
This paper is included in the Proceedings of the
2023 USENIX Annual Technical Conference.

July 10–12, 2023 • Boston, MA, USA
978-1-939133-35-9

Open access to the Proceedings of the
2023 USENIX Annual Technical Conference

is sponsored by

Prefix Siphoning: Exploiting LSM-Tree Range
Filters For Information Disclosure

Adi Kaufman, Tel Aviv University; Moshik Hershcovitch, Tel Aviv University & IBM
Research; Adam Morrison, Tel Aviv University

https://www.usenix.org/conference/atc23/presentation/kaufman

Prefix Siphoning: Exploiting LSM-Tree Range Filters For Information Disclosure

Adi Kaufman∗

Tel Aviv University
Moshik Hershcovitch∗

Tel Aviv University & IBM Research
Adam Morrison

Tel Aviv University

Abstract
Key-value stores typically leave access control to the sys-

tems for which they act as storage engines. Unfortunately,
attackers may circumvent such read access controls via tim-
ing attacks on the key-value store, which use differences in
query response times to glean information about stored data.

To date, key-value store timing attacks have aimed to dis-
close stored values and have exploited external mechanisms
that can be disabled for protection. In this paper, we point out
that key disclosure is also a security threat—and demonstrate
key disclosure timing attacks that exploit mechanisms of the
key-value store itself.

We target LSM-tree based key-value stores utilizing range
filters, which have been recently proposed to optimize LSM-
tree range queries. We analyze the impact of the range fil-
ters SuRF and prefix Bloom filter on LSM-trees through a
security lens, and show that they enable a key disclosure tim-
ing attack, which we call prefix siphoning. Prefix siphoning
successfully leverages benign queries for non-present keys
to identify prefixes of actual keys—and in some cases, full
keys—in scenarios where brute force searching for keys (via
exhaustive enumeration or random guesses) is infeasible.

1 Introduction
Key-value stores serve as the storage engines of many cloud
and enterprise systems, from object caches [44,46,47] through
stream processing [6,14,54] to database systems [2,29,31,41].
Performance of these modern data intensive systems often
depends on their key-value storage engine’s performance [51].
Consequently, research on key-value stores overwhelmingly
focuses on efficiency: from I/O efficiency of writes [20, 21],
point queries [18, 19], and range queries [45, 65] to memory
efficiency [24, 43], energy efficiency [5], multi-core scalabil-
ity [37, 58], and reducing I/O write amplification [51].

But systems also depend on their key-value storage engine
for the security of stored data. This dependency is not obvious,
because key-value stores typically provide only a dictionary
abstraction without access control mechanisms [16,30,38,40],
leaving access control to the system. Systems enforce access
control by mediating user accesses to the key-value store,
often based on access control lists (ACLs) stored as value
metadata in the key-value store. While this approach blocks
users from directly making unauthorized queries, users may

∗Both authors contributed equally to this research.

still be able to indirectly glean information about restricted
data if the key-value store is vulnerable to timing attacks [11].

A timing attack exploits differences in query response times
to glean information about stored data. A system using a
key-value store that is vulnerable to timing attacks can it-
self become vulnerable to such attacks, because the system’s
query response time depends on the storage engine’s response
time, making differences in key-value query response times
manifest as differences in the system’s response times.

To date, key-value store timing attacks [55, 56] have aimed
to disclose stored values. We point out, however, that key dis-
closure is also a security threat. In some systems, keys can
explicitly contain secret data. For example, database systems
that use key-value storage engines (e.g., CockroachDB, Yu-
gabyteDB, or MyRocks) encode rows (or subsets of rows)
onto keys [7,26,28,32]. This makes key disclosure equivalent
to database data disclosure. Keys may also be implicitly secret,
with users expecting them to be hard to obtain. For instance,
in object storage systems, such as Amazon S3, identifying
valid keys may create an insecure direct object reference vul-
nerability [48], which enables attackers to probe access to the
objects associated with the disclosed keys.

Unfortunately, resilience to timing attacks is not a goal in
existing key-value efficiency work—in fact, such resiliency
can be at odds with improved performance. In this paper,
we demonstrate this trade-off: we analyze key-value store
performance mechanisms through a security lens and show
that they enable a key disclosure timing attack.

We focus on write-optimized key-value stores based on log-
structured merge (LSM) trees [49], which are in widespread
use [12,13,15,18,20,22,30,37,42,51,57,60]. In these designs,
data in secondary storage consists of multiple immutable
files called SSTables. LSM-trees can efficiently sustain write-
intensive workloads, but queries may require multiple I/Os
to search the many SSTables [49, 57]. LSM-trees minimize
unnecessary I/Os by issuing the I/O only if the queried key
is likely to be in the SSTable. Likelihood is determined by
querying an in-memory filter [10], which space-efficiently
approximately represents the SSTable’s contents. Specifically,
filter queries can make “one-sided” errors: if the queried key
is present in the SSTable, then the filter always returns true;
but for a small fraction of non-present keys, the filter might
return a false positive response.

Standard filters can answer point (single-key) queries [8,
10,33], but do not support range queries of the form “does the

USENIX Association 2023 USENIX Annual Technical Conference 719

SSTable contain a key in range [X ,Y].” Consequently, LSM-
tree range queries must search the many SSTables, performing
multiple superfluous I/Os [65]. To address this problem, re-
cent work has proposed range filters, which are filters that
support range queries in addition to point queries. Range
filters such as SuRF [65] and RocksDB’s prefix Bloom fil-
ter (PBF) [25] compactly store some or all prefixes of each of
the SSTable’s keys, and leverage this information to answer
range and point queries.

From a security perspective, however, we show that cer-
tain range filters enable a key disclosure timing attack on
LSM-trees. We describe an attack framework, called prefix
siphoning, which exploits general range filter characteristics
present in both SuRF and PBF. Prefix siphoning successfully
leverages benign point queries for non-present keys to iden-
tify prefixes of actual keys—and in some cases, full keys—in
scenarios where brute force searching for keys (via exhaustive
enumeration or random guesses) is infeasible.

Prefix siphoning targets systems with the common design
paradigm of storing a key’s ACLs as part of its value [1, 4],
which means that to check access permissions, the system’s
query handling always tries to read the queried key’s value
from the key-value store. Prefix siphoning exploits this prop-
erty to determine if a random key is one on which the LSM-
tree’s filter returns a false positive. This is possible because
whether the filter returns true or false can be determined by
the attacker observing the query’s response time, as the fil-
ter’s response decides whether the LSM-tree performs I/Os.
For range filters meeting our characterization, finding a false-
positive key implies that the false-positive key shares a prefix
with some stored key. Prefix siphoning then performs further
point queries—tweaking the queried key—to maximize the
length of the disclosed prefix. Prefix siphoning can some-
times subsequently perform a limited enumeration search to
fully identify the stored key. Our prefix siphoning implemen-
tation performs multiple such steps concurrently, ultimately
extracting multiple keys or prefixes.

