
This paper is included in the Proceedings of the
2023 USENIX Annual Technical Conference.

July 10–12, 2023 • Boston, MA, USA
978-1-939133-35-9

Open access to the Proceedings of the
2023 USENIX Annual Technical Conference

is sponsored by

Bifrost: Analysis and Optimization of Network I/O
Tax in Confidential Virtual Machines

Dingji Li, Institute of Parallel and Distributed Systems, SEIEE, Shanghai Jiao Tong University; Engineering
Research Center for Domain-specific Operating Systems, Ministry of Education, China; MoE Key Lab of
Artificial Intelligence, AI Institute, Shanghai Jiao Tong University; Zeyu Mi, Chenhui Ji, Yifan Tan, and

Binyu Zang, Institute of Parallel and Distributed Systems, SEIEE, Shanghai Jiao Tong University; Engineering
Research Center for Domain-specific Operating Systems, Ministry of Education, China; Haibing Guan,

Shanghai Key Laboratory of Scalable Computing and Systems, Shanghai Jiao Tong University; Haibo Chen,
Institute of Parallel and Distributed Systems, SEIEE, Shanghai Jiao Tong University; Engineering Research

Center for Domain-specific Operating Systems, Ministry of Education, China

https://www.usenix.org/conference/atc23/presentation/li-dingji

Bifrost: Analysis and Optimization of Network I/O Tax in
Confidential Virtual Machines

Dingji Li1,2,3, Zeyu Mi1,2�, Chenhui Ji1,2, Yifan Tan1,2,
Binyu Zang1,2, Haibing Guan4, and Haibo Chen1,2

1Institute of Parallel and Distributed Systems, SEIEE, Shanghai Jiao Tong University
2Engineering Research Center for Domain-specific Operating Systems, Ministry of Education, China

3MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University
4Shanghai Key Laboratory of Scalable Computing and Systems, Shanghai Jiao Tong University

Abstract
Existing confidential VMs (CVMs) experience notable net-

work performance overhead compared to traditional VMs.
We present the first thorough performance analysis of var-
ious network-intensive applications in CVMs and find that
the CVM-IO tax, which mainly comprises the bounce buffer
mechanism and the packet processing in CVMs, has a signif-
icant impact on network I/O performance. Specifically, the
CVM-IO tax squeezes out virtual CPU (vCPU) resources of
performance-critical application workloads and may occupy
more than 50% of CPU cycles. To minimize the CVM-IO
tax, this paper proposes Bifrost, a novel para-virtualized I/O
design that 1) eliminates the I/O payload bouncing tax by
removing redundant encryption and 2) reduces the packet
processing tax via pre-receiver packet reassembly, while still
ensuring the same level of security guarantees. We have imple-
mented a Bifrost prototype with only minor modifications to
the guest Linux kernel and the userspace network I/O backend.
Evaluation results on both AMD and Intel servers demonstrate
that Bifrost significantly improves the performance of I/O-
intensive applications in CVMs, and even outperforms the
traditional VM by up to 21.50%.

1 Introduction
As more and more data-processing applications [9, 13, 14, 57]
embrace the cloud, widespread concerns are being raised
about the security and privacy of data in-use on the cloud.
To address these concerns, various confidential computing
solutions have been proposed to safeguard data from unau-
thorized parties. Among them, confidential virtual machine
(CVM) solutions, such as AMD SEV [2, 3], Intel TDX [32]
and ARM CCA [8], run guest operating systems (OSes) in
hardware-isolated environments. In these environments, the
complex virtualization stack, such as hypervisor and host OS,
is no longer trusted and cannot access data in guest OSes arbi-
trarily, while still providing resource management functions.
This CVM abstraction transparently protects user workloads
without requiring any modifications and integrates easily into

�Corresponding author: Zeyu Mi (yzmizeyu@sjtu.edu.cn).

the existing cloud infrastructure. Therefore, it has gained pop-
ularity and is increasingly deployed in data centers.

Unfortunately, while the speed of modern network de-
vices continues to grow (Terabit Ethernet [60] like NVIDIA
400Gbps NIC [51]), the security protections introduced by
existing CVM solutions have a significant negative impact on
network performance. This paper first conducts a series of ex-
periments to thoroughly analyze the network I/O performance
of CVMs. We evaluate widely-deployed network-intensive
applications in an AMD SEV-ES/SNP server and a simulated
Intel TDX server. The results demonstrate that CVM’s secu-
rity protections significantly increase the CVM-IO tax, which
we define as the CPU resources used during CVM’s I/O pro-
cedure, resulting in up to 29% overhead over a traditional
VM that does not use any CVM protections. The CVM-IO tax
is caused by both security protections and intrinsic network
I/O procedures in CVMs, draining substantial CPU resources
from diverse application workloads.

Concretely, there are three common components in the
CVM-IO tax: ① VM exits consume up to 11.54% more CPU
cycles than the traditional VM. The time consumption of VM
exits is greatly increased due to the security checks and pro-
tections from the trusted modules (e.g., AMD-SP [3], Intel
TDX module [31]) and making the guest aware of emulation
events (e.g., AMD #VC [3], Intel #VE [29]). ② The bounce
buffer mechanism, an I/O staging memory shared between
the CVM and hypervisor, takes up to 19.45% CPU cycles
for bouncing packets (including headers and payload). I/O
operations that could previously be done directly by the hy-
pervisor to the traditional VMs must now be assisted by the
bounce buffer mechanism in guest OSes. For example, to
emulate a virtual NIC, the hypervisor in traditional VM sys-
tems can forward packets between the guest OS and the host
network stack by directly copying I/O data to/from the guest
private memory. But hypervisors in CVM systems require
the guest OS to bounce packets to/from a hypervisor-visible
shared memory region due to the memory encryption, intro-
ducing I/O data copy overhead. ③ The packet processing
also spends up to 36.14% CPU cycles preparing payloads
from massive network packets for application workloads. The

USENIX Association 2023 USENIX Annual Technical Conference 1

yzmizeyu@sjtu.edu.cn

higher the number of packets transferred to the network stack,
the more vCPU resources a CVM requires to process their
headers. Fortunately, the cost of VM exits becomes negligible
when the posted interrupt [59] feature is supported by the
hardware, leaving the bounce buffer mechanism and packet
processing as the main components of the CVM-IO tax.

This paper aims to reduce as much CVM-IO tax as pos-
sible for I/O-intensive applications in CVMs by bypassing
the bounce buffer mechanism and offloading the packet pro-
cessing. A straightforward design to bypass the bounce buffer
mechanism is to keep the packet content in place by dynami-
cally adjusting the accessibility of the same memory region
to the hypervisor. However, this approach is limited by the
memory encryption hardware support [34], which does not al-
low the plaintext contents of a memory region to be preserved
when modifying the accessibility of the memory region [29].
To reduce network packet processing cost, the existing design
is to pass fewer packets to the network stack by reassembling
multiple small packets into a large one in the guest device
driver. But the guest device driver still has to process a large
number of packets, consuming substantial CPU resources.

Fortunately, there are three observations that can help us ad-
dress the challenges mentioned above. We observe that either
end-to-end encryption or a CVM’s private memory alone can
protect data security, while applying both protections to the
payload is redundant. Additionally, we notice that end-to-end
encryption/decryption can also change the payload’s mem-
ory location, which is functionally equivalent to bouncing
between two memory regions. As a result, bypassing payload
bouncing can be achieved by directly encrypting/decrypting
the payload into/from the guest-host shared memory. An-
other observation is that the network I/O backend typically
has plenty of residual CPU resources. Given the bottleneck
experienced by the saturated vCPUs of network-intensive
CVMs, an opportunity arises to offload packet processing to
the network I/O backend. This approach effectively utilizes
the available CPU resources, alleviating the strain on vCPUs
and resulting in improved performance.

Based on these observations, this paper proposes Bifrost1

to improve the paravirtual network performance of the CVM
with three techniques: ① The zero-copy encryption dedupli-
cation eliminates payload bouncing by leveraging dedicated
guest-host shared memory to remove redundant encryptions
on the payload in a zero-copy way. When receiving pack-
ets, the end-to-end encrypted payload is directly decrypted
from the shared memory. When sending packets, the payload
is directly encrypted into the shared memory. To minimize
modifications, the shared memory is in the form of dedicated
non-uniform memory access (NUMA) [37] nodes, allowing
memory allocators in the guest kernel to be reused. ② The one-
time trusted read mechanism protects guest OSes from time

1Bifrost, the rainbow bridge from Norse mythology, metaphorically rep-
resents the secure and rapid transfer of CVM’s I/O data (Asgard’s gods) to
and from the untrusted hypervisor (Midgard).

of check to time of use (TOCTTOU) attacks while accessing
packets in the dedicated shared memory. With these two tech-
niques, the bouncing of the end-to-end encrypted payload,
which takes up much CPU resources of CVMs, is securely by-
passed. ③ The pre-receiver packet reassembly reduces vCPU
resources utilized by the device driver by offloading the task
of reassembling received packets to the network I/O backend.
Thus, CVMs are able to process fewer packets with larger
payload, reducing the packet processing cost on vCPUs.

We have implemented a Bifrost prototype by modifying the
guest OS kernel and host user-level software. The prototype
extends the Linux v6.0-rc1 kernel in the guest OS with 815
lines of code, and adds 175 lines to OpenvSwitch v2.17.3 and
541 lines to DPDK v21.1.2, both of which run in the host
user mode. We have also evaluated Bifrost’s performance on
both AMD and Intel platforms. The results show that, with
advanced posted interrupt support, Bifrost enhances the per-
formance of I/O-intensive applications in CVMs, surpassing
traditional VMs by up to 21.50%.

In summary, this paper makes the following contributions:

• The first thorough performance analysis of I/O-intensive
applications in CVMs on existing and next-generation
hardware platforms, revealing their bottlenecks and over-
head sources compared to traditional VMs.

• A secure paravirtual I/O design that greatly reduces the
CVM-IO tax, significantly improving the performance
of I/O-intensive applications in CVMs.

• A Bifrost prototype and a comprehensive evaluation on
AMD and Intel platforms, demonstrating improvements
on existing and future CVM hardware. The prototype is
available at https://github.com/IPADS-Bifrost.

2 Background
2.1 Confidential VMs (CVMs)
There are different CVM solutions based on specialized hard-
ware extensions. All of these solutions leverage hardware
memory encryption and integrity checking [30,34] to enforce
confidentiality and integrity. They share the same CVM ab-
straction that excludes the entire virtualization stack from the
trusted computing base (TCB). As shown in Figure 1, the
trusted firmware, which is the unique software TCB, isolates
the CVM from untrusted hypervisors and traditional VMs.

