency. Suppose we tile the tensor into two small tensors
and execute them concurrently. In that case, multiple sub-
tensors and sub-operations can significantly improve network

Network 
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Compute
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Figure 10: Streaming for MPC operations.
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and computing resource utilization, thereby shortening execu-
tion time.

Concurrency. SPU supports both intra- and inter-operation
concurrency to gain performance benefits. For intra-operation
concurrency, most PPHLO operations consist of more than
one HAL function. We implement these operations with well-
established engineering experience and execute multiple func-
tions without data dependencies in different threads. Taking
the implementation of rsqrt operation as an example, we fol-
low the protocol proposed by Lu et al. [41] to compute the
inverse square root of a tensor x. The calculation consists of a
fractional part computation and an exponential part computa-
tion which can be computed independently in two threads.

For inter-operation concurrency, SPU uses an aggressive
strategy at the PPHLO graph granularity to prevent oper-
ations with communications blocking the use of comput-
ing resources. When executing PPHLO computation graph,
SPU runtime launches as many operations as possible asyn-
chronously. Once an operation’s dependencies are completed,
this operation will be scheduled for execution.

4 Implementation and Evaluation

We implement SPU frontend compiler based on MLIR (Multi-
Level Intermediate Representation) [36], a compiler infras-
tructure for domain-specific computations. PPHLO is imple-
mented as a new MLIR dialect for MPC computations. Fron-
tend optimizations are implemented as compiler passes. We
develop SPU backend with modern standard C++, and its com-
puting nodes communicate through a high-performance RPC
library, bRPC [1]. The SPU C++ library is binding to Python
interfaces exposed to application developers as a Python mod-
ule (Section 3.3). Currently, we provide users with three built-
in MPC protocols, i.e., the semi-honest implementations of
a three-party protocol ABY3 [43] and a N-party protocol
SPDZ2k [13], and a two-party protocol Cheetah [24]. Our
overall code base contains more than 50k LOC of C++ and
3k LOC of Python.

In the rest of this section, we evaluate SPU on performance
and user-friendliness. Evaluations are done on three Alibaba
Cloud ecs.g7.xlarge instances with 4 vCPU and 16GB RAM
each. We complete evaluations under local area network
(LAN, 10.1Gbps bandwidth and 0.1ms round-trip time) and
wide area network (WAN, 300Mbps bandwidth and 40ms
round-trip time) settings.

4.1 Performance
To evaluate SPU’s performance, we compare SPU to general
MPC-enabled PPML frameworks rather than some specific
protocol implementations. We use SPU and three optimized
frameworks (i.e., MP-SPDZ [29], TF Encrypted [14], and
CrypTen [33]) to train four neural network models for image
classification on the MNIST dataset. The models are trained

privately with the encrypted training dataset and revealed to
evaluate on the plaintext validation dataset. All frameworks
train models with three ML optimizers, i.e., SGD, Adam [31],
and AMSGrad [48] (except CrypTen which does not sup-
port Adam and AMSGrad). Using different optimizers to
train models results in distinct computation graphs, causing
varying computation costs that are noticeably divergent be-
tween MPC scenarios and plaintext training. Consequently,
evaluating diverse optimizers showcases SPU’s performance
extensibility.

The selected four models have been widely used in related
literature for evaluations [30, 40, 44, 49, 56, 57], and their de-
tailed architectures are listed in Appendix A.1 (Table 2, 3, 4,
and 5). We follow the numbering (from A to D) given by
Wagh et al. [56] to refer to these models. All training exper-
iments use a semi-honest three-party MPC (3PC) protocol,
which is widely used and supported by all frameworks.

Table 1 reports the classification accuracy and seconds
per batch when training 5 epochs with a batch size of 128.
MP-SPDZ data is collected by running scripts provided by
its author Keller [30] (commit 0f7020d). TF Encrypted data
is collected by directly running scripts provided in its code
repository (commit 51de98f). CrypTen data is collected by
running an adaption of its official example mpc_autograd_cnn
(commit 909df45). For SPU, we write JAX programs to train
models and run these programs on SPU to collect data.

In Table 1, CrypTen has a significant gap with the other
three frameworks in terms of both training speed and clas-
sification accuracy. One possible reason for this may be
that CrypTen is primarily implemented in Python. Besides,
CrypTen differs from the other three works in that it does not
strictly employ a standard semi-honest 3PC protocol based on
replicated secret sharing [6]. The protocol CrypTen uses can
support any number of participants (N ≥ 2), and we evaluate
its performance in the three-party scenario.