We evaluate prefix siphoning against SuRF and PBF analyt-
ically as well as empirically and demonstrate its feasibility in
practice. For example, we successfully use prefix siphoning to
extract 64-bit stored keys from a RocksDB [30] datastore em-
ploying SuRF in minutes, whereas brute force search of this
key space is infeasible. Our analysis and evaluation also quan-
tify the cost of prefix siphoning, showing that it effectively
reduces the key search space size by multiple orders of mag-
nitude. For instance, SuRF prefix siphoning requires ≈ 10 M
queries to disclose a key from a 50 M 64-bit key dataset—
implying a 40992× reduction of the key search space size.

Our results draw attention to the security vs. performance
trade-offs in key-value store design, and encourage practition-
ers and researchers to evaluate the security impact of their
work. We hope that our characterization of vulnerable range
filters will spur research on more secure filters.

2 Background

This section provides background on key-values stores (§ 2.1),
LSM-trees (§ 2.2), and filters (§ 2.3).

2.1 Key-value stores
A key-value store exposes a dictionary-like abstraction with
the following operations.

• put(k,v). A put stores a mapping from key k to value v. If
key is already present in the store, its value is updated.

• get(k). The get() (or point query) returns the value associ-
ated with the requested key.

• range_query(k1,k2). A range query returns all key-value
pairs falling within the given range.

Due to their simple and general abstraction as well as high
performance, key-value stores serve as the storage engines
for many, more complex systems. Examples of such systems
include database systems (e.g., Cassandra [42], MongoDB [2],
and MySQL [3]) and storage systems (e.g., CEPH [1]).

2.2 LSM-based data stores
The log-structured merge (LSM) tree [49] is a popular choice
as the core storage structure for write-optimized key-value
stores, which must sustain write-intensive workloads. An
LSM-tree consists of levels, each of which contains multiple
immutable static sorted table (SSTable) files storing key/value
pairs. Two SSTs at the same level never overlap in the key
range they store, but SSTables at different levels may overlap.

A put request inserts the key-value pair into an in-memory
buffer called the Memtable, which is the LSM-tree’s only
mutable storage object. Once the Memtable fills up, its data
is flushed to secondary storage as an SSTable file. The LSM-
tree periodically performs compaction, where it unifies SSTs
between levels to eliminate duplicate (stale) key-value pairs.

A get query searches for the target key in a top-down man-
ner: first in the Memtable and subsequently in the relevant
SSTable (if it exists) in each level. Searching an SSTable re-
quires I/Os to read it from secondary storage. Once the key is
found, its value is returned and the query completes.

However, this design penalizes queries, which may require
multiple I/Os to search many SSTables [49, 57]. In particular,
a get() for a non-present key (not associated with any value)
searches every level before failing. This not only increases
the query response time, but may “thrash” the page cache by
reading in many SSTables which will not be accessed later.

LSM-trees minimize unnecessary I/Os by issuing the I/O
only if the queried key is likely to be in the SSTable. Like-
lihood is determined by querying an in-memory filter (de-
scribed in § 2.3), which space-efficiently approximately rep-
resents the SSTable’s contents. The LSM-tree only reads an
SSTable from secondary storage if its filter returns true for

720 2023 USENIX Annual Technical Conference USENIX Association

the queried key. As a result, most non-present key queries can
respond without performing I/Os.

Likewise, a range filter (§ 2.3.1) can answer both point
and range queries with one-sided errors. Using a range fil-
ters instead of a standard filter enables an LSM-tree to avoid
superfluous I/Os also for range queries, which can improve
range query throughput by orders of magnitude [45].

2.3 Filters
A filter [10] is a data structure used to approximately repre-
sent a set D a of keys. A filter can be immutable or dynamic.
An immutable filter is provided D upon its creation and can
subsequently only be queried. A dynamic filter learns D dy-
namically, via insert operations.

Responses for filter queries allow “one-sided” errors: if
k ∈ D, then a query for k returns true; but for a fraction of
keys k ̸∈ D, a query for k might answer true instead of false.
We say k is a positive/negative key if a filter a query for k
answers true or false, respectively. A positive key k is a false
positive if k ̸∈ D. We also say that the filter passes positive
keys and rejects negative keys.

Filters are compared by their space efficiency and false-
positive rates. Space efficiency is measured in bits per key.
The false-positive rate (FPR) of a filter is the probability
over keys not in D of being a false positive. I.e., FPR =
FP/(FP+NK), where FP is the number of false-positive
keys and NK is the number of negative keys. Filters typically
have configurable FPRs, with lower FPRs requiring more bits
per key for increased accuracy [8, 10, 33].

Bloom filters A Bloom filter [10] is a widely-used dynamic
filter (e.g., the default filter of RocksDB). It consists of an
m-bit array and j hash functions H1, . . . ,H j. The parameters
m and j determine the filter’s FPR and space. Insertion of key
k sets the bits indexes H1(k), . . . ,H j(k). A query for k returns
true if and only if all bit indexes H1(k), . . . ,H j(k) are set.

2.3.1 Range filters

A range filter is a filter that also supports range queries with
one-sided error: a query for [a,b] returns true if there exists
k ∈ D∩ [a,b], but might also return true if D∩ [a,b] is empty.

3 Motivation: avoiding key disclosure

We observe that keys stored in a key-value storage engine
can contain sensitive data. It is therefore desirable that users
are not able to efficiently discover stored keys that they are
not authorized to access. Of course, users can always guess
such keys and check if their queries return an authorization
error, but such brute force searches are infeasible on large key
spaces. The goal is for brute force search to be the only attack
option, i.e., to block more efficient key extraction attacks.

Explicitly secret keys Some systems encode secret data in
stored keys, which makes key disclosure equivalent to dis-
closure of the encoded data. For example, database systems
such as CockroachDB, YugabyteDB, and MyRocks store ta-
ble rows as values in a key-value storage engine, with the
associated key consisting of the table’s id and the row’s pri-
mary key (one of the cell values). The motivation for this
technique is that it enables the database system to perform
efficient primary key lookups using key-value store range
queries [7, 26, 28, 32].

Implicitly secret keys In many cases, keys are tacitly as-
sumed to be secret or, at least, hard to guess. One example of
implicitly secret keys are object identifiers. Many web appli-
cations and object storage systems maintain object id-to-value
mappings in a key-value store. Key disclosure thus allows
attackers to probe access to the associated objects, resulting in
an insecure direct object reference vulnerability [48]. While
objects typically have ACLs, users often neglect to configure
these ACLs. This is not a hypothetical concern: for instance,
there are numerous scanning tools for “open” (unprotected)
Amazon S3 objects [9, 23, 50, 53, 61, 62], and open S3 objects
have led to exfiltration of employee information, personal
identification information, and other sensitive data [27].