Existing CVM systems typically divide the physical mem-
ory of a VM into two major security types: private memory
and shared memory. The private memory is encrypted by hard-
ware and cannot be accessed or modified by any untrusted
entities outside the VM, while the shared memory holding
plaintext data can be accessed by the hypervisor. The CVM
systems also allow the hypervisor to switch private memory
and shared memory to each other at runtime. However, the
data content of the memory page cannot be preserved before
and after the security type switch [29]. Hence, the guest must

2 2023 USENIX Annual Technical Conference USENIX Association

https://github.com/IPADS-Bifrost

BE Driver

Userspace
Hypervisor

In-kernel
Hypervisor

CPU / Memory / IRQ
Virtualization

Bounce Buf

Confidential VM

U

Network Stack
FE Driver

APP APP

TLS Offload

TLS Library

K
U

Traditional VM

Network Stack
FE Driver

APP APP

TLS Offload

TLS Library

K

NIC Driver

Trusted Firmware
Security Protection

Memcpy
VM Exit

CVM Hardware Platform

Confidential ModeNon-confidential Mode

Figure 1: The paravirtual I/O networking architecture of tradi-
tional VMs and CVMs atop the CVM hardware platform. The
black arrows represent the path of VM exits and VM enters. The light
blue arrows indicate memory copies that consume CPU resources.
The FE Driver and the BE Driver in the figure represent drivers in
frontend and backend, respectively.

move data outside of private memory before the security type
switch, and then copy it back to the new shared memory. Be-
sides, it takes much effort to finish the security type switch.
The guest OS has to cooperate with the host hypervisor to
alter address translation data structures and maintain CPU
micro-architectures, requiring multiple VM exits and inter-
processor communications [4, 29]. As a result, the security
type switch is unsuitable to occur frequently in CVMs.

2.2 Paravirtual I/O Networking in CVM
Paravirtual I/O has become a primary I/O virtualization choice
for modern cloud providers owing to its high performance
and excellent compatibility. There are two cooperative drivers
in paravirtual I/O, a frontend driver in the guest VM and a
backend driver in the hypervisor, which communicate with
each other through shared memory. To provide maximum
network performance, the backend driver can be deployed in
the host userspace, for instance, using vhost-user [46, 53], to
directly control the device in a busy-polling mode [16].

An example of paravirtual I/O networking of the traditional
VM is shown in the left part of Figure 1. The applications
in the userspace deal with payload, while the network stack
and the frontend driver in the kernel handle packet processing.
The packet processing includes network functions that handle
conversions between payload and packets. For example, in the
transmission (TX) direction, the payload from applications
and the headers from the network stack are encapsulated into
network packets, after which the backend driver is notified to
send them out. Because the hypervisor can access the entire
memory space of a traditional VM, the backend driver can
copy the packets freely from the guest memory to its own
memory and forwards them to the NIC driver.

Memory pages in CVMs, including those containing pack-
ets, are set to private by default. However, the host OS is
untrusted and cannot access the private memory of CVMs

(see § 2.1). To allow the host OS to transfer packets, CVMs
utilize a bounce buffer mechanism that sets up a guest-host
shared memory as an intermediary. As shown in the right part
of Figure 1, the guest OS reserves a shared memory region
with the host OS as the bounce buffer and copies the outgoing
packets to it. Afterwards, the backend driver can copy the
packets to the hypervisor as normal. As a result, the bounce
buffer leads to excessive memory copies for I/O virtualization.

2.3 Transport Layer Security (TLS)

TLS is an end-to-end security protocol designed to protect
data in transit by leveraging cryptography. It has been com-
monly used by modern applications to secure their I/O pay-
load in transit [6, 17, 49, 55, 61]. CVM solutions have made
it a mandatory requirement for their applications [22, 26, 54].
Moreover, today’s OSes, such as Linux, provide in-kernel
TLS support, enabling userspace applications to offload TLS
to the kernel for enhanced performance and expanded fea-
tures [19]. As shown in Figure 1, in-kernel TLS allows the
payload from the page cache to be encrypted without going
through the userspace.

The industry currently implements the TLS protocol based
on encryption algorithms such as AES-GCM [18] to assure
the confidentiality and integrity of data simultaneously. The
output of these encryption algorithms consists of encrypted
ciphertext for confidentiality, and an authentication tag gen-
erated from the ciphertext for integrity. To provide complete
data security protection, the correctness of both the ciphertext
and its authentication tag must be guaranteed during encryp-
tion, and vice versa.

2.4 Exitless Interrupt Virtualization

In the paravirtual I/O networking scenario, when a virtual
NIC (i.e., network backend) receives some network packets,
it notifies the guest VM with a virtual interrupt. The guest VM
then needs to interact with the virtual interrupt controller to
perform Acknowledgment (ACK) and End of Interrupt (EOI).
Traditional techniques rely on the hypervisor to emulate in-
terrupt delivery and interrupt controller access of guest VMs
using trap-and-emulate approaches. However, virtualizing in-
terrupts in this way can be a significant source of overhead,
as each virtual interrupt’s completion necessitates multiple
VM exits and entries. To address this issue, modern hard-
ware platforms have introduced the posted interrupt technique
to enable exitless virtual interrupt delivery. They have also
extended their interrupt controllers with specialized virtual-
ization support to eliminate VM exits caused by ACK and
EOI. Interrupt controllers with virtualization extensions are
currently in production by all mainstream hardware vendors
such as Intel, AMD, and ARM. Full-featured posted interrupt
is available on the Intel platform, and it will soon be supported
on other platforms (e.g., next-generation products with AMD
AVIC [4] and ARM GICv4 [7]).

USENIX Association 2023 USENIX Annual Technical Conference 3

0%

10%

20%

30%

32KB 64KB 128KB 256KB 32KB 64KB 128KB 256KB

1vCPU 4vCPU

O
v
e

rh
e

a
d

(a) Memcached

32KB 64KB 128KB 256KB 32KB 64KB 128KB 256KB

1vCPU 4vCPU

(b) Nginx

32KB 64KB 128KB 256KB 32KB 64KB 128KB 256KB

1vCPU 4vCPU

CVM

CVM+PI

(c) Redis
Figure 2: Normalized overhead compared with traditional VM in I/O-intensive applications. The Y-axis is the normalized overhead
compared to the baseline of each group. CVM+PI represents CVM + Posted Interrupt.

3 Analysis of CVM-IO Tax
In this section, we quantify the performance impact of the
CVM-IO tax by comparing the I/O performance of existing
CVMs with that of traditional VMs. The CPU execution time
of I/O-intensive applications running in a CVM can be divided
into two parts: 1) Application workloads: the time spent on
executing application workloads, including business logic
and payload processing. 2) The CVM-IO tax: the time spent
on CVM-specific security protections and intrinsic network
I/O procedures. It consists of VM exits, the bounce buffer
mechanism, and the packet processing during the payload
preparation for application workloads.

All experiments are conducted on a 128-core AMD SEV-
ES/SNP server and a 24-core Intel server with 200Gbps NICs.
The AMD server is used to evaluate the I/O performance of
real CVMs, referred to as CVM. However, the AMD server
does not support posted interrupt, resulting in degraded per-
formance due to numerous VM exits during virtual interrupt
deliveries. Therefore, we simulate next-generation CVMs
using the Intel server that supports posted interrupt, named
CVM+PI. More detailed testbed and simulation configura-
tions are described in § 7.1. For fair performance comparison,
CVM’s baseline is the vanilla AMD traditional VM, while
CVM+PI’s baseline is the vanilla Intel traditional VM.

To achieve optimal network performance, we choose vhost-
user as the network backend in follow-up experiments. We
still use the SEV-ES VM because the SEV-SNP VM does
not support vhost-user due to its lack of huge page support.
Theoretically, the security protections introduced by SEV-
SNP do not further increase the CVM-IO tax.

3.1 CVM-IO Tax Breakdown
We first evaluate the overall performance using three represen-
tative network-intensive applications: Memcached and Redis
for key/value stores, and Nginx for web servers. All appli-
cations and benchmarks enable the in-kernel TLS support
for end-to-end protection. Figure 2 depicts the normalized
performance overhead of CVMs compared to their respective
baselines. In all three benchmarks, CVM incurs 21%-28%
overhead, while CVM+PI exhibits 13%-29% performance
degradation. As a result, the performance impact of CVM-IO
tax results in significant overhead over baselines.

We further take the Memcached benchmark with the
4vCPU-256KB test cases as an example to break down the

0

20

40

60

80

100

CVM’s Baseline CVM CVM+PI’s Baseline CVM+PIP
e
rc

e
n
ta

g
e
(%

)

Memcached 4vCPU-256KB

VM Exit Bouncing Pkt Processing Application Workloads

14.56
28.86

56.57

20.13
13.99

27.55

38.30

33.64

65.94

19.45

36.14

43.28

0

50

100

P
e
rc

e
n
ta

g
e
(%

)

Memcpy Metadata

50.74

49.25

Bouncing

Figure 3: CPU time breakdown of the Memcached 4vCPU-
256KB case in CVMs. The left subfigure shows the CPU time
breakdown of CVM, CVM+PI and their baselines in the Memcached
4vCPU-256KB case. The right subfigure shows the CPU time break-
down of the bounce buffer part in CVM+PI.

time cost of the CVM-IO tax of CVMs, as shown in Figure 3.
In the left subfigure, the VM Exit, Bouncing and Pkt Process-
ing denote the three corresponding parts of the CVM-IO tax
mentioned earlier. Because all vCPUs are fully utilized during
the benchmark, the impact on overall performance becomes
more significant as the percentage of CPU time consumed
by the CVM-IO tax grows. The CVM-IO tax consumes over
50% of the total CPU time in all CVMs during the bench-
mark. For CVM, VM exits taking up more than 20% CPU
time have more impact than the bounce buffer. For CVM+PI,
the bounce buffer cost occupies more than 19% CPU time,
while VM exits take up a tiny percentage of the total time
in both CVM+PI (less than 1.2%) and its baseline (less than
0.5%). Packet processing in all the above cases accounts for
about 30% of CPU time and thus has a considerable impact.

The overhead over baselines can be attributed to the reduc-
tion in CPU time of application workloads due to the CVM-
IO tax. For example, in the 4vCPU-256KB case of CVM+PI,
the CVM-IO tax leaves 34.35% fewer cycles for application
workloads than the baseline, explaining the 27.44% overhead.
Since packet processing in both CVMs and their baselines
consumes a similar portion (about 30%) of CPU time, VM
exits and the bounce buffer in CVMs contribute the most to
the overhead.
Take-away I

The CVM-IO tax that occupies more than half of to-
tal CPU time incurs a substantial performance impact on
CVMs. VM exits and the bounce buffer are the primary
sources of overhead over baselines.