Therefore, in order to ensure fairness, our comparisons
in this section will mainly focus on SPU, MP-SPDZ, and
TF Encrypted. For accuracy, the three frameworks all get
high and close results. These is no single framework can
achieve optimal results in every configurations. For training
time, MP-SPDZ has better results under LAN while losing
its advantages under WAN compared to TF Encrypted . The
possible reason is that MP-SPDZ implements a more efficient
multi-threaded kernel for operation execution, so it benefits
from the intensive local computations under LAN. However,
when network I/O communications become the bottleneck
under WAN, TF Encrypted which relies on the underlying
TensorFlow for graph scheduling works better.

Compared with MP-SPDZ and TF Encrypted, SPU
achieves the fastest training on 11 out of 12 configurations
under LAN and all configurations under WAN. Under LAN,
SPU’s advantage over MP-SPDZ is minor but achieves 1.4-
4.6× faster training than TF Encrypted. Under WAN, SPU
achieves up to 4.1× faster training than MP-SPDZ and up to
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Table 1: The accuracy and seconds per batch of training four neural network models on the MNIST dataset with SGD/Adam/AMS-
Grad optimizer in four MPC-enabled PPML frameworks. M, T, C, and S are abbreviations of MP-SPDZ [29], TF Encrypted [14],
CrypTen [33], and our SPU, respectively. CrypTen does not support Adam and AMSGrad as of the time we write this paper.

Network
Accuracy Seconds per Batch (LAN) Seconds per Batch (WAN)

M T C S M T C S M T C S

A (SGD) 96.8% 96.4% 92.7% 96.9% 0.16 0.19 1.43 0.12 8.94 4.60 58.68 4.60
A (Adam) 97.5% 97.2% N/A 97.4% 0.42 0.56 N/A 0.39 17.72 12.60 N/A 7.67

A (AMSGrad) 97.6% 97.4% N/A 97.5% 0.42 0.71 N/A 0.41 18.28 13.26 N/A 7.68
B (SGD) 98.1% 98.3% 96.5% 98.4% 1.00 4.82 25.62 1.04 34.70 15.66 230.15 9.87
B (Adam) 97.9% 98.7% N/A 98.7% 1.13 4.90 N/A 1.12 44.92 18.18 N/A 11.15

B (AMSGrad) 98.7% 98.8% N/A 98.6% 1.13 4.78 N/A 1.12 45.73 18.08 N/A 11.23
C (SGD) 98.5% 98.9% 97.3% 98.8% 2.10 7.23 34.06 1.81 50.05 22.41 272.11 12.98
C (Adam) 98.8% 99.0% N/A 98.9% 2.92 8.33 N/A 2.37 67.03 49.51 N/A 22.87

C (AMSGrad) 99.2% 98.9% N/A 99.1% 2.94 8.93 N/A 2.37 67.49 51.06 N/A 22.53
D (SGD) 97.0% 97.6% 95.7% 97.2% 0.23 0.39 1.77 0.22 11.20 5.35 59.44 4.89
D (Adam) 97.8% 98.0% N/A 97.7% 0.45 0.69 N/A 0.43 19.87 12.12 N/A 7.66

D (AMSGrad) 98.3% 97.5% N/A 97.9% 0.45 0.81 N/A 0.43 20.42 12.76 N/A 7.66

2.3× faster training than TF Encrypted. Overall, the evalu-
ation results demonstrate that SPU achieves state-of-the-art
performance by combining the two aspects of WAN and LAN.

We further analyze the performance benefits of SPU. Al-
though we implement a series of compiler passes to optimize
the computation graph, it should be noted that these optimiza-
tions are workload-dependent, and not all optimizations will
be effective for a specific workload. Taking training Network
C with the Adam optimizer, which has the most complex com-
putation graph, as an example. We find that when all compiler
passes are disabled, the training time is 2.0× slower under
LAN (4.63 versus 2.37 seconds) and is 1.9× slower under
WAN (43.49 versus 22.87 seconds). Additionally, we find
that nearly all performance benefits come from two frontend
optimizations, i.e., max-pooling transformation and inverse
square root transformation. This phenomenon does not mean
that other implemented optimizations are meaningless, as we
observe that those compiler passes are more effective on other
workloads with corresponding computational patterns, such
as training decision tree models.