4 Threat model
We consider a high-level system, such as a database system or
object store, that utilizes a key-value storage engine to respond
to user queries. Key ACLs are stored as part of the value
associated with the key. As the high-level system performs
key-value queries to satisfy a user’s query, it checks the ACL
of each key it accesses by inspecting the key’s value. If the
user is not authorized to read a key, the system returns a failure
response to the user.

The attacker’s goal is to identify keys stored in the system’s
key-value storage engine. The attacker cannot compromise
the system (e.g., to run attack code) and cannot eavesdrop on
requests performed by other users and/or on their responses.
The attacker can only interact with the system by making
requests via its interfaces, such as a representational state
transfer (REST) API [34, Chapter 5].

We assume that the attacker can craft their requests in a
way that causes the high-level system to make key-value store
point queries for arbitrary keys (i.e., chosen by the attacker)
while processing the request. For simplicity, we refer to this
process as the attacker “querying the key-value store.”

We make no assumption about the attacker’s physical loca-
tion with respect to the attacked system. We only assume that
the attacker can observe microsecond-level timing differences
in the response times of queries for different keys. Prior work
has shown that this assumption is true for attacks over both
local and wide area networks. For instance, Crosby et al. were
able to measure a difference of 20 µs over the circa 2009 In-
ternet (and 100 ns over a local area network) [17]. This ability

USENIX Association 2023 USENIX Annual Technical Conference 721

can be improved in specific cases. When attacking a system
hosted in the public cloud, for example, the attacker can turn
themselves into a local-area attacker by placing themselves in
the datacenter hosting the target. Moreover, systems that pro-
cess different requests concurrently (e.g., HTTP/2 servers) are
vulnerable to concurrency-based timing attacks [36], which
can observe timing differences of 100 ns over the Internet.

5 Prefix siphoning
Prefix siphoning is a general template for conducting timing
attacks, extracting partial or full keys, on systems that use
an LSM-tree based storage engine with a certain type of
vulnerable range filter (for both point and range queries). The
class of vulnerable range filters contains the filters SuRF [65]
and RocksDB’s prefix Bloom filter (PBF) [25].

Prefix siphoning exploits range filters that respond to point
queries based on key prefix information, which exists to sup-
port range queries—i.e., filters where range query support
affects the point query implementation. Accordingly, prefix
siphoning is based only on point queries and does not per-
form range queries. Henceforth, therefore, the term “query”
always refers to a get() point query. We leave exploring at-
tacks against range queries to future work.

In the following, we describe the attack’s high-level
ideas (§ 5.1), characterize the class of vulnerable filters (§ 5.2),
and present the attack template (§ 5.3). We describe instantia-
tions of the attack against SuRF and PBF in §§ 6–7.

Notation We treat keys as sequences of symbols over an
alphabet Σ (e.g., bytes). When x denotes a key or a set, then
|x| refers to the number of symbols or elements, respectively,
that x contains.

5.1 High-level ideas
Prefix siphoning exploits an inherent trait of filter use in LSM-
trees: that whether a key “passes” the filter determines if the
LSM-tree searches the SSTable for the key to satisfy a query.
This means that for SSTable files that do not reside in the OS
page cache, the filter’s output for a key significantly affects
the LSM-tree’s query response time. If the filter returns false
for the key, the response is satisfied with only main memory
access; otherwise, the LSM-tree needs to perform I/Os to read
SSTables from secondary storage. Even for fast storage such
as NVMe devices, the difference in query response times
between these two cases is enough to affect the system’s
overall response time in an attacker-measurable way.

This basic filter trait suffices to mount an “approximate
membership test” timing attack. The attack simply queries
for the target key k and measures the response time. If the
response time is fast (i.e., k is rejected by the filters), then k is
definitely not stored in the LSM-tree. Otherwise (i.e., k passes
some filter), then k is likely in the LSM-tree. The key k might
also be a filter false positive and not exist in the LSM-tree,
which occurs with a probability bounded by the filter’s FPR.

Prefix siphoning starts by randomly generating keys until
it finds a key that “passes” the membership test above. For
random keys, passing the test overwhelmingly means that the
key is a filter false positive. Crucially, it takes just hundreds
of attempts to find a false-positive key, because filters are
typically configured for FPRs of a few percents for space
efficiency reasons [65].

Our main observation is that in vulnerable range filters, a
false-positive key likely shares a prefix with some stored key
k, whereas negative keys (rejected by the filter) do not (at least
with high probability). The crux of a prefix siphoning attack is
an algorithm exploiting this trait to identify the shared prefix
k′ through O(|k|) further queries for modified keys iteratively
derived from the initial false-positive key.

The revealed prefix of k can already contain sensitive in-
formation. But if the system’s query responses distinguish
between failures due to target key non-presence and lack of au-
thorization, prefix siphoning can fully extract k by performing
brute force search of the unknown suffix, thereby extending
the revealed prefix to k.

Of course, a system whose responses distinguish between
non-present and unauthorized keys is also vulnerable to “brute
force” key guessing or enumeration attacks based using the
above “membership test” primitive. But such attacks are in-
feasible for many key spaces (e.g., 64-bit or string keys). The
point of prefix siphoning is to narrow down the search space
by exploiting vulnerable range filters. Moreover, prefix si-
phoning extracts key prefixes even if the target system’s re-
sponses do not reveal whether a key is non-present or unau-
thorized, whereas the “membership test” primitive cannot.

5.2 Vulnerable range filter characterization
We denote an instance of the filter by F and the set of keys
it represents by D. A range filter is vulnerable to prefix si-
phoning if it has the following characteristics, denoted C1–C2.
They say that a false-positive key κ likely shares a prefix with
some key from D and that an attacker can efficiently identify
this prefix by making queries for keys derived from κ.

C1 If κ is a false-positive key for F , then with high probabil-
ity, κ shares a prefix with some k ∈ D.

C2 There exist the following probabilistic algorithms, which
work by querying the system:

1. FindFPK(): Using an expected constant number of
queries, outputs a random false-positive key κ.

2. IdPrefix(κ): Given a false-positive κ, uses O(|κ|)
queries to identify the shared prefix k′ that κ shares
with some key k ∈ D, if such a prefix exists; otherwise,
the output is unspecified.

The FindFPK and IdPrefix algorithms are specific to the

722 2023 USENIX Annual Technical Conference USENIX Association

range filter design, and need to be developed by the attacker.1

We refer to designing such algorithms for a range filter as
instantiating the attack against that filter.