Lengthy VM Exits The AMD SEV-ES hardware intro-
duces protection for CPU states (e.g., registers) of each CVM
against the untrusted hypervisor during VM exits. In contrast

4 2023 USENIX Annual Technical Conference USENIX Association

to traditional VMs, this protection adds thousands of cycles to
each VM exit. We first break down the VM exit handling cost
during every virtual interrupt delivery, finding that, on aver-
age, CVM spends 7,476 cycles on guest-host world switches,
whereas a traditional VM only spends 1,643 cycles. We then
collect the number of VM exits per second during the Mem-
cached 4vCPU-256KB benchmark for different CVMs. CVM
averagely triggers 41,615 VM exits per second on each vCPU,
while CVM+PI only triggers 2,803 VM exits per second on
each vCPU, an order of magnitude less than CVM.

The results indicate that frequent VM exits taking up more
than 20% of total CPU time have a significant impact on
CVM. However, with posted interrupt support (CVM+PI),
the impact of VM exits is almost negligible. Fortunately, all
next-generation CVM platforms, including AMD SEV, Intel
TDX and ARM CCA, support posted interrupt, so that the
performance impact of VM exits can become minimal.
Take-away II

VM exits may take up a large portion of the CPU time
of CVM due to their high frequency and latency, but their
performance impacts can become minimal with the posted
interrupt support on next-generation hardware.

Bounce Buffer To analyze the overhead of bounce buffers,
we break down the CPU time spent on bounce buffers in the
4vCPU-256KB case of CVM+PI into two parts: copying I/O
data (packets in this case) and maintaining metadata for buffer
allocation and freeing. The breakdown result shown in the
right subfigure of Figure 3 indicates that I/O data copy (cor-
responding to the Memcpy) consumes 50.74% of the bounce
buffer time, while the metadata maintenance (corresponding
to the Metadata) spends 49.25% of the bounce buffer time.
Besides, the experimental results of small and large data sizes
reflect that the performance impact of the bounce buffer rises
as the data size increases.
Take-away III

The bounce buffer consumes a large percentage of CPU
resources due to I/O data copying and metadata mainte-
nance. It is necessary to avoid bouncing large-size I/O data
to minimize the bounce buffer’s performance impact.

Packet Processing Packet processing in both the frontend
driver and the network stack consumes up to 36.14% of CPU
time in Memcached 4vCPU-256KB cases. Since the packet
processing time cost is proportional to the number of pack-
ets processed, the large number of packets in I/O-intensive
scenarios can demand a significant amount of CPU resources.
Take-away IV

Packet processing occupies a large fraction of CPU time
due to the large number of packets to be processed. Reduc-
ing the number of packets to be processed can mitigate its
performance impact.

3.2 Summary
To sum up, our experiments have demonstrated that CVMs
incur up to 29% overhead in I/O-intensive applications com-
pared with traditional VMs. On the next-generation hardware
with posted interrupt support, the tax of VM exits becomes
negligible while the bounce buffer tax has a more significant
impact on CVMs. Additionally, the packet processing tax con-
sumes a great portion of CVMs’ vCPU resources due to the
large number of packets, which is also the case for traditional
VMs. Therefore, it is essential to reduce the cost of the bounce
buffer as well as the packet processing in CVMs to minimize
the CVM-IO tax and achieve high network performance.

4 Overview
4.1 Design Goals
The primary goal of Bifrost is to reduce the paravirtual I/O
network tax of existing CVM solutions while maintaining
the same level of security guarantees. Besides, the design of
Bifrost should be general enough to be easily applied to CVM
solutions on various platforms, such as x86, ARM and RISC-
V, and to support different host and guest OSes, including
Linux, FreeBSD and Windows. Further, it is demanding that
Bifrost should avoid intrusive modifications to existing soft-
ware stacks and keep transparent to userspace applications in
CVMs to make it practical for real-world scenarios.

4.2 Challenges
To reduce the CVM-IO tax, Bifrost should optimize the
bounce buffer mechanism and the packet processing proce-
dure. However, it is not easy to implement these optimizations
due to the following two technical challenges:
C1: Out-of-place hardware encryption and decryption.
The ideal way to eliminate the bounce buffer mechanism
for a network packet is to enable zero copy by maintaining
the packet within the same memory region throughout its
entire lifecycle. In addition, either the guest or the host should
have exclusive access to the packet’s memory region while
processing it to ensure data security, necessitating memory
security type switches at runtime. However, as mentioned in
§ 2.1, when a private page containing a packet is converted
to a shared page (and vice versa), the packet in this page
is lost and unable to be correctly passed to the hypervisor.
Moreover, changing the security type of guest memory pages
is too expensive to be a frequent operation on the I/O critical
path.
C2: Costly packet pre-processing in the device driver.
Packet processing primarily operates on packet headers rather
than payloads. To minimize the cost of packet processing,
a commonly employed technique is to pre-process multiple
small packets within the same flow into larger packets before
submitting them to the network stack. Nonetheless, the vir-
tual NIC driver still has to occupy large quantities of vCPU
resources to handle massive small packets coming from the
high-speed NIC.

USENIX Association 2023 USENIX Annual Technical Conference 5

In-kernel TLS

FE Driver

APPAPP
OpenSSL

TX

Userspace
Hypervisor

OpenSSL OpenSSL

Network Stack

APP

Bounce BufferHeader

Payload

Header

BE
DriverPRPR

RX

Payload

ZCED

Protected by OTTR

NIC Driver U
K

Confidential VM

ZCED

Figure 4: The overall architecture of Bifrost.

4.3 Observations and Insights
We observe three characteristics of existing CVM systems,
allowing us to propose new designs that are appropriate for
CVM scenarios to address the above challenges.
O1: Either private memory or end-to-end encryption
alone is sufficient to assure data security. Data security
can be ensured by either private memory protection or end-
to-end encryption. Besides, it is not always better to apply
multiple security protections to a piece of data at the same
time, especially for performance-critical I/O data. Specifically,
the guest OS in current CVM solutions initially encrypts the
payload into private memory. But private memory protection
is a redundant security mechanism for data that has already
been encrypted. As a result, the payload bouncing tax can be
eliminated by retaining existing end-to-end encryption while
removing private memory protection at the same time.
O2: End-to-end encryption has the side effect of mov-
ing the memory location of the payload. The procedure
of adding end-to-end encryption allows CVM to relocate
payloads to a different memory location. Hence, end-to-end
encryption at the in-kernel TLS layer provides an opportune
moment to also remove private memory protection on the pay-
load for userspace applications. In particular, the generated
ciphertext during encryption can be directly written to the
target shared memory with the host, ensuring data security
while eliminating unnecessary copies and bouncing overhead.
O3: I/O backends usually have plenty of residual CPU
resources available. Modern virtualization systems usually
leverage dedicated CPUs to run I/O backends of VMs for
high and predictable I/O performance [16, 45]. Unlike CPUs
running CVMs’ vCPUs, which are likely to be fully loaded
due to complex in-guest logic, those running I/O backends
have less work to do and thus have plenty of free CPU re-
sources. As a result, I/O backends with adequate residual
CPU resources can be utilized to release the burden of vCPUs
by pre-processing packets before passing them to CVMs.

4.4 Architecture and High-Level Design
Based on the above observations, Bifrost leverages the side ef-
fect of end-to-end encryption and the residual CPU resources
of network I/O backends to eliminate payload bouncing and
reduce packet processing cost in CVMs in an application-
transparent way. Figure 4 shows the architecture of Bifrost.

To address challenge C1, Bifrost proposes two designs to

enable zero-copy transparently and securely for the end-to-
end encrypted payload in the CVM. D1: zero-copy encryption
deduplication (§ 5.1) eliminates payload bouncing by keeping
the end-to-end protected payload in the same shared mem-
ory during its lifetime. Specifically, Bifrost directly stores
output from the in-kernel TLS layer to the guest-host shared
memory without copying any payload, and vice versa. To min-
imize modifications, Bifrost creates dedicated NUMA nodes
to serve as shared memory for this design, so that memory
allocators in the guest kernel can be reused. However, concur-
rent memory accesses to plaintext data in shared memory may
lead to TOCTTOU attacks. A malicious host can tamper with
data that has passed the security checks of the guest OS, such
as altering a packet header after it has passed the checksum
check. To defend against this attack, Bifrost introduces D2:
one-time trusted read (§ 5.2), which ensures that the guest
OS can only read and trust the target data content from shared
memory once, as additional reads from the same memory
may lead to host-tainted data content. The guest must process
data after it has been read into registers or private memory to
defend against host tampering during guest processing, thus
eliminating TOCTTOU issues.

To address challenge C2, Bifrost proposes another design
to complete pre-processing network packets before they reach
the CVM. D3: pre-receiver packet reassembly (§ 5.3) makes
use of the network backend’s free CPU resources to pre-
process multiple small incoming packets into a large one
before transmitting them to the guest OS.

As mentioned in § 3.2, while D1 and D2 are designed to
optimize payload bouncing issues that are specific to CVMs,
D3 can also be leveraged to reduce packet processing cost in
traditional VMs.

We explain the Bifrost architecture and its design points
by describing the high-level workflows of packet receiving
and sending. Packet receiving workflow: When a network
packet carrying an end-to-end encrypted payload arrives at the
network I/O backend, Bifrost attempts to merge it with other
same-flow packets, if possible, by pre-processing the packet
with PRPR (D3). Then Bifrost flushes those pre-processed
network packets to the frontend driver through virtual net-
work queues of the CVM. The zero-copy aware TOCTTOU
defense (D2) in the frontend driver only copies small metadata
such as packet headers to private memory for security, while
keeping the end-to-end encrypted payload in the shared mem-
ory allocated from dedicated NUMA nodes (D1). Next, the
frontend driver constructs basic data structures (e.g., skbuff in
Linux) for these pre-processed incoming packets before pass-
ing them to the network stack. Afterwards, Bifrost utilizes the
in-kernel TLS support to decrypt the end-to-end encrypted
payload directly from shared memory into the application’s
private memory. As a result, the packet receiving workflow
experiences no end-to-end encrypted payload bouncing and
less packet processing cost in the CVM.
Packet sending workflow: When an application begins to

6 2023 USENIX Annual Technical Conference USENIX Association

send out a payload from the guest OS, Bifrost first leverages
the in-kernel TLS support to encrypt plaintext from either
application memory or kernel page cache in private memory
and places the encrypted result directly into the guest-host
shared memory allocated from dedicated NUMA nodes (D1).
The memory copy of the end-to-end encrypted payload from
private memory to the shared bounce buffers is removed at
this step. For small metadata that is not protected by end-
to-end encryption, the zero-copy aware TOCTTOU defense
(D2) enforces Bifrost to fall back to the bounce buffer mecha-
nism. Consequently, there is no end-to-end encrypted payload
bouncing in its sending workflow.