Another conclusion we can draw is that the backend run-
time also plays a significant role in contributing to SPU’s
performance improvement. Network A does not have a max-
pooling layer and the SGD optimizer also does not involve the
rsqrt operation. As a result, the two optimizations mentioned
above do not apply to training Network A with SGD. How-
ever, SPU also achieves state-of-the-art in this experimental
setting. Therefore, we believe SPU’s high-performance bene-
fits from collaborative frontend/backend implementations.

4.2 User-friendliness
This section evaluates SPU’s user-friendliness through its
compatibility with ML applications from different main-
stream ML frameworks. We select two ML training programs
from well-known open-source JAX projects and run them on
SPU to train models privately. We found that only minor mod-
ifications to these programs are required to run them on SPU
with acceptable overhead and achieve results comparable to
plaintext training on CPUs. Besides, we test SPU’s feasibility
to run TensorFlow and PyTorch programs. These experiments
show that SPU can be easily extended to other ML models
and frameworks. The evaluations for SPU also use the same
setting (a semi-honest 3PC protocol) as in Section 4.1 under
LAN. The evaluations for plaintext training and prediction on
CPUs run on a single cloud server.

4.2.1 Long Short-Term Memory

This example of training a Long Short-Term Memory (LSTM)
model [23] comes from Haiku [21], a JAX neural network
library developed by DeepMind. LSTM is a recurrent neural
network model for processing sequential data such as text
or speech. This example trains an LSTM model to predict
time series, using the data generated from a sine wave for
training and validation. The model is trained privately with
the encrypted training dataset and revealed to evaluate on
the plaintext validation dataset. We modify about 8 lines of
the example’s source code to enable SPU to run the training
program.

The vanilla JAX program takes 3.01 seconds to train 2001
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Figure 11: Predictions with LSTM models trained by JAX
and SPU.

steps, reducing the training loss from 0.45737 to 0.00067.
SPU takes 7177.83 seconds (2384.7× slowdown) to reduce
the training loss to 0.00099. Figure 11 shows that we use JAX
and SPU-trained models to predict validation data with ground
truth. The SPU-trained model achieves similar prediction
results with high accuracy compared to the JAX model that is
trained in plaintext.

4.2.2 Variational Auto-Encoder

This section describes a Variational Auto-Encoder [32] (VAE)
model training example from Flax [20], a JAX neural net-
work library developed by Google. VAE is a generative
model which can map high-dimensional input space into low-
dimensional latent space and regenerate the input from the
latent representation. This example trains a VAE model to
compress and regenerate images from the MNIST dataset.
The model is trained privately with the encrypted training im-
ages and revealed to evaluate on the plaintext testing images.
We modify about 22 lines of code to enable SPU to run the
training program.

It takes JAX and SPU 214 and 9131 seconds (42.7× slow-
down) to train 5 epochs with a batch size of 128,2 reducing
the training loss from 535 to 106. Figure 12 shows that using
the model trained by SPU to reconstruct MNIST digits has a

2The times include an extra evaluation on testing dataset in each iteration.

(a) JAX.

(b) SPU.

Figure 12: Reconstruct MNIST digits with VAE models
trained by JAX and SPU. The digits above are original inputs.

comparable result to JAX.

4.2.3 Beyond JAX

Technically, SPU is able to support any ML frameworks that
can be translated to HLO. In this section, we validate SPU’s
feasibility to support TensorFlow and PyTorch as frontend ML
frameworks. For TensorFlow programs, SPU Python APIs can
also be used directly on ML training or prediction functions
made of TensorFlow functions. SPU will call tf.function API
provided by TensorFlow to compile these composite functions
into HLO as SPU frontend inputs. For PyTorch programs,
SPU relies on the Torch-MLIR [2] project to convert them
into HLO, which SPU can further consume.

We train a TensorFlow logistic regression model with the
diagnostic Wisconsin breast cancer dataset [52]. The model is
trained privately on SPU with the encrypted training dataset
and revealed to evaluate on the plaintext testing dataset. SPU
achieves the same ROC-AUC (Area Under the Receiver Op-
erating Characteristic Curve) [16] of 0.99 as the plaintext
training result on CPU. Training times on CPU and SPU are
0.067 and 1.121 seconds (16.7× slowdown).

As for PyTorch, we use the same dataset to train a linear
classification model on the plaintext data and run predictions
with jointly encrypted features on SPU (the model weights
are not protected in this example). Experimental results show
that compared to plaintext prediction on vanilla PyTorch, SPU
achieves the same ROC-AUC of 0.97 with a 345.7× speed
slowdown (0.05186 versus 0.00015 seconds). Overall, these
results demonstrate SPU is feasible to support different ML
frameworks.