C2 implies existence of a timing attack, and is therefore
formally sufficient to characterize the vulnerability. In prac-
tice, however, our attack instantiations rely on fundamental
properties of filter use in LSM-trees. To highlight this aspect
of the attacks, we explicitly capture these properties in C3.

C3 1. A get(k) query’s response time is measurably lower if
k misses in every filter than if k hits in some filter.

2. The filter’s FPR is small but non-negligible (e.g., 1%
or 0.1%).

C3(1) implies that it is possible to distinguish negative
from positive keys using query response times. It is trivially
true because LSM-trees employ filters to speed up queries
for which SSTable searching is superfluous, such as filter
misses. Our attacks in this paper exploit microsecond-level
time differences between queries satisfied completely from
main memory and those that require I/O to secondary storage.
(There remain time differences between queries that read an
in-memory SSTable residing in the OS page cache and those
that do not, due to a filter miss. We leave exploiting such
smaller time differences to future work.)

C3(2) implies that generating keys uniformly at random
will generate a false-positive key with hundreds to thousands
of attempts, on average. It holds because in practice, filters
are typically configured with small but non-negligible FPRs
(e.g., 0.5%–5%), as negligibly small FPRs blow up the filter’s
memory consumption [65].2

5.3 Prefix siphoning template
Prefix siphoning consists of two phases. First, a preliminary
phase learns to distinguish queries of negative and positive
keys (§ 5.3.1). The second phase consists of multiple rounds,
each of which extracts a key or key prefix (§ 5.3.2). Rounds
are run concurrently (see § 9).

5.3.1 Learning to distinguish positive from negative keys

The attack starts with a preliminary phase that builds a distri-
bution of query response times, which is used by the second
phase to distinguish positive from negative keys.

The distribution is built by measuring response times of
multiple get() requests for random keys. With large key
spaces, such random keys are mostly negative keys, but a
small (though non-negligible) fraction will be positive (due
to C3). Such positive keys are overwhelmingly likely to be
false positives, but that does not matter for this step, which

1Existence of FindFPK and IdPrefix is required in addition to C1 because
a filter satisfying only C1 may not allow an attacker to extract the prefixes.

2Prefix siphoning can still be performed for exponentially low false pos-
itive rates, but its cost (in terms of number of queries needed) increases
proportionally to the decrease in the false positive rate.

is only concerned with distinguishing negative from positive
keys, regardless of whether the positive output is correct.

The expected distribution observed is a bimodal distribu-
tion, with peaks corresponding to the average response time of
negative and positive keys. From this distribution, the attacker
can derive a cutoff value that likely distinguishes negative
(fast) from a positive (slow) queries.

5.3.2 Extracting keys

This phase consists of multiple rounds, each of which extracts
a key. Each round consists of three steps: 1 finding a false-
positive key κ, 2 identifying the prefix that κ shares with
some stored key k, and, when possible, 3 extending the prefix
to extract k. Rounds are run concurrently (§ 9).

Step 1 and 2 simply invoke the attacker’s FindFPK and
IdPrefix algorithms, respectively. These steps are actually the
“meat” of the attack, and we later describe their instantiations
for SuRF (§ 6) and RocksDB’s prefix Bloom filter (§ 7).

Whether step 3 is possible depends on the properties of the
attacked system (and this is why it is not part of the vulnerable
range filter characterization). If the system’s query responses
distinguish between failures due to target key absence and
lack of authorization, then the attacker can extend the revealed
prefix k′ with some symbol sequence α and query for the key
k′ α. The response will indicate lack of authorization if and
only if k′ α is a valid key. The attacker can thus iterate over
all possible suffixes until k is found. Because k is not known
to the attacker, they must first try all possible single symbol
extensions, then all two symbol extensions, and so on. This
process requires O(|Σ||k|−|k′|) queries, which can be several
orders of magnitude less than a full-key brute force search.
Crucially, step 3 only attempts to extend “long” prefixes, for
which extension is feasible. Other prefixes are discarded.

Rationale for step decomposition For fixed-length keys, it
might seem that the IdPrefix algorithm (step 2) for identify-
ing the prefix is superfluous. After all, given that κ shares a
prefix with some stored key k, the attacker can enumerate all
possible suffixes from the end to the beginning, until identify-
ing k. For example, suppose keys are 14-character strings and
the attacker has found a false-positive key manchestercars
because it shares the prefix manchesterc with the stored
key manchestercity. Without knowing (or caring about)
the shared prefix, the attacker can start querying for
manchestercara, manchestercarb, . . ., manchestercaaa,
manchestercaab, and so on—all of which fail due to key
absence—until reaching manchestercity, which will fail
due to lack of authorization. As before, this process requires
O(|Σ||k|−|k′|) queries and so it theoretically achieves the same
results directly, without requiring an IdPrefix algorithm.

Why, then, is existence of an IdPrefix algorithm defined as
one of the characteristics of a vulnerable filter? The answer
is that without knowledge of the prefix, the attacker cannot
efficiently schedule their work in step 3 . They cannot dis-
tinguish a small suffix space (as in the example above) from

USENIX Association 2023 USENIX Annual Technical Conference 723

a huge space—e.g., if the false-positive key only shared the
prefix m with manchestercity.

The IdPrefix algorithm protects us from the above pitfall.
By identifying the shared prefix, it enables the attacker to
decide whether to try and extend the prefix to a full key. More-
over, when multiple rounds execute concurrently, the attacker
can collect many prefixes and then prioritize extending the
longest ones.

6 SuRF prefix siphoning

Here, we instantiate a prefix siphoning attack against LSM-
trees employing the SuRF [65] range filter. § 6.1 summarizes
SuRF and § 6.2 shows that it is vulnerable to prefix siphoning.

6.1 SuRF primer
The succinct range filter (SuRF) [65] is the first proposed
general range filter. Like the LSM-tree SSTables it approxi-
mates, SuRF is an immutable structure. SuRF can speed up
LSM-tree range queries by 5×, but it imposes a modest cost
on point queries due to having higher FPRs than a Bloom
filter [65].

At a high level, SuRF is a pruned trie. A trie is a tree data
structure that stores keys sorted according to the lexicographic
order of Σ. Each edge is labeled with a symbol and each node
corresponds to the concatenation of all edge labels on the path
to that node. Each leaf thus corresponds to a key and each
internal node to a key prefix (Figure 1(a)). An internal node
can also correspond to a key (if the key set is not prefix-free),
which is indicated by one of its fields. For space-efficiency,
SuRF uses a succinct trie representation.