4.5 Threat Model and Assumptions
The threat model of Bifrost is the same as that of existing
CVM solutions. The TCB only comprises the CPU hardware
and minimized trusted monitor firmware or software, if any.
Attackers can control any untrusted software entities or hard-
ware devices to launch attacks on CVMs. Therefore, for a
specific CVM, all software outside it, including the hyper-
visor and other CVMs, and hardware devices, are untrusted.
We assume that a CVM does not voluntarily reveal its sensi-
tive data and protects its I/O data with end-to-end encryption.
Denial-of-Service (DoS) attacks [11] are out of scope. Al-
though CVM implementations may have bugs [5, 41] and
are subject to side-channel attacks [12, 39, 40, 47], we do not
consider them because they are orthogonal to this paper.

5 Design and Implementation Details

5.1 Zero-Copy Encryption Deduplication
(ZCED)

Bifrost reserves a contiguous shared memory region for par-
avirtual I/O networking in the guest physical address (GPA)
space. This shared memory appears as NUMA nodes dedi-
cated for ZCED (hereinafter called ZCED NUMA), allowing
Bifrost to utilize mature memory management mechanisms
in existing guest OSes. Moreover, the location and size of
ZCED NUMA memory are fixed at the boot time of a CVM
for optimal performance.
Boot-time initialization: The memory range of a ZCED
NUMA node can be configured by setting the base GPA and
total length via the kernel command line. As shown in § 7.4,
ZCED NUMA nodes of 200MB can satisfy the demands of
all network-intensive benchmarks in our experiments. Bifrost
parses the number of ZCED NUMA nodes and adds the spec-
ified guest memory range to each node. All ZCED NUMA
nodes are created with no associated vCPU. Before a ZCED
NUMA node is available for memory allocations, Bifrost sets
its memory security type to shared. To achieve optimal perfor-
mance, proper distances should be specified between NUMA
nodes to assist the guest kernel in allocating memory [36].
The distances between ZCED NUMA nodes are the same as
those between normal NUMA nodes to which their memory

ranges originally belonged, while each ZCED NUMA node
is zero distance from its original NUMA node.
Runtime allocation: To prevent data leakage caused by unin-
tentional data store into the ZCED NUMA memory, Bifrost
adjusts the memory allocation policies of the guest OS to
only allow explicit allocation to acquire ZCED NUMA mem-
ory. Hence, the original memory allocations in the system do
not allocate from ZCED NUMA nodes, avoiding the security
issue of inadvertently exposing sensitive data. Guest kernel
components are merely able to allocate memory from ZCED
NUMA nodes by assigning a special allocation flag (e.g.,
a GFP flag in Linux) provided by Bifrost to parameters of
memory allocation invocations. The allocator will first try to
acquire memory from the closest ZCED NUMA node to the
vCPU running this component. In the frontend driver, Bifrost
checks the memory location in which the payload resides, and
if it belongs to a ZCED NUMA node, Bifrost will bypass the
bounce buffer mechanism.

In the TX direction, Bifrost modifies the in-kernel TLS
layer to transparently intercept communications between up-
per applications and the lower network stack. The payload
in the TX direction must go through sendmsg and sendpage
functions of the existing in-kernel TLS layer before entering
the network stack. sendmsg is the most often used function
for sending payload from userspace, whereas sendpage is
specialized for transferring payload from the storage (e.g.,
page cache). Bifrost just adds the special allocation flag to
the parameters of memory allocation invocations in these two
functions to allocate memory from ZCED NUMA nodes for
storing encrypted payload.

In the RX direction, the guest memory regions used to
accept incoming packets are allocated and assigned by the
frontend driver (i.e., virtio-net in our case). Bifrost modifies
the memory allocation invocations for these regions by adding
the allocation flag as well. When an application attempts to
receive payload, Bifrost decrypts the ciphertext directly from
the ZCED NUMA memory to private memory.

5.2 One-Time Trusted Read (OTTR)
To defend against TOCTTOU attacks, Bifrost only trusts the
data obtained from the first read of the ZCED NUMA memory
during the guest OS’s handling of packet headers and end-to-
end encrypted payload.
Packet header handling: The content of each packet header
should only be used after it has been validated by the guest
OS’s packet processing functions. However, if a malicious
host modifies the header after the guest OS’s validation, the
guest OS may encounter problems due to the invalid header.
For instance, buffer-overflow problems can happen if the guest
OS uses a modified length to extract payload from packets.

To prevent this, Bifrost must read a packet header from the
ZCED NUMA memory into a private memory region before
further processing it. This read only happens once for each
packet header, and Bifrost will never read the header from

USENIX Association 2023 USENIX Annual Technical Conference 7

BE Driver

FE Driver

Network Stack

Host
Userspace

Guest
Kernel

MAC IP TCP Payload

MAC IP TCP Payload

MAC IP TCP Payload

MAC IP TCP Payload

MAC IP TCP Payload

MAC IP TCP Payload
Vanilla +PRPR

Figure 5: Comparison of the packet reassembly workflow of the
vanilla CVM and the CVM with PRPR.

the ZCED NUMA memory again to prevent the host from
subsequently tampering with the content of packet headers.
In the TX direction, unlike the end-to-end encrypted payload
that is stored in the ZCED NUMA memory, network packet
headers are placed in private memory. The frontend driver
still leverages the bounce buffer mechanism to copy packet
headers to the guest-host shared memory before transmitting
them to the backend driver. It has a very small impact on
performance due to the small size of packet headers.
End-to-end encrypted payload handling: For end-to-end
encrypted payload, as mentioned in § 2.3, data security pro-
tection requires that the encryption must generate both correct
ciphertext (i.e., encrypted payload) and authenticated tag, and
the decryption must correctly verify the ciphertext integrity
with the authenticated tag. Both the authenticated tag genera-
tion and the integrity verification take the ciphertext as input,
which exists in ZCED NUMA memory and may be tampered
with by the host, resulting in compromised payload integrity.
For instance, in the context of zero-copy I/O, the current Linux
AES-GCM implementation on the x86-64 platform double
reads the ciphertext from the same ZCED NUMA memory
in the last phase of parallel decryption, suffering from TOCT-
TOU attacks on the ciphertext.

To prevent payload TOCTTOU attacks, in the decryption
procedure, Bifrost reads only once from the ZCED NUMA
memory to load the ciphertext value into CPU registers and
always uses the correct ciphertext in the registers afterwards,
avoiding reading a potentially compromised ciphertext. Simi-
larly, during the encryption procedure, the ciphertext for each
payload is guaranteed to remain valid from the moment it is
generated in the register until it exits the register. Thus, Bifrost
calculates the authentication tag using the correct ciphertext
that is still in the CPU registers.

5.3 Pre-receiver Packet Reassembly (PRPR)
Large packets are split into smaller ones before sending out
due to transmission size limit. To save CPU resources con-
sumed by packet handling, prior work [33, 52] has decreased
the number of packets passed to the network stack by reassem-
bling small packets into large ones in advance. Modern OSes
support small packets coalescing at the device driver layer
using GRO [15]. However, packet reassembly in the guest
device driver can still consume significant vCPU resources,
severely affecting the application performance when handling
large numbers of packets. While modern NICs enable hard-
ware coalescing without engaging CPU using LRO [23], it is
hard for hardware to dynamically adjust reassembly rules and

support new packet formats. Inappropriate coalescing even
causes metadata loss and network connection disruptions [15].

In comparison to prior approaches, Bifrost offloads the
packet reassembly to the hypervisor backend driver which has
sufficient CPU time, freeing up precious vCPU resources for
CVMs without sacrificing flexibility. The packet reassembly
logic in Bifrost is similar to that of previous work [15] since
network packets share the same format.
Overall procedure: When a network packet arrives at the
network backend, some packets may be cached in the backend
and waiting for reassembly. Bifrost first parses the current
packet header to determine if any cached packets from the
same flow exist. If present, Bifrost tries to merge the current
packet with the cached same-flow ones. Eventually, based on
the status information in the currently cached packets in the
network I/O backend, Bifrost decides whether it is time to
flush them to the frontend driver in the guest OS.
Same-flow packet detection: Same-flow packets are network
packets that share the same source, destination and sequence
number. As our current implementation focuses on TCP/IP
packets, Bifrost first recognizes headers that have the same
MAC address, IP address and TCP port in both source and
destination directions as same-flow candidates. Then Bifrost
regards these candidates with an identical TCP acknowledg-
ment (ACK) number as same-flow packets.
Flexible per-VM flush rules: It is essential to flush packets
to the guest OS at an appropriate time since the network
performance is highly sensitive to packet latency. When a
newly received packet has a cached same-flow packet, Bifrost
first checks whether these two packets have consistent status
information, such as the time to live (TTL) field. If not, Bifrost
flushes the old cached packet to the frontend driver. Otherwise,
Bifrost reassembles these two packets into a new one. Finally,
Bifrost flushes the new packet if it contains an immediate-
flush flag (e.g., the TCP PSH flag). For a received packet that
has no same-flow packet, Bifrost directly determines whether
to flush it by checking its immediate-flush flag.

In addition to the above basic rules, Bifrost also allows each
guest OS to customize flush rules. Bifrost provides paravirtual
interfaces for receiver CVMs to install their own rules to
disable reassembly, adjust the maximum number and timeout
of cached packets.
Packet reassembly: Among the cached same-flow packets,
the currently received packet can only be reassembled with
the packet whose payload is contiguous with it. Bifrost finds
neighbors of the received packet for reassembly by comparing
their TCP sequence (SEQ) numbers. As depicted in Figure 5,
duplicate packet headers are merged during reassembly.

6 Implementation Complexity
We implement a Bifrost prototype using Linux as the guest
kernel and OpenvSwitch-DPDK as the network I/O backend.

In the Linux v6.0-rc1, we introduce 815 lines of code to
support ZCED and OTTR. These changes include initializing

8 2023 USENIX Annual Technical Conference USENIX Association

ZCED NUMA nodes during memory subsystem bootstrap-
ping, replacing memory allocation invocations, and defending
against TOCTTOU risks in AES-GCM assembly.

In the DPDK v21.11.2, we add 541 lines of code to im-
plement PRPR, which primarily consists of two parts: 1) Re-
organization of network packets, including header trimming
during packet reassembly, flag resetting, etc. 2) Flush rules,
which mainly focus on deciding whether to cache or imme-
diately flush an incoming packet. Our implementation also
adds 175 lines of code to OpenvSwitch v2.17.3, which pre-
processes the network packets by parsing headers in advance,
and invokes the interfaces provided by the DPDK.

7 Evaluation
7.1 Experimental Setup
Testbed: Our testbed remains the same as in § 3, consisting
of an AMD server and an Intel server running Ubuntu 20.04.4
LTS. The AMD server has two 64-core AMD EPYC 7T83
CPUs at 2.45GHz (128 cores in total) and 500GB DDR4
DRAM. The Intel server has two 12-core Intel Xeon Gold
5317 CPU at 3.00GHz (24 cores in total) and 188GB DDR4
DRAM. Both machines are equipped with one single-port
Mellanox Connect-X6 200Gbps NIC and are back-to-back
connected with a fabric cable. We disable CPU frequency
boost features to lessen performance data fluctuation. The
AMD server’s host kernel is Linux v5.19.0-rc6 with SEV-ES
and SEV-SNP support, while the Intel server’s host kernel is
Linux v5.4.0. The guest kernel version of all CVMs and their
baseline VMs is Linux v6.0-rc1. Each guest OS is assigned
with either 1 vCPU or 4 vCPUs, 16GB memory and a 2-
virtqueue virtio-net device backed by the vhost-user backend
based on OpenvSwitch v2.17.3 and DPDK v21.11.2. For each
benchmark, the server side runs in the guest OS while the
client side runs in the host OS on the other server.