5 Limitations and Discussion

This section discusses some known issues of SPU. SPU uses
the fixed-point representation to encode decimal numbers like
other MPC-based ML systems, which leads to two limitations.
First, fixed-point numbers have limited precision and range
compared to floating-point numbers. This problem will cause
running some ML programs on SPU to get incorrect results.
We can mitigate this problem by using more fractional bits to
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encode fixed-point numbers in SPU. Second, some function
implementations rely on floating-point number representa-
tions (such as JAX random.normal), which will cause SPU to
compute these functions with unexpected results. We will try
to provide a library overwriting these functions in the future.

Besides, SPU currently does not support secret conditions
as some operations (such as while) may use. In most cases,
these tensors are not data that need to be protected. Developers
can implement these values as public tensors.

6 Related Work

In recent years, there has been a line of works studying apply-
ing MPC techniques for PPML [9,24,27,34,43,44,49,56,57].
Most of these works focus on protocol optimizations and
innovations, improving MPC-enabled PPML’s performance
and making it a practical solution. These works diverge on
security models (malicious or semi-honest adversaries, honest-
majority or dishonest-majority), secret sharing schemas, the
number of supported parties, and implementation details of
basic operations. These protocol innovations are orthogonal to
SPU, which can implement them as the underlying protocols.

Another bunch of works try to reduce MPC usage difficulty
for non-MPC experts by implementing general-purpose MPC
compilers. These compilers convert functions written in high-
level or domain-specific languages to MPC circuits, which
are later executed by backend runtime in an MPC manner.
Hastings et al. [18] have a detailed survey on these compilers.
However, these works are not tailored-made for ML scenarios.
Using them to develop complex and efficient ML programs
takes significant work.

The most relevant works to SPU are TF Encrypted [14],
CrypTen [33], and MP-SPDZ [29]. TF Encrypted and
CrypTen provide programming interfaces similar to Tensor-
Flow and PyTorch in their Python modules. Refactoring an
ML program into the PPML version must replace original
ML APIs with TF Encrypted/CrypTen APIs corresponding to
MPC implementations. The frontend of MP-SPDZ is Python.
Users write ML programs based on Python APIs provided by
MP-SPDZ, which compiles programs to byte code and runs
in an MPC manner. Compared with these frameworks, SPU
runs programs written in existing ML frameworks. Besides,
SPU can support more than one ML framework.

There are other PPML frameworks developed based on
Trusted Execution Environments (TEE) [47] or federated
learning (FL) [28]. TEE-based solutions require special hard-
ware and are vulnerable to side-channel attacks [10, 54]. FL
also enables multiple participants to jointly and privately train
a model. In the classic FL scenario, each participant performs
local gradient computations on the plaintext datasets, and then
a centralized server aggregates the model parameters from
participants. As the original input data remains within the
owner’s domain throughout the training process, FL can be
considered as a PPML solution. However, some works have

already shown that even only exchanging model parameters
may also threaten the original input data [35, 42, 61].

Compared with FL frameworks, SPU provides end-to-end
privacy protection based on provable MPC techniques. MPC
does not necessarily require an independent server responsible
for model aggregation. Participants’ data is first encrypted
and then fed into SPU. SPU then performs computations on
the encrypted data (such as gradient updates) and trains a
model, which is also kept in encryption. Finally, the model
is reconstructed to plaintext and revealed to some designated
parties. In addition to model training, another use case for
SPU is private model inference, in which one party protects
the input data, and the other protects the model parameters.

More advanced FL frameworks have been proposed in
recent years to improve FL’s security. Chen et al. [12] intro-
duce MPC techniques into model aggregation to resist gen-
erative adversarial network attacks [22]. HybridAlpha [58]
uses functional encryption [7] to prevent curious aggrega-
tors and colluding participants from inferring private data.
Both approaches require a model aggregator and an addi-
tional trusted third party, which are not necessarily required
in SPU. Besides, Chen et al. [12] mainly target convolutional
neural networks, while SPU is not limited to specific model
types. Triastcyn et al. [53] propose FedGP to replace partici-
pants’ original data with artificial data by training generative
adversarial networks [17]. However, their approach is limited
to protecting image data and lacks a theoretical security guar-
antee. Compared with FedGP, SPU has no restrictions on the
protected data types, and its security guarantee is based on
provable MPC techniques.