SuRF further saves space by pruning the trie. The basic
SuRF variant (SuRF-Base) stores the minimum length key
prefixes that uniquely identify each key, i.e., shared key pre-
fixes plus the symbol following the shared prefix of each key
(Figure 1(b)). SuRF’s pruning results in a space-efficient but
only approximate representation of the key set.

Both point and range queries are satisfied from the pruned
trie structure. A get(k) returns true (possibly erroneously)
if and only if the path induced by k terminates at a node
associated with a key. For example, in Figure 1(b), BLOOD
is a false positive. Range queries rely on the trie’s ordered
structure. For example, to check if the SuRF contains a key k∈
[a,b], the query finds the node corresponding to the smallest
key ≥ a. If it corresponds to a key > b, the query returns false;
otherwise, it returns (possibly erroneously) true.

SuRF variants to reduce FPR SuRF-Base’s FPR is data-
dependent, i.e., depends on the key set. Compare, for ex-
ample, two sets of 26 keys: A = {xα |x ∈ A, . . . ,Z} and
B = {αx |x ∈ A, . . . ,Z}, where α is some long string. For
A, SuRF’s FPR is nearly 100%, as any key except A, . . . ,Z is
a false positive. But for B, the FPR is extremely small, as only
keys that begin with α pass the filter.

Figure 1: Trie and SuRF variants over the key set BLUE, BLACK, and
BLOND. (Figure adapted from [65].)

To improve the FPR, SuRF offers variants that augment
SuRF-Base’s pruned structure with a few bits per leaf of
information about the leaf’s suffix. These bits reduce the FPR
by allowing queries to reject keys that share a prefix with
the stored key but have a different suffix, in exchange for
increasing per-key memory consumption.

SuRF-Hash (Figure 1(c)) hashes the leaf’s key and stores
n bits from the hash value, where n is configurable. SuRF-
Real (Figure 1(d)) stores the first m bits of the key’s suffix,
where m is configurable.

6.2 Vulnerability of SuRF
Every SuRF variant has the characteristics defined in § 5.2.
C3(1) holds trivially. C3(2) holds empirically: SuRF-Base
has an FPR of 4% for random 64-bit keys and SuRF-Hash
reduce this FPRs to ≈ 0.1% [65]. C1 holds because in every
SuRF variant, every false-positive key κ shares a prefix with
some stored k—C1 holds with probability 1.

To show that C2 holds, we describe how to efficiently find a
false-positive key (§ 6.2.1) and how to identify the prefix that
it shares with a stored key (§ 6.2.2). We assume the ability
to check if a key is a filter positive or negative key based on
measuring query response times. The implementation of this
check is described in § 9.

6.2.1 Finding a false-positive key (FindFPK)

For SuRF, our FindFPK algorithm simply generates queries
for uniformly random keys until it detects a positive response,
based on the cutoff determined in the attack’s preliminary
learning phase (§ 5.3.1). Due to C3, this step is expected to
terminate with a few hundreds to thousands of attempts.

We refer to the random positive key found as a false-
positive key, because that is the overwhelmingly likely event.
However, the attack still works if, unbeknownst to the attacker,
the found key is actually a true positive key.

6.2.2 Identifying a shared prefix (IdPrefix)

For a false-positive key κ, let k = k(κ) be the stored key whose
shared prefix k′ with κ is the longest among all stored keys.
We write κ = k′α and k = k′β. Our algorithm will output k′.

SuRF-Base/Real To find k′, we exploit SuRF’s structure,
namely that any key starting with a proper prefix of k′ is a

724 2023 USENIX Annual Technical Conference USENIX Association

negative key. Let κ = κ1 . . .κn. We repeatedly remove the
last symbol from the key, iteratively checking if the keys
κ1 . . .κn−1,κ1 . . .κn−2, . . . are negative or positive keys. These
keys will be positive until we remove a symbol from k′. Thus,
the key checked before a negative key is found is k′.

If the attacked system does not support variable-length
keys, removing symbols is not possible. In this case, instead
of removing symbols, we change them. We iteratively check
if the keys κ1 . . .κ

′
n,κ1 . . .κ

′
n−1κn . . . are negative or positive

keys, where κ′
i ̸= κi. Similarly to before, if the first negative

key found is κ1 . . .κ
′
j . . .κ

′
n then k′ = κ1 . . .κ j.

Overall, the number of requests made is O(|κ|).

SuRF-Hash SuRF-Hash complicates the attack, because
modifying κ’s suffix can change its hash value, leading to a
key that is rejected by SuRF despite sharing the prefix k′. To
address this problem, we assume SuRF’s hash function hash
is public knowledge. (This is a reasonable assumption, be-
cause the hash function’s purpose is to reduce the FPR and not
for security.) We perform essentially the same algorithm(s)
as for SuRF-Base/Real, but we only query each modified key
κ′ if hash(κ′) = hash(κ). We are still essentially assured to
find keys to query, because SuRF-Hash stores only a small
subset of the hash bits, for space-efficiency reasons. For ex-
ample, with the recommended 4 hash bits [65] and using 8-bit
symbols, on average 1 in 16 symbols tried will yield a hash
collision and thus a key usable by the IdPrefix algorithm.

Similarly, when trying to extend an identified prefix to a full
key (step 3 in § 5.3.2), we can skip querying any candidate
key whose hash does not match the false-positive key’s hash.

7 Prefix Bloom filter prefix siphoning
This section instantiates prefix siphoning against LSM-trees
using the prefix Bloom filter (PBF) [25]. We describe the PBF
in § 7.1 and show its vulnerability in § 7.2.

7.1 Prefix Bloom filter primer
The PBF is a Bloom filter-based range filter that supports
range queries for ranges expressible as fixed-prefix queries.
While PBFs do not provide general range queries, they are
currently deployed in real-world key-value stores such as
RocksDB [30] and LittleTable [52].

A PBF consists of a Bloom filter and a predetermined prefix
length, l. When a key k is inserted into the PBF, both k and
its l-bit prefix are inserted into the Bloom filter.

PBF range queries must be for ranges of the form “all keys
starting with α,” where α is an l-bit string. They are answered
by querying the Bloom filter for α. If this query responds false,
the dataset does not contain keys within the target range.

The PBF answers point queries by querying the Bloom
filter for the queried key. We remark that if the high-level
system does not prioritize point query efficiency, the PBF
can be configured to only store key prefixes. In this case,
the PBF implements a point query for key k by querying its

Bloom filter for k’s l-bit prefix. This option reduces the PBF’s
memory consumption but increases the FPR of point queries.
This PBF configuration does not affect the success of our
attack, so we do not discuss it further.

7.2 Vulnerability of the PBF
The PBF has the characteristics defined in § 5.2. As with
SuRF, C3(1) holds trivially. C3(2) holds because the PBF’s
FPR is based on its Bloom filter’s FPR.