To avoid the interference of unintended scheduling or inter-
rupts, we isolate 6 cores on each server. The CPU isolation is
achieved by the isolcpus function in the Linux kernel, and the
binding is done by the qemu-affinity command for vCPUs and
pmd-cpu-mask parameter for the OpenvSwitch-DPDK-based
vhost-user backend. Each thread of vCPUs and the vhost-user
backend is pinned to a different isolated CPU. IOMMUs of
both machines are set to passthrough mode.
Naming Convention and Configurations: As mentioned in
§ 3, CVM represents real SEV-ES/SNP CVMs on the AMD
server, while CVM+PI represents simulated TDX CVMs with
posted interrupt enabled on the Intel server. The simulation
is based on a vanilla Intel traditional VM, which further en-
ables bounce buffer (i.e., Linux SWIOTLB [62]) for virtio
devices and adds an additional 10,000 cycles to each VM exit
to simulate the cost of guest-host world switches. The sim-
ulated world switches consume 2,524 more cycles than that
of the SEV-ES/SNP VM. To the best of our knowledge, SEV-
ES/SNP’s lengthy VM exits primarily result from uncore
co-processor (i.e., AMD-SP) intervention, whereas TDX’s

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

CVM+RIF CVM+PI

N
o

rm
a

liz
e

d
 T

h
rp

t.

Vanilla
+ZC

+PRPR
Bifrost

(a) RX

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

CVM+RIF CVM+PI

Vanilla +ZC Bifrost

(b) TX
Figure 6: TLS normalized throughput on both AMD and Intel
server. The Y-axis is the normalized throughput compared with the
baseline. +PRPR is not shown in (b) because it does not provide
benefits for TX performance.

VM exits solely involve in-core firmware, leading to lower
latency. As a result, though the increased VM exit latency
does not guarantee identical performance to real Intel TDX
hardware, the simulated VM exit overhead should be no less
than that of real TDX VMs.

To get the performance of CVM close to the SEV-ES VM
with posted interrupt, we optimize AMD CVM with reduced
VM exit frequency by modifying the network backend to
lower its notification frequency to the guest OS. We call the
optimized version CVM+RIF, signifying CVM + Reduced
Interrupt Frequency. CVM+RIF’s baseline is the vanilla
AMD traditional VM with reduced VM exit frequency, while
CVM+PI’s baseline is the vanilla Intel traditional VM. To
show the individual contribution of Bifrost’s each technique,
+ZC denotes only applying the ZCED as well as the OTTR,
while +PRPR indicates adding the PRPR alone. The PRPR is
configured to cache up to 1024 TCP flows for 2 virtqueues.
Each flow can hold up to 1024 packets, and at most 32 packets
can be submitted to the I/O frontend simultaneously.

7.2 Performance Improvement
In this section, we focus on the performance improvement of
CVM+RIF and CVM+PI. We first build a microbenchmark to
investigate the upper bound on the performance improvement
that Bifrost can bring to I/O-intensive applications and then
study the performance gains of real-world applications from
Bifrost’s design. Since the posted interrupt hardware has been
able to minimize the performance impact of VM exits, we
concentrate on Bifrost’s effect on CVMs atop such hardware.

7.2.1 Microbenchmark

We develop a TCP-based TLS client/server pair to evaluate
the network throughput. They simply contain simple code for
single-threaded I/O data sending and receiving. This mini-
mizes the time cost of business logic, demonstrating the maxi-
mum possible application performance improvement. To fully
saturate the vCPU like an I/O-intensive application, we run 4
TLS server instances in a 1-vCPU VM.
RX Throughput: Figure 6a shows the network throughput
comparisons in the RX direction. CVM+RIF attains 5.26 Gb/s,
which is 24.10% slower than its baseline’s 6.93 Gb/s. With the
ZCED, +ZC alone (6.38 Gb/s) can reduce the slowdown to

USENIX Association 2023 USENIX Annual Technical Conference 9

7.81%. With the PRPR, +PRPR itself (8.39 Gb/s) can outper-
form the baseline by 21.10%. By combining both techniques,
Bifrost reaches 10.64 Gb/s, which is 53.55% higher than the
baseline. For CVM+PI (7.48 Gb/s), it incurs 27.03% overhead
than its baseline (10.26 Gb/s). The throughput is increased
to 9.99 Gb/s in +ZC (2.59% overhead) and grows to 10.76
Gb/s in +PRPR (4.95% better). Integrating both techniques
makes Bifrost reach 16.64 Gb/s, which is 62.20% higher than
the baseline. Therefore, Bifrost can boost performance by
up to 89.23% (from 27.03% overhead to 62.20% better than
the baseline) for applications experiencing high RX traffic in
existing CVMs.
TX Throughput: Figure 6b shows the throughput compar-
isons in the TX direction. CVM+RIF attains 9.59 Gb/s, which
is 23.03% slower than its baseline’s 12.45 Gb/s. +ZC (11.04
Gb/s) reduces the slowdown to 11.37%. Bifrost has 10.79%
overhead (11.11 Gb/s), slightly better than +ZC. Experiments
of CVM+PI yield similar results. Therefore, Bifrost can have
up to 12.24% (CVM+RIF) and 15.00% (CVM+PI) perfor-
mance improvement for applications with high TX traffic.

Combining +ZC and +PRPR in the RX direction shows
a greater performance improvement than the sum of each
technique’s individual improvement (explained in § 7.2.2).
The TX improvement is less significant because PRPR only
optimizes RX traffic. Limited CPU resources on a single
vCPU for both packet processing and TLS operations result
in a large gap from reaching the NIC’s maximum bandwidth.

7.2.2 Applications

We utilize the same network-intensive applications as in § 3
to evaluate and break down the performance improvement of
Bifrost. TLS/SSL is enabled in all the applications. We run
each benchmark for 30 seconds and report the average value
of the results from 10 rounds. To save space, we only present
and analyze the results of the 32KB and the 256KB data sizes
in detail, and provide an overview of the results for other data
sizes. The detailed benchmark configurations and results are
shown below.
Memcached [20] is a popular multi-threaded in-memory key-
value store application. We use the memtier_benchmark [56]
tool to measure throughput and average latency. The Mem-
cached server is configured with either 1 or 4 threads for VM
with 1 or 4 vCPUs respectively, and 4096MB memory. We set
up 4 clients, 16 concurrent requests for 1-thread server and 8
clients, 32 concurrent requests for 4-thread server.

Figure 7a and Figure 8a show the throughput and latency
overhead, respectively, of Memcached in CVM+RIF. Both
throughput and latency improve as a result of alleviating the
vCPU bottleneck. In 32KB cases, Bifrost cuts down more than
half of CVM+RIF’s overhead over its baseline. Either +ZC or
+PRPR alone slightly mitigates the overhead. In 256KB cases,
Bifrost performs about 10% better than its baseline. Either
+ZC or +PRPR alone reduces the overhead by more than half.
With the same number of vCPUs, Bifrost’s performance im-

provement increases as the data size grows. This is primarily
because the performance impact of the CVM-IO tax, espe-
cially the bounce buffer tax, becomes more pronounced with
the growth of data size, providing more room for improve-
ment.

Figure 9a displays the time breakdown and backend utiliza-
tion of CPUs in 4vCPU-256KB cases. The ZCED reduces
the total timeshare of the bounce buffer tax from 15.67% to
less than 2.50%. It cannot completely eliminate the bounce
buffer cost because some small I/O data (e.g., TCP handshake
packets) still falls back to the bounce buffer. The PRPR re-
duces the timeshare of the packet processing tax from 28.73%
to 21.88%. Bifrost spends 2.39% more time on application
workloads than the baseline and has more than 10% speed
gain on the TLS processing in application workloads, which
explains the 8.26% improvement over the baseline. Due to
the higher throughput and PRPR cost, Bifrost’s backend CPU
utilization increases by 8.75% compared to the baseline.

Figure 7d and Figure 8b show the throughput and latency
overhead, respectively, of Memcached in CVM+PI. Bifrost
outperforms the baseline in all cases. The throughput accel-
eration over the baseline can reach 3.06% in 32KB cases
and 21.50% in 256KB cases. The latency overhead is almost
eliminated in 32KB cases and can outperform the baseline
by 17.45% in 256KB cases. +ZC obtains more individual
performance gain than +PRPR, and their combined improve-
ment is larger than the sum of their individual gains. This is
because applying both techniques can provide more available
CPU cycles to application workloads than applying only one
of them. As shown in Figure 9a, when only applying PRPR,
part of the released CPU cycles will be occupied by bouncing
packets.

Figure 9b depicts the breakdown and backend utilization of
CPUs in 4vCPU-256KB cases. The ZCED reduces the total
timeshare of the bounce buffer tax from 19.45% to less than
2.77%. The PRPR reduces the timeshare of the packet process-
ing tax from 36.14% to 26.83%. Compared to the baseline,
Bifrost provides application workloads with 11.53% more
CPU time and more than 10% speedup in TLS processing.
This can explain the 21.50% improvement over the baseline.
Due to the higher throughput and PRPR cost, Bifrost’s back-
end CPU utilization is 19.05% more than the baseline.
Nginx [50] is a well-known high-performance HTTP(S) web
server. We run the wrk [21] benchmark tool to measure the
throughput represented by requests per second (RPS). The
client configurations are similar to the other two applications.

Figure 7b illustrates the Nginx throughput overhead of
CVM+RIF. Since the traffic type of the Nginx benchmark
is mainly in the TX direction, the majority of Bifrost’s per-
formance improvement comes from the ZCED, as analyzed
in § 7.2.1. +ZC reduces the overhead by less than half be-
cause lengthy VM exits still significantly impact performance.
The PRPR even increases the overhead for a little bit in the
1vCPU-256KB case, because there are more VM exits after

10 2023 USENIX Annual Technical Conference USENIX Association

-10%

0%

10%

20%

32KB 256KB 32KB 256KB

1vCPU 4vCPU

O
v
e

rh
e

a
d

(a) Memcached in CVM+RIF

0%

10%

20%

32KB 256KB 32KB 256KB
1vCPU 4vCPU

(b) Nginx in CVM+RIF

-5%

5%

15%

32KB 256KB 32KB 256KB

1vCPU 4vCPU

Vanilla

+ZC

+PRPR

Bifrost

(c) Redis in CVM+RIF

-25%
-15%
-5%
5%

15%
25%

32KB 256KB 32KB 256KB

1vCPU 4vCPU

O
v
e

rh
e

a
d

(d) Memcached in CVM+PI

0%

10%

20%

30%

32KB 256KB 32KB 256KB

1vCPU 4vCPU

(e) Nginx in CVM+PI

-20%

-10%

0%

10%

20%

32KB 256KB 32KB 256KB

1vCPU 4vCPU

Vanilla

+ZC

+PRPR

Bifrost

(f) Redis in CVM+PI
Figure 7: Application performance comparisons when applying some or all of Bifrost’s techniques. The Y-axis indicates relative overhead
compared with baseline VMs, negative overhead represents performance improvement. (a), (b) and (c) compare throughput of CVM+RIF on
the AMD server. (d), (e) and (f) compare throughput of CVM+PI on the Intel server.