7 Conclusion

In this paper, we propose SPU, a compiler and runtime suite,
which converts ML programs into an MPC-specific IR and
executes the IR in an MPC manner. Using the Python APIs
provided by SPU, users can achieve privacy-preserving ML
training and prediction by writing programs in mainstream
ML frameworks. We believe that using SPU can significantly
lower the threshold for users to achieve privacy protection and
promote the development of the entire PPML community.
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A Supplementary Materials

A.1 Evaluated Neural Network Models
This section describes models used in Section 4.1. Network
A is defined in [44]. Network B is defined in [40]. Network C
is defined in [37]. Network D is defined in [49].

Table 2: Architecture of Network A (SecureML [44] model).
Layer Input Description Output

Fully Connected 784 784×128 matrix multiplication 128
ReLU 128 Element-wise ReLU on input 128

Fully Connected 128 128×128 matrix multiplication 128
ReLU 128 Element-wise ReLU on input 128

Fully Connected 128 128×10 matrix multiplication 10

Table 3: Architecture of Network B (MiniONN [40] model).
Layer Input Description Output

Convolution 1×28×28 5×5 kernel, 1×1 stride 16×24×24
MaxPooling 16×24×24 2×2 kernel 16×12×12

ReLU 16×12×12 Element-wise ReLU on input 16×12×12

Convolution 16×12×12 5×5 kernel, 1×1 stride 16×8×8
MaxPooling 16×8×8 2×2 kernel 16×4×4

ReLU 16×4×4 Element-wise ReLU on input 16×4×4

Fully Connected 256 256×100 matrix multiplication 100
ReLU 100 Element-wise ReLU on input 100

Fully Connected 100 100×10 matrix multiplication 10

Table 4: Architecture of Network C (LeNet [37] model).
Layer Input Description Output

Convolution 1×28×28 5×5 kernel, 1×1 stride 20×24×24
MaxPooling 20×24×24 2×2 kernel 20×12×12

ReLU 20×12×12 Element-wise ReLU on input 20×12×12

Convolution 20×12×12 5×5 kernel, 1×1 stride 50×8×8
MaxPooling 50×8×8 2×2 kernel 50×4×4

ReLU 50×4×4 Element-wise ReLU on input 50×4×4

Fully Connected 800 800×500 matrix multiplication 500
ReLU 500 Element-wise ReLU on input 500

Fully Connected 500 500×10 matrix multiplication 10

Table 5: Architecture of Network D (Chameleon [49] model).
Layer Input Description Output

Convolution 1×28×28 5×5 kernel, 2×2 stride 5×14×14
ReLU 5×14×14 Element-wise ReLU on input 5×14×14

Fully Connected 980 980×100 matrix multiplication 100
ReLU 100 Element-wise ReLU on input 100

Fully Connected 100 100×10 matrix multiplication 10

B Artifact Appendix

B.1 Abstract
SecretFlow-SPU is an open-source framework designed for
privacy-preserving machine learning. This artifact contains
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the source code of SecretFlow-SPU, along with documenta-
tion for reproducing the experiments reported in this paper.
Additionally, we provide scripts and a Docker container image
to quickly build the experimental settings.

B.2 Scope
The artifact includes experiments for secure neural network
training, secure Variational Auto-Encoder (VAE) training, and
secure Long Short-Term Memory (LSTM) training using JAX.
We also provide two simple TensorFlow and PyTorch demos.
These experiments cover all we reported results in the paper.

B.3 Contents
README.md describes the artifact and provides a road map
for evaluation. For more details on the SecretFlow-SPU repo’s
directory layout, please refer to REPO_LAYOUT.md under
the base directory.

B.4 Hosting
The artifact is available at https://github.com/secretflow/spu
(branch atc23_ae).

B.5 Requirements
SecretFlow-SPU has no special hardware requirements.
To reproduce our results, users should have at least three
servers that are connected within a high-performance net-
work. We have done our evaluations on three Alibaba Cloud
ecs.g7.xlarge cloud servers with 4 vCPU and 16GB RAM
each. The CPU model is Intel(R) Xeon(R) Platinum 8369B
CPU @ 2.70GHz. We evaluated SecretFlow-SPU on Ubuntu
20.04.5 LTS with Linux kernel 5.4.0-125-generic. Technically,
SecretFlow-SPU is supported to run on any Linux servers with
software requirements described in CONTRIBUTING.md.
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