The PBF has an important property: it not only has the
usual Bloom filter false positives caused by hash collisions
but also has what we call prefix false positives. These occur
when a PBF point query falsely returns positive for an input
κ that is an l-bit prefix of a dataset key, simply because the
Bloom filter stores both dataset keys and their l-bit prefixes.
This property implies that C1 holds: with probability 1−FPR,
an l-bit false-positive is actually the prefix of some stored key.

To show that C2 holds, we need only describe how to find
prefix false positives (§ 7.2.1). Finding them makes the IdPre-
fix algorithm of C2 trivial: given an l-bit false positive κ, it
outputs κ.

7.2.1 Finding l-bit false-positive keys (FindFPK)

The FindFPK algorithm first determines the length of key
prefixes stored in the PBF, l, and then proceeds to guess prefix
false positives. Crucially, finding l needs to be performed only
once per attack. That is, when running the attack’s rounds
concurrently (§ 9), we run this step only once.

Once l is known, generating queries for uniformly random
l-bit strings will find false-positive keys, similarly to the SuRF
attack’s FindFPK (§ 6.2.1). Given a set of false positive l-bit
keys thus found, an expected fraction of p/2l will be prefix
false positives, where p is the number of distinct l-bit pre-
fixes of dataset keys. The remaining false positives will be
hash-collision Bloom filter false positives. Because we can-
not distinguish between the two types of false positives, the
attack’s later steps must try to extend all of them to full keys.

The crux of the FindFPK algorithm is to identify l. To this
end, we rely on the PBF property that made it vulnerable in
the first place. For any prefix length l′ ̸= l, the probability
of an l′-bit key being a false positive is exactly the filter’s
FPR. Only for l-bit keys will we observe a “bump” in the
probability of a random l-bit key being a false positive, due
to the presence of prefix false positives.

Accordingly, the FindFPK algorithm first generates j
queries for uniformly random keys of length l′, for every
non-trivial prefix length l′ (e.g., l′ ≥ 3). It observes the frac-
tion of false positives found and deduces that l is the length l’
for which the fraction of false positives found is maximal.

8 Complexity analysis
The key factor determining prefix siphoning’s effectiveness
is the probability of FindFPK (step 1 in § 5.3.2) guessing
an exploitable key k, which is a false positive whose longest

USENIX Association 2023 USENIX Annual Technical Conference 725

shared prefix with stored keys is of length l, where l is a
predetermined constant for which extending k into a full key
is feasible (step 3).

The full version of this paper [39] includes a theoretical
analysis of the SuRF and PBF attacks, which is omitted here
due to space constraints. We analyze the case of uniformly
random keys, which is the worst case for our attack. (If the
key distribution is skewed, then (1) the guessing and full-key
extraction steps can incorporate this knowledge; and (2) the
prefixes SuRF stores are longer, so our attack will identify
longer prefixes and thus extend them to full keys faster.)

The analysis derives the probability of FindFPK guessing
an exploitable key. This determines the expected number
of queries to guess an exploitable key or, equivalently, the
number of keys we ultimately expect to extract after investing
G guesses in FindFPK. These values also allow comparing
the cost (in queries) of prefix siphoning to brute force search.

Under the realistic constraint that |D| ≪ 2l , where D is the
dataset (e.g., |D|= 500 M and l = 40), we find that (1) prefix
siphoning becomes more effective with growth in dataset
size and better FPR—i.e., as the LSM-tree becomes more
effective, so does prefix siphoning; and (2) prefix siphoning
takes several orders of magnitude fewer queries to extract a
key than an exhaustive brute force search.

9 Implementation issues

In previous sections, we assume the attacker can check if a
key is a filter positive or negative key, based on measuring
query response times. Here, we describe our implementation
of this check.

The basic idea is simple. Prefix siphoning’s preliminary
phase (§ 5.3.1) derives a response time cutoff. Keys whose
query response time is below this cutoff are considered nega-
tive; otherwise, they are considered positive. However, this
cutoff only distinguishes between queries satisfied from mem-
ory and those involving I/Os. Once a query for a false-positive
key completes, the I/O it performs reads the relevant SSTable
into the in-memory page cache. Future queries for false-
positive keys covered by this SSTable will thus get satisfied
from memory.

To overcome this problem, we exploit the fact that the
attack targets some production system, which is assumed
to sustain heavy I/O load due its legitimate operation. This
property implies that if the attacker waits after performing a
false positive query, the SSTable brought in will be evicted
from the page cache due to legitimate I/O traffic.

Unfortunately, waiting for even a few seconds after every
query would make the attack impractical. We solve this chal-
lenge by performing attack rounds in a concurrent, breadth-
first manner, as described below, instead of working depth-
first (finding a false-positive key and proceeding to identify
its prefix and then to extract the full key).

Step 1 of § 5.3.2 (FindFPK execution) generates N ran-

dom keys (false positive candidates) and measures a four-
query average response time for each key to identify false-
positive keys. The averages are computed in a breadth-first
manner: there are four iterations, each of which performs one
query for each key. Waiting for page cache evictions is done
only between each iteration.

Step 2 (IdPrefix) similarly executes iteratively, interleav-
ing the next step of IdPrefix for each false-positive key in each
iteration, until all invocations output a prefix. Again, waiting
for page cache evictions is only done between iterations.

Step 3 (key extraction) likewise interleaves the searches
extending each prefix. We optimize step 3 ’s general-case
brute force suffix search by leveraging the fact that step 2
outputs a set of prefixes. This enables us to discard short
prefixes, so that step 3 only attempts to extend prefixes where
the suffix search is feasible.

The interleaved execution of each step can be sped up us-
ing multi-core parallelization by assigning each core a subset
of the N random keys, false-positive keys, or prefixes when
executing step 1 , 2 , and 3 , respectively, in the above de-
scribed manner. This results in linear speedup (in the num-
ber of cores) of step execution time. Our implementation
parallelizes step 3 , whose execution time dominates the
attack (§ 10.2.2), over 16 cores and leaves the other steps
single-threaded.

10 Evaluation
In this section, we evaluate prefix siphoning attacks on SuRF
and PBF in RocksDB. We demonstrate the attack’s feasibil-
ity, successfully mounting it against a full-fledged RocksDB
key-value store employing SuRF (§ 10.2).3 We empirically
analyze the SuRF attack’s efficiency and sensitivity to data
store size and filter FPR (§ 10.3). Consistent with our theoret-
ical analysis, we find that the attack becomes more effective
with growth in dataset size and better FPR—i.e., as the LSM-
tree becomes more effective, so does prefix siphoning. Finally,
we demonstrate the attack against the PBF (§ 10.4).