-10%

0%

10%

20%

30%

32KB 256KB 32KB 256KB

1vCPU 4vCPU

O
v
e
rh

e
a
d

(a) Latency in CVM+RIF

-20%

0%

20%

40%

32KB 256KB 32KB 256KB

1vCPU 4vCPU

(b) Latency in CVM+PI

Figure 8: Memcached average latency comparisons when ap-
plying some or all of Bifrost’s techniques. The Y-axis indicates
relative overhead compared with baseline VMs, negative overhead
represents performance improvement.

the PRPR is applied. Figure 7e shows the Nginx throughput
overhead of CVM+PI. Bifrost brings the overhead to less than
2.8% in all cases, thanks to the ZCED. The PRPR no longer
impacts the performance negatively because VM exits cost is
trivial when posted interrupt is enabled.
Redis [28] is a single-threaded in-memory key-value store
application widely deployed in production environments. We
also use the memtier_benchmark tool to measure the through-
put. The Redis server is configured with 4096MB memory.
The memtier_benchmark uses the same configurations as
Memcached. To fully utilize vCPU resources in 4vCPU cases,
we use redis-cli to build a Redis cluster with 4 instances.

Figure 7c and Figure 7f present the Redis throughput over-
head, which have similar patterns to those of Memcached.
VM Scalability: To show Bifrost is scalable as the number
of VM grows, we evaluate applications in 1, 2 and 4 Bifrost-
enabled 4-vCPU 2-virtqueue CVM+RIFs. We conduct ex-
periments on the AMD server because it has sufficient CPU
cores on a single NUMA node. Figure 10 demonstrates that
in multi-VM cases, Bifrost can always achieve comparable
performance improvements to that of the single VM scenario.
Bifrost’s good VM scalability comes naturally because ZCED
uses Linux’s scalable memory allocator and PRPR is applied
to each virtqueue without contention.

7.3 TOCTTOU Protection Overhead
Bifrost defends the guest OS against TOCTTOU attacks with
OTTR by copying packet headers into private memory and
keeping end-to-end encrypted payload in registers during

 0

 20

 40

 60

 80

 100

Baseline Vanilla +ZC +PRPR Bifrost

P
e

rc
e

n
ta

g
e

(%
)

VM Exit Bouncing Pkt Processing Application Workloads

30.00

61.81

15.67

28.73

46.95

12.91

30.35

54.54

11.03
15.26

21.88

51.83

13.25

20.98

63.29

5
5

.3
0

4
6

.5
0

5
0

.8
5

6
0

.2
5

6
4

.0
5

(a) Breakdown of CVM+RIF and its baseline & Backend CPU utilization

 0

 20

 40

 60

 80

 100

Baseline Vanilla +ZC +PRPR Bifrost

P
e

rc
e

n
ta

g
e

(%
)

VM Exit Bouncing Pkt Processing Application Workloads

33.64

65.94

19.45

36.14

43.28

32.89

63.58

23.11

26.83

48.97

22.58

73.54
6

0
.4

5

4
9

.8
5

5
9

.6
0

6
5

.1
5

7
9

.5
0

(b) Breakdown of CVM+PI and its baseline & Backend CPU utilization
Figure 9: VM CPU time breakdown and backend CPU utiliza-
tion in Memcached 4vCPU-256KB experiments on AMD and
Intel servers. The Y-axis represents the percentage of CPU cycles.
In each case, the left side shows the breakdown of CPUs that run
VMs, while the right side presents the utilization of backend CPUs.

-15%

-10%

-5%

0%

1-VM 2-VM 4-VM

O
v
e

rh
e

a
d

(a) Memcached

0%

5%

10%

15%

1-VM 2-VM 4-VM

(b) Nginx

-15%

-10%

-5%

0%

1-VM 2-VM 4-VM

(c) Redis

Figure 10: Performance comparisons of Bifrost in 1, 2 and 4
CVM+RIF VMs using Memcached 4vCPU-256KB experiments.
The Y-axis indicates relative overhead compared with baseline VMs,
negative overhead represents performance improvement.

their processing. To evaluate the performance impact of these
operations, we implement a prototype of Bifrost without ap-
plying OTTR, called Bifrost-noprot. We repeat application
benchmarks to compare Bifrost’s performance with that of
Bifrost-noprot. The overhead of Bifrost in different bench-
marks is shown in Figure 11, indicating no more than 2.0%
overhead caused by TOCTTOU protections in all cases.

7.4 Memory Footprint
Bifrost must utilize memory efficiently to avoid unavailability
due to the depletion of the ZCED NUMA memory. We first

USENIX Association 2023 USENIX Annual Technical Conference 11

0%

0.5%

1%

1.5%

2%

32KB

256KB
32KB

256KB

1vCPU 4vCPU

O
v
e

rh
e

a
d

(a) Memcached in CVM+RIF

32KB

256KB
32KB

256KB

1vCPU 4vCPU

(b) Nginx in CVM+RIF

32KB

256KB
32KB

256KB

1vCPU 4vCPU

(c) Redis in CVM+RIF

0%

0.5%

1%

1.5%

2%

32KB

256KB
32KB

256KB

1vCPU 4vCPU

O
v
e

rh
e

a
d

(d) Memcached in CVM+PI

32KB

256KB
32KB

256KB

1vCPU 4vCPU

(e) Nginx in CVM+PI

32KB

256KB
32KB

256KB

1vCPU 4vCPU

(f) Redis in CVM+PI

Figure 11: Application performance overhead of TOCTTOU
protection. (a), (b) and (c) compare Bifrost with Bifrost-noprot (i.e.,
w/o OTTR) on the AMD server. (d), (e) and (f) compare Bifrost with
Bifrost-noprot on the Intel server.

measure the ZCED NUMA’s memory consumption via the nu-
mastat tool. Among all of our benchmarks, Bifrost consumes
no more than 200MB out of the 512MB capacity of the ZCED
NUMA memory. This amount does not exceed the default
1GB size of the bounce buffer area in the 16GB CVM+RIF
VM. As for the footprint in the network backend, PRPR main-
tains a packet cache list in the backend memory for each
virtqueue. Each cache list contains at most 8 network flows,
each caching at most 1024 network packets. The maximum
memory cost of one cache list is 1,088KB. In our benchmarks,
we enable 2 virtqueues, consuming only 2.125MB memory.

8 Security Analysis
Bifrost introduces three major techniques to existing CVMs,
in which only the ZCED and the OTTR retrofit the guest ker-
nel and may have an impact on the network I/O data security.
The only difference between the network I/O of Bifrost and
a vanilla CVM is that Bifrost needs to process packets in
the guest-host shared memory, while a vanilla CVM handles
packets in private memory. Thus, we only need to analyze
the security risks caused by TOCTTOU attacks on network
packets during network I/O.
Headers: In the RX direction, a header is received in the
guest-host shared memory. Bifrost copies the header into pri-
vate memory, and subsequent header processing only uses the
private copy, which does not suffer from TOCTTOU attacks.
In the TX direction, each header is born in private memory
and sent out through the bounce buffer mechanism, which is
the same as in the existing CVMs.
Encrypted payload: In the RX direction, the in-kernel TLS
layer decrypts the encrypted payload from the guest-host
shared memory into private memory. Bifrost ensures that the
decryption code has a consistent view of the encrypted pay-
load by reading from shared memory only once and keeping it
in CPU registers. In the TX direction, the in-kernel TLS layer
encrypts the plaintext payload directly into shared memory.
Bifrost ensures that the encryption code always refers to the
correct ciphertext in CPU registers, which is isolated by CVM
platforms and immune to TOCTTOU attacks.
Plaintext payload: There are also packets carrying plaintext

payload due to procedures such as handshaking. In the RX
direction, the plaintext payload is not accessed until the guest
kernel copies it from shared memory to private memory. In
the TX direction, the plaintext payload is no longer accessed
once the guest kernel copies it from private memory to shared
memory. Avoiding shared memory access eliminates the risks
of TOCTTOU vulnerability.

Therefore, Bifrost does not expose guest OS’s network
processing to TOCTTOU attacks, achieving the same level of
security guarantees as vanilla CVMs.

9 Related Work
Secure Virtualized Systems. A long line of research works
and commercial products have been proposed to build se-
cure virtualized systems [3, 8, 10, 11, 26, 32, 38, 48]. AMD
SEV [2, 3], Intel TDX [29, 32] and ARM CCA [8] enable
the CVM abstraction with hardware extensions, especially
memory encryption and integrity protection [30, 34]. While
AMD SEV relies on a secure processor [1], Intel TDX and
ARM CCA employ trusted firmware [31] to manage CVMs.
TwinVisor [38] provides an TrustZone-based alternative to
ARM CCA by retrofitting the virtualization extension on ex-
isting ARM platforms. The design of Bifrost is not restricted
to AMD or Intel and can be applied to other CVM systems.
Zero Copy I/O. Prior research works have proposed vari-
ous techniques to eliminate data copies for better I/O perfor-
mance [24,27,35,42–44]. For user-level applications, zIO [58]
can transparently remove redundant I/O copies. For the I/O
stack in the kernel, DAMN [44] and Demikernel [63] elimi-
nate I/O memory copies by directly allocating buffers from
the I/O memory pool. PASTE [25] performs DMA directly
into non-volatile memory to avoid copies. Unlike these sys-
tems that target traditional scenarios and/or require intrusive
software modifications, Bifrost focuses on eliminating unnec-
essary I/O data copies in CVMs with minor modifications.

10 Conclusion
This paper presents the first systematic analysis of the CVM-
IO tax for network-intensive workloads in CVMs. To optimize
the I/O performance of CVMs, we propose a new paravirtual
I/O design called Bifrost. Bifrost eliminates redundant packet
bounces and greatly reduces packet processing cost, while
maintaining the same level of security guarantees as existing
CVMs. Evaluation results show that Bifrost significantly im-
proves the I/O performance of CVMs, and even outperforms
traditional VMs by up to 21.50%.

11 Acknowledgments
We express our sincere gratitude to our shepherd Kartik
Gopalan, whose valuable suggestions have greatly improved
our paper. We thank the anonymous reviewers for their insight-
ful suggestions. This work was partially supported by NSFC
(No. 62002218 and 61925206), the Fundamental Research
Funds for the Central Universities, NSFC (No. 62132014 and
62141218) and Huawei Innovation Research Plan.

12 2023 USENIX Annual Technical Conference USENIX Association

References
[1] BlackHat 2020. All you ever wanted to know about the

AMD Platform Security Processor and were afraid to
emulate. https://i.blackhat.com/USA-20/Wednesday/
us-20-Buhren-All-You-Ever-Wanted-To-Know-Ab
out-The-AMD-Platform-Security-Processor-And
-Were-Afraid-To-Emulate.pdf, 2020.

[2] AMD. Protecting VM Register State With SEV-ES. https:
//www.amd.com/system/files/TechDocs/Protecting%
20VM%20Register%20State%20with%20SEV-ES.pdf,
2017.

[3] AMD. AMD SEV-SNP: Strengthening VM
Isolation with Integrity Protection and More.
https://www.amd.com/system/files/TechDocs/
SEV-SNP-strengthening-vm-isolation-with-int
egrity-protection-and-more.pdf, 2020.

[4] AMD. AMD64 Architecture Programmer’s Manual Volume
2: System Programming. https://www.amd.com/system/
files/TechDocs/24593.pdf, 2022.

[5] AMD. AMD64 Architecture Programmer’s Manual
Volume 2. https://www.amd.com/en/corporate/
product-security/bulletin/amd-sb-1021, 2023.

[6] BEN ARENT. Securing MySQL Databases with
SSL/TLS. https://goteleport.com/blog/
secure-database-with-tls/, 2022.

[7] ARM. What are key features in GICv3.x and
GICv4.x? https://developer.arm.com/documentation/
ka004701/latest, 2022.

[8] ARM. ARM Confidential Compute Architecture. https:
//www.arm.com/architecture/security-features/
arm-confidential-compute-architecture, 2023.

[9] Microsoft Azure. Azure AI. https://azure.microsoft.
com/en-us/solutions/ai/#overview, 2023.

[10] Andrew Baumann, Marcus Peinado, and Galen Hunt. Shield-
ing Applications from an Untrusted Cloud with Haven. In
Proceedings of the 11th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 14), pages 267–
283, Broomfield, CO, October 2014. USENIX Association.

[11] Jiahao Chen, Dingji Li, Zeyu Mi, Yuxuan Liu, Binyu Zang,
Haibing Guan, and Haibo Chen. Security and Performance in
the Delegated User-level Virtualization. In Proceedings of the
17th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 23), Boston, MA, July 2023. USENIX
Association.

[12] Sanchuan Chen, Fangfei Liu, Zeyu Mi, Yinqian Zhang, Ruby B.
Lee, Haibo Chen, and XiaoFeng Wang. Leveraging Hardware
Transactional Memory for Cache Side-Channel Defenses. In
Proceedings of the 2018 on Asia Conference on Computer and
Communications Security, ASIACCS ’18, page 601–608, New
York, NY, USA, 2018. Association for Computing Machinery.

[13] Google Cloud. Memorystore for Memcached overview.
https://cloud.google.com/memorystore/docs/
memcached/memcached-overview, 2023.

[14] Google Cloud. Memorystore for Redis overview.
https://cloud.google.com/memorystore/docs/redis/
redis-overview, 2023.

[15] Jonathan Corbet. JLS2009: Generic receive offload. Linux
Weekly News (LWN), 2009.

[16] Michael Dalton, David Schultz, Jacob Adriaens, Ahsan Are-
fin, Anshuman Gupta, Brian Fahs, Dima Rubinstein, En-
rique Cauich Zermeno, Erik Rubow, James Alexander Docauer,
Jesse Alpert, Jing Ai, Jon Olson, Kevin DeCabooter, Marc
De Kruijf, Nan Hua, Nathan Lewis, Nikhil Kasinadhuni, Ric-
cardo Crepaldi, Srinivas Krishnan, Subbaiah Venkata, Yossi
Richter, Uday Naik, and Amin Vahdat. Andromeda: Perfor-
mance, Isolation, and Velocity at Scale in Cloud Network Vir-
tualization. In Proceedings of the 15th USENIX Conference
on Networked Systems Design and Implementation, NSDI’18,
page 373–387, USA, 2018. USENIX Association.

[17] Docker. Protect the Docker daemon socket. https://docs.
docker.com/engine/security/protect-access/, 2022.

[18] Morris J Dworkin. NIST Special Publication 800-38D. Rec-
ommendation for Block Cipher Modes of Operation: Ga-
lois/Counter Mode (GCM) and GMAC. National Institute
of Standards & Technology, 2007.

[19] Jake Edge. TLS in the kernel. https://lwn.net/Articles/
666509/, 2015.

[20] Brad Fitzpatrick. Distributed caching with memcached. Linux
journal, 2004(124):5, 2004.

[21] Will Glozer. wrk - a HTTP benchmarking tool. https://
github.com/wg/wrk, 2022.

[22] Google. Confidential Space security overview.
https://cloud.google.com/docs/security/
confidential-space, 2022.

[23] Leonid Grossman. Large receive offload implementation in
neterion 10GbE Ethernet driver. In Linux Symposium, page
195, 2005.

[24] P. Halvorsen, E. Jorde, K.-A. Skevik, V. Goebel, and T. Plage-
mann. Performance tradeoffs for static allocation of zero-copy
buffers. In Proceedings of the 28th Euromicro Conference,
pages 138–143, 2002.

[25] Michio Honda, Giuseppe Lettieri, Lars Eggert, and Douglas
Santry. PASTE: A Network Programming Interface for Non-
Volatile Main Memory. In Proceedings of the 15th USENIX
Conference on Networked Systems Design and Implementation,
NSDI’18, page 17–33, USA, 2018. USENIX Association.

[26] Guerney D. H. Hunt, Ramachandra Pai, Michael V. Le, Hani
Jamjoom, Sukadev Bhattiprolu, Rick Boivie, Laurent Dufour,
Brad Frey, Mohit Kapur, Kenneth A. Goldman, Ryan Grimm,
Janani Janakirman, John M. Ludden, Paul Mackerras, Cathy
May, Elaine R. Palmer, Bharata Bhasker Rao, Lawrence Roy,
William A. Starke, Jeff Stuecheli, Enriquillo Valdez, and Wen-
del Voigt. Confidential Computing for OpenPOWER. In
Proceedings of the 16th European Conference on Computer
Systems, EuroSys ’21, page 294–310, New York, NY, USA,
2021. Association for Computing Machinery.

USENIX Association 2023 USENIX Annual Technical Conference 13

https://i.blackhat.com/USA-20/Wednesday/us-20-Buhren-All-You-Ever-Wanted-To-Know-Ab
https://i.blackhat.com/USA-20/Wednesday/us-20-Buhren-All-You-Ever-Wanted-To-Know-Ab
out-The-AMD-Platform-Security-Processor-And
-Were-Afraid-To-Emulate.pdf
https://www.amd.com/system/files/TechDocs/Protecting%20VM%20Register%20State%20with%20SEV-ES.pdf
https://www.amd.com/system/files/TechDocs/Protecting%20VM%20Register%20State%20with%20SEV-ES.pdf
https://www.amd.com/system/files/TechDocs/Protecting%20VM%20Register%20State%20with%20SEV-ES.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-int
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-int
egrity-protection-and-more.pdf
https://www.amd.com/system/files/TechDocs/24593.pdf
https://www.amd.com/system/files/TechDocs/24593.pdf
https://www.amd.com/en/corporate/product-security/bulletin/amd-sb-1021
https://www.amd.com/en/corporate/product-security/bulletin/amd-sb-1021
https://goteleport.com/blog/secure-database-with-tls/
https://goteleport.com/blog/secure-database-with-tls/
https://developer.arm.com/documentation/ka004701/latest
https://developer.arm.com/documentation/ka004701/latest
https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture
https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture
https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture
https://azure.microsoft.com/en-us/solutions/ai/#overview
https://azure.microsoft.com/en-us/solutions/ai/#overview
https://cloud.google.com/memorystore/docs/memcached/memcached-overview
https://cloud.google.com/memorystore/docs/memcached/memcached-overview
https://cloud.google.com/memorystore/docs/redis/redis-overview
https://cloud.google.com/memorystore/docs/redis/redis-overview
https://docs.docker.com/engine/security/protect-access/
https://docs.docker.com/engine/security/protect-access/
https://lwn.net/Articles/666509/
https://lwn.net/Articles/666509/
https://github.com/wg/wrk
https://github.com/wg/wrk
https://cloud.google.com/docs/security/confidential-space
https://cloud.google.com/docs/security/confidential-space

[27] Jinho Hwang, K. K. Ramakrishnan, and Timothy Wood.
NetVM: High Performance and Flexible Networking Using
Virtualization on Commodity Platforms. In Proceedings of the
11th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 14), pages 445–458, Seattle, WA, April
2014. USENIX Association.

[28] Redis Inc. Introduction to Redis. https://redis.io/docs/
about/, 2022.

[29] Intel. Intel TDX® Module v1.5 Base Architecture Specifi-
cation. https://www.intel.com/content/dam/develop/
external/us/en/documents/intel-tdx-module-1.
5-base-spec-348549001.pdf, 2022.

[30] Intel. Intel® Architecture Memory Encryption Technologies.
https://www.intel.com/content/www/us/en/develop/
download/intel-mktme-specification.html, 2022.

[31] Intel. Intel® Trust Domain Extension (In-
tel® TDX) Module. https://www.intel.
com/content/www/us/en/download/738875/
intel-trust-domain-extension-intel-tdx-module.
html, 2022.

[32] Intel. Intel® Trust Domain Extensions. https:
//www.intel.com/content/dam/develop/external/
us/en/documents/tdx-whitepaper-v4.pdf, 2022.

[33] Li Jie, Chen Shuhui, and Su Jinshu. Implementation of TCP
large receive offload on multi-core NPU platform. In 2016
International Conference on Information and Communication
Technology Convergence (ICTC), pages 258–263, 2016.

[34] David Kaplan. AMD x86 Memory Encryption Technologies.
Austin, TX, August 2016. USENIX Association.

[35] Yousef A. Khalidi and Moti N. Thadani. An Efficient Zero-
Copy I/O Framework for UNIX. Technical report, Sun Mi-
crosystems, Inc., USA, 1995.

[36] Christoph Lameter. Local and remote memory: Memory in a
Linux/NUMA system. In Linux symposium, pages 1–25, 2006.

[37] Christoph Lameter. NUMA (Non-Uniform Memory Access):
An Overview: NUMA Becomes More Common Because Mem-
ory Controllers Get Close to Execution Units on Microproces-
sors. Queue, 11(7):40–51, jul 2013.