10.1 Experimental setup
Both clients and the attacked key-value store run on the same
server. However, the time differences we exploit can be mea-
sured over the network using prior techniques (see § 4).

We use a server with two Intel Xeon Gold 6132 v6 (Sky-
lake) processors, each of which has 14 2.6 GHz cores with two
hyperthreads per core. The server is equipped with 192 GB
DDR4 DRAM and two 0.5 TB NVMe SSDs. The server runs
Ubuntu 18.04 and code is compiled with GCC 4.8.

RocksDB setup We use a version of RocksDB modified by
the SuRF authors to employ SuRF [65]. The target RocksDB
instance uses the NVMe devices as secondary storage. We
use Linux cgroup to limit RocksDB’s available DRAM to

3We use the SuRF’s authors’ implementation, https://github.com/
efficient/SuRF.

726 2023 USENIX Annual Technical Conference USENIX Association

https://github.com/efficient/SuRF
https://github.com/efficient/SuRF

2 GB. This configuration emulates an industrial-scale, I/O
heavy key-value store setup, in which storage capacity far
exceeds DRAM capacity.

The RocksDB engine stores 64-bit keys and 1000-byte
values and the SuRF-Real variant. Unless noted otherwise,
we use a datastore of 50 M uniformly random keys (generated
using SHA1). We invoke RocksDB LSM-tree compaction
after populating the datastore. We do this to emulate the
compaction that naturally occurs in a real workload due to
insertions, because our experiments perform only get()s.

Background load In all experiments, we emulate a realistic,
loaded system by running 32 threads that constantly perform
get() queries for random keys, with 50% of the queries target-
ing stored keys and 50% targeting non-present keys.

10.2 RocksDB+SuRF-Real key extraction
We implement the attack as described in § 9. § 10.2.1 eval-
uates the attack’s first phase (§ 5.3.1), demonstrating that
query response times can be used to distinguish negative from
positive keys in practice, even in the presence of heavy back-
ground load. § 10.2.2 evaluates the attack’s second phase,
which extracts full keys, and compares it to a brute force
search.

10.2.1 Negative/positive query time differences

In this phase, the attacker performs 10 M get() queries for ran-
domly generated keys to build the response time distribution.
Table 1 shows the distribution of response times in terms of
5 microsecond buckets. The distribution is extremely skewed
toward values < 25 µs, which our attack therefore assumes
are associated with negative keys.

To validate this assumption, Figure 2 visualizes the distri-
bution while breaking the response times by queried key type
(negative or false-positive). This breakdown is presented for
analysis purposes; it is not available to the attacker. For read-
ability, we present the breakdown in two ways. Figure 2(a)
shows only the buckets ≥ 25 µs, which are otherwise dwarfed
by the lower end of the distribution. We show both the number
of keys (blue) and false-positive (green) keys in each bucket,
and the percent of false-positive keys in each bucket (orange).
Figure 2(b) shows the entire distribution, but bucket sizes (Y
axis) are percentages instead of absolutes. For each bucket,
we report the number of keys in the bucket as well as the
percentage of false positives (out of all positives).

Figure 2(a) shows that the vast majority of false positive
queries have a response time of 25–35 µs. Conversely, Fig-
ure 2(b) shows that this response time range contains over
50% of the false-positive keys. Overall, these results show
that picking a cutoff point of 25 µs for distinguishing a neg-
ative from positive key—which is done based only on the
distribution’s shape, without knowledge of key types—yields
a good distinguisher.

Bucket range % of responses
(microseconds)

< 5 0.77%

5 - 10 88.3%

10−15 7.65%

15−20 0.53%

20−25 0.05%

≥ 25 2.7%

Table 1: Distribution of query response times.

25 75 125 175 225 275 325
Response Time (Microseconds)

0
50

100
150
200
250
300
350

Ke

ys

Total # Keys
FP Keys

0

20

40

60

80

100
% FP Keys

(a) Buckets ≥ 25 µs: Absolute number
of queried keys

0 50 100 150 200 250 300 350
Response Time (Microseconds)

0

20

40

60

80

100

%
 P

er
ce

nt
ag

e

% Keys in Bucket
% FP Keys in Bucket

(b) All buckets: Percentage of queried
keys.

Figure 2: Breakdown of query response time distribution.

10.2.2 Key extraction

The attack executes as described in § 9; specifically, wait
is set to 20 seconds and each step is executed in a parallel,
breadth-first manner, to minimize the amount of time spent
waiting for page cache evictions. The attacker generates a
set of 10 M random keys to find false-positive keys (step 1
of § 5.3.2). The attacker next identifies the prefix each false-
positive key shares with a stored key (step 2). Finally, the
attacker discards every prefix of length < 40 bits and attempts
to extend the remaining prefixes into full keys (step 3).

Figure 3 shows the number of keys extracted as a function
of the number of total number of get() requests issued by
the attack (aggregated over steps 1 – 3). The figure also
compares the attack to an idealized attack, which uses internal
RocksDB debugging counters to accurately determine the
filters’ responses for each queried key, instead of relying on
query response times.

Because the idealized attack never incorrectly classifies a
key, it identifies more false positives than the actual attack in
step 1 . It thus requires more queries in step 2 to identify
the shared prefixes of the keys provided to step 2 , as there
are more of them. Consequently, the idealized attack begins
step 3 later (in terms of queries) than the actual attack, which
is why its line is “shifted” compared to actual attack. For this
reason, the idealized attack also requires more queries overall.
Ultimately, however, the actual attack extracts only 74 fewer
keys than the idealized version.

The idealized attack is also faster (in real time) than the ac-
tual attack, because it does not require waiting for page cache
evictions. The actual attack’s key extraction rate is ≈ 10 min-
utes/key, while the idealized attack achieves 0.2 minutes/key.

USENIX Association 2023 USENIX Annual Technical Conference 727

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Get Requests (Billions)

0

50

100

150

200

250

300

350

Ex

tra
ct

ed
 K

ey
s

Idealized
Actual

Figure 3: Actual vs. idealized prefix siphoning against SuRF-Real:
Number of keys extracted as attack progresses.

attack step # queries (millions) queries/total (%)
1 Find false positives 10M 0.35%

2 Identify prefixes 0.025M 0.0009%

3 Extract keys 2581M 91.68%

Wasted 224M 7.9%

Table 2: Attack queries per stage. Wasted queries futilely attempt to
extend an incorrectly identified prefix into a full key.