[38] Dingji Li, Zeyu Mi, Yubin Xia, Binyu Zang, Haibo Chen, and
Haibing Guan. TwinVisor: Hardware-Isolated Confidential Vir-
tual Machines for ARM. In Proceedings of the ACM SIGOPS
28th Symposium on Operating Systems Principles, SOSP ’21,
page 638–654, New York, NY, USA, 2021. Association for
Computing Machinery.

[39] Mengyuan Li, Luca Wilke, Jan Wichelmann, Thomas Eisen-
barth, Radu Teodorescu, and Yinqian Zhang. A Systematic
Look at Ciphertext Side Channels on AMD SEV-SNP. In
2022 IEEE Symposium on Security and Privacy (SP), pages
337–351, 2022.

[40] Mengyuan Li, Yinqian Zhang, and Zhiqiang Lin. CrossLine:
Breaking "Security-by-Crash" Based Memory Isolation in
AMD SEV. In Proceedings of the 2021 ACM SIGSAC Con-
ference on Computer and Communications Security, CCS ’21,
page 2937–2950, New York, NY, USA, 2021. Association for
Computing Machinery.

[41] Mengyuan Li, Yinqian Zhang, Huibo Wang, Kang Li, and Yue-
qiang Cheng. TLB Poisoning Attacks on AMD Secure En-
crypted Virtualization. In Annual Computer Security Applica-
tions Conference, ACSAC ’21, page 609–619, New York, NY,
USA, 2021. Association for Computing Machinery.

[42] Jiuxing Liu. Evaluating standard-based self-virtualizing de-
vices: A performance study on 10 GbE NICs with SR-IOV
support. In 2010 IEEE International Symposium on Parallel
& Distributed Processing (IPDPS), pages 1–12, 2010.

[43] Alex Markuze, Adam Morrison, and Dan Tsafrir. True
IOMMU Protection from DMA Attacks: When Copy is Faster
than Zero Copy. In Proceedings of the 21st International Con-
ference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS ’16, page 249–262, New
York, NY, USA, 2016. Association for Computing Machinery.

[44] Alex Markuze, Igor Smolyar, Adam Morrison, and Dan Tsafrir.
DAMN: Overhead-Free IOMMU Protection for Networking.
In Proceedings of the 23rd International Conference on Archi-
tectural Support for Programming Languages and Operating
Systems, ASPLOS ’18, page 301–315, New York, NY, USA,
2018. Association for Computing Machinery.

[45] Michael Marty, Marc de Kruijf, Jacob Adriaens, Christopher
Alfeld, Sean Bauer, Carlo Contavalli, Michael Dalton, Nan-
dita Dukkipati, William C. Evans, Steve Gribble, Nicholas
Kidd, Roman Kononov, Gautam Kumar, Carl Mauer, Emily
Musick, Lena Olson, Erik Rubow, Michael Ryan, Kevin Spring-
born, Paul Turner, Valas Valancius, Xi Wang, and Amin Vahdat.
Snap: A Microkernel Approach to Host Networking. In Pro-
ceedings of the 27th ACM Symposium on Operating Systems
Principles, SOSP ’19, page 399–413, New York, NY, USA,
2019. Association for Computing Machinery.

[46] Eugenio Pérez Martín and Adrian Moreno Zapata. A journey to
the vhost-users realm. https://www.redhat.com/en/blog/
journey-vhost-users-realm, 2019.

[47] Zeyu Mi, Haibo Chen, Yinqian Zhang, Shuanghe Peng, Xi-
aofeng Wang, and Michael K. Reiter. CPU Elasticity to Miti-
gate Cross-VM Runtime Monitoring. IEEE Transactions on
Dependable and Secure Computing, 17(5):1094–1108, 2020.

[48] Zeyu Mi, Dingji Li, Haibo Chen, Binyu Zang, and Haibing
Guan. (Mostly) Exitless VM Protection from Untrusted Hy-
pervisor through Disaggregated Nested Virtualization. In Pro-
ceedings of the 29th USENIX Security Symposium (USENIX
Security 20), pages 1695–1712. USENIX Association, August
2020.

[49] MongoDB. Configure mongod and mongos for TLS/SSL.
https://www.mongodb.com/docs/manual/tutorial/
configure-ssl/, 2022.

[50] Nginx. Nginx. https://www.nginx.com/, 2022.

[51] NVIDIA. ConnectX SmartNICs. https://www.nvidia.
com/en-us/networking/ethernet-adapters/, 2022.

[52] Hitoshi Oi and Fumio Nakajima. Performance Analysis of
Large Receive Offload in a Xen Virtualized System. In 2009
International Conference on Computer Engineering and Tech-
nology, volume 1, pages 475–480, 2009.

14 2023 USENIX Annual Technical Conference USENIX Association

https://redis.io/docs/about/
https://redis.io/docs/about/
https://www.intel.com/content/dam/develop/external/us/en/documents/intel-tdx-module-1.5-base-spec-348549001.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/intel-tdx-module-1.5-base-spec-348549001.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/intel-tdx-module-1.5-base-spec-348549001.pdf
https://www.intel.com/content/www/us/en/develop/download/intel-mktme-specification.html
https://www.intel.com/content/www/us/en/develop/download/intel-mktme-specification.html
https://www.intel.com/content/www/us/en/download/738875/intel-trust-domain-extension-intel-tdx-module.html
https://www.intel.com/content/www/us/en/download/738875/intel-trust-domain-extension-intel-tdx-module.html
https://www.intel.com/content/www/us/en/download/738875/intel-trust-domain-extension-intel-tdx-module.html
https://www.intel.com/content/www/us/en/download/738875/intel-trust-domain-extension-intel-tdx-module.html
https://www.intel.com/content/dam/develop/external/us/en/documents/tdx-whitepaper-v4.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/tdx-whitepaper-v4.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/tdx-whitepaper-v4.pdf
https://www.redhat.com/en/blog/journey-vhost-users-realm
https://www.redhat.com/en/blog/journey-vhost-users-realm
https://www.mongodb.com/docs/manual/tutorial/configure-ssl/
https://www.mongodb.com/docs/manual/tutorial/configure-ssl/
https://www.nginx.com/
https://www.nvidia.com/en-us/networking/ethernet-adapters/
https://www.nvidia.com/en-us/networking/ethernet-adapters/

[53] Michele Paolino, Nikolay Nikolaev, Jeremy Fanguede, and
Daniel Raho. SnabbSwitch user space virtual switch bench-
mark and performance optimization for NFV. In 2015 IEEE
Conference on Network Function Virtualization and Software
Defined Network (NFV-SDN), pages 86–92, 2015.

[54] Joana Pecholt and Sascha Wessel. CoCoTPM: Trusted Plat-
form Modules for Virtual Machines in Confidential Computing
Environments. In Proceedings of the 38th Annual Computer
Security Applications Conference, ACSAC ’22, page 989–998,
New York, NY, USA, 2022. Association for Computing Ma-
chinery.

[55] PostgreSQL. Secure TCP/IP Connections with SSL. https:
//www.postgresql.org/docs/current/ssl-tcp.html,
2022.

[56] Redis. memtier_benchmark: A High-Throughput
Benchmarking Tool for Redis & Memcached.
https://redis.com/blog/memtier_benchmark-a-high-
throughput-benchmarking-tool-for-redis-memcached/,
2013.

[57] Amazon Web Services. AWS for Financial Services. https:
//aws.amazon.com/financial-services, 2023.

[58] Timothy Stamler, Deukyeon Hwang, Amanda Raybuck, Wei
Zhang, and Simon Peter. zIO: Accelerating IO-Intensive Ap-
plications with Transparent Zero-Copy IO. In Proceedings of
the 16th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 22), pages 431–445, Carlsbad, CA,
July 2022. USENIX Association.

[59] Cheng-Chun Tu, Michael Ferdman, Chao-tung Lee, and Tzi-
cker Chiueh. A Comprehensive Implementation and Evalua-
tion of Direct Interrupt Delivery. In Proceedings of the 11th
ACM SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments, VEE ’15, page 1–15, New York, NY,
USA, 2015. Association for Computing Machinery.

[60] Wikipedia. Terabit Ethernet. https://en.wikipedia.org/
wiki/Terabit_Ethernet, 2022.

[61] Dan York. Google Is Now Always Us-
ing TLS/SSL for Gmail Connections. https:
//www.internetsociety.org/blog/2014/03/
google-is-now-always-using-tlsssl-for-gmail
-connections/, 2014.

[62] Dongli Zhang. swiotlb: 64-bit DMA buffer. https://lwn.
net/Articles/845096/, 2021.

[63] Irene Zhang, Amanda Raybuck, Pratyush Patel, Kirk Olynyk,
Jacob Nelson, Omar S. Navarro Leija, Ashlie Martinez, Jing
Liu, Anna Kornfeld Simpson, Sujay Jayakar, Pedro Henrique
Penna, Max Demoulin, Piali Choudhury, and Anirudh Badam.
The Demikernel Datapath OS Architecture for Microsecond-
Scale Datacenter Systems. In Proceedings of the ACM SIGOPS
28th Symposium on Operating Systems Principles, SOSP ’21,
page 195–211, New York, NY, USA, 2021. Association for
Computing Machinery.

USENIX Association 2023 USENIX Annual Technical Conference 15

https://www.postgresql.org/docs/current/ssl-tcp.html
https://www.postgresql.org/docs/current/ssl-tcp.html
https://aws.amazon.com/financial-services
https://aws.amazon.com/financial-services
https://en.wikipedia.org/wiki/Terabit_Ethernet
https://en.wikipedia.org/wiki/Terabit_Ethernet
https://www.internetsociety.org/blog/2014/03/google-is-now-always-using-tlsssl-for-gmail
https://www.internetsociety.org/blog/2014/03/google-is-now-always-using-tlsssl-for-gmail
https://www.internetsociety.org/blog/2014/03/google-is-now-always-using-tlsssl-for-gmail
-connections/
https://lwn.net/Articles/845096/
https://lwn.net/Articles/845096/

	Introduction
	Background
	Confidential VMs (CVMs)
	Paravirtual I/O Networking in CVM
	Transport Layer Security (TLS)
	Exitless Interrupt Virtualization

	Analysis of CVM-IO Tax
	CVM-IO Tax Breakdown
	Summary

	Overview
	Design Goals
	Challenges
	Observations and Insights
	Architecture and High-Level Design
	Threat Model and Assumptions

	Design and Implementation Details
	Zero-Copy Encryption Deduplication (ZCED)
	One-Time Trusted Read (OTTR)
	Pre-receiver Packet Reassembly (PRPR)

	Implementation Complexity
	Evaluation
	Experimental Setup
	Performance Improvement
	Microbenchmark
	Applications

	TOCTTOU Protection Overhead
	Memory Footprint

	Security Analysis
	Related Work
	Conclusion
	Acknowledgments