Table 2 shows a breakdown of the (actual) attack’s queries
across all three steps. The bulk of the attack is spent on
step 3 , extending prefixes into full keys. Our later anal-
ysis (§ 10.3.2) explains this number. The table also re-
ports wasted queries, which are issued when the attack fu-
tilely tries to extract a key from an incorrect prefix, which
was misidentified due to incorrectly classifying a key as a
false-positive (based on its query response time). Additional
wasted queries (not shown) are spent identifying prefixes of
length < 40 bits in steps 1 – 2 , which are then discarded.
While over 90% of prefixes identified by steps 1 – 2 are dis-
carded, this waste is negligible, as they are discarded before
the most expensive step.

Comparison to brute force We further evaluate a brute
force attack, that randomly guesses keys until a stored key is
found. We allow this attack to run for 10× more time than
the prefix siphoning experiment—but it fails to guess a key.
Unsurprisingly, brute force search for a large key space is
infeasible.

SuRF-Hash vs. SuRF-Real SuRF-Hash complicates the
attack. Compared to SuRF-Real with the same per-key space
budget, SuRF-Hash replaces key bits (SuRF-Real’s suffix bits)
with hash value bits. This means that possible prefixes to iden-
tify are shorter and that the filter’s FPR is lower, making the
number of false positives identified in step 2 lower. On the
other hand, as discussed in § 6.2.2, when identifying the pre-
fixes and performing key extraction, the attacker can use the
false-positive key’s hash value to ignore definitely incorrect

0 5 10 15 20 25 30
Get Request (Billions)

0

20

40

60

80

100

120

Av
g.

 G
et

 R
eq

ue
st

s p
er

 E
xt

ra
ct

ed
 K

ey
 (M

illi
on

s)

SuRF-Hash
SuRF-Real

Figure 4: SuRF-Hash vs. SuRF-Real: Moving average of queries per
extracted key as a function of attack progress (measured in queries).

guess—potentially improving the attack’s efficiency.
To evaluate this trade-off, we compare idealized attacks

against the same dataset, with RocksDB using either SuRF-
Real with 8-bit suffixes or SuRF-Hash with 8-bit hashes. Thus,
in SuRF-Hash, the suffix search space when extracting a key
256× larger than in SuRF-Real, but the attacker will ignore
255/256 of its guesses on average. To compensate for SuRF-
Hash’s lower FPR, the initial false-positive key search of the
SuRF-Hash attack uses 3× the number of candidate keys
used for SuRF-Real. Figure 4 therefore compares the attacks’
amortized cost, in terms of a moving average of queries per
extracted key as a function of attack progress.4 The SuRF-
Hash attack’s extra initial queries (for finding false positives)
manifest as the peak of the per-key cost, when all these extra
queries are amortized across only a handful of keys. The extra
cost is eventually amortized away, into a per-key cost of 12 M
vs. 10 M queries for SuRF-Hash vs. SuRF-Real, respectively.
For this similar cost, the SuRF-Hash attack extracts 2490 keys
vs. 2171 keys for the SuRF-Real attack.

10.3 Attack analysis
This section analyzes the attack’s efficiency (§ 10.3.1) and sen-
sitivity to data store size (§ 10.3.2) and filter FPR (§ 10.3.3).

10.3.1 Efficiency

Figure 5 shows the attack’s efficiency, measured as average
get()s per extracted key as a function of attack progress. We
compare across three 50 M random 64-bit key sets to show
the results are not a function of the specific key set.

The average number of queries per extracted key converges
to about 9 M ≈ 223. This indicates that the attack extracts
keys with roughly the work required to search a 23-bit space—
40992× better than a brute force search of the full key space
(264/50 M≈ 238.4). The attack also extracts a substantial num-
ber of keys (375, 419, and 423 keys).

4I.e., the Y axis reports the number of get()s issued divided by the number
of keys extracted up to the current X-axis point.

728 2023 USENIX Annual Technical Conference USENIX Association

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Get Requests (Billions)

0

10

20

30

40

50

60
Av

g.
 G

et
 R

eq
ue

st
s p

er
 E

xt
ra

ct
ed

 K
ey

 (M
illi

on
s)

Data set 1
Data set 2
Data set 3

Figure 5: Attack efficiency: average number of get()s per extracted
key as attack progresses.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Get Requests (Billions)

0

50

100

150

200

250

300

350

Ex

tra
ct

ed
 K

ey
s

Data size 10M
Data size 20M
Data size 30M
Data size 40M
Data size 50M

Figure 6: Idealized attack against SuRF-Real: Number of keys ex-
tracted for different dataset sizes.

10.3.2 Sensitivity to dataset size

To evaluate the attack’s sensitivity to the dataset size, we
progressively shrink our original 50 M key set into smaller
subsets of size c ·10 M keys for c ∈ [1,5]. We then perform an
idealized attack against the system with each dataset, but using
the same set of random keys for step 1 , so any difference in
attack behavior can related only to the datastore size and not
the key distribution.

Figure 6 shows the number of keys extracted as the attack
progresses. Prefix siphoning is more effective as the dataset
size increases: it extracts ≈ 100 keys from the 10 M dataset,
but almost 400 keys from the 50 M dataset.

10.3.3 Sensitivity to SuRF FPR

We show that prefix siphoning becomes more effective as
SuRF’s FPR improves, i.e., the attack becomes more harmful
to the system as SuRF becomes more productive to the sys-
tem. To demonstrate this effect, we compare idealized attacks
against the same dataset, with RocksDB using either SuRF-
Base or SuRF-Real. SuRF-Base stores shared key prefixes,
padded to the next full byte (which adds 1–8 bits to the prefix).
SuRF-Real does the same, plus stores a byte from the key’s

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Get Requests (Billions)

0

20

40

60

80

100

Av
g.

 G
et

 R
eq

ue
st

s p
er

 E
xt

ra
ct

ed
 K

ey
 (M

illi
on

s)

SuRF-Base
SuRF-Real

Figure 7: SuRF-Real vs. SuRF-Base: Moving average of queries per
extracted key as a function of attack progress (measured in queries).

0 1 2 3 4 5 6 7
Get Requests (Billions)

0

100

200

300

400

500

Av
g.

 G
et

 R
eq

ue
st

s p
er

 E
xt

ra
ct

ed
 K

ey
 (M

illi
on

s)

Figure 8: Idealized prefix siphoning against PBF (l = 40 bits).

unique suffix, and thereby improves its FPR (see § 6.1).
We carry out the attacks against each SuRF variant using

the same initial random key set, used to identify false-positive
keys. Figure 7 reports the attack’s amortized cost (queries per
extracted key) as the attack progresses.

In both cases, the attack has similar efficiency of ≈ 10 M
queries per extracted key, as evident from the similar slope of
the two lines. However, the attack is more successful against
SuRF-Real, where it extracts 420 keys, than against SuRF-
Base, where is extracts 21 keys. The reason for the improved
effectiveness is that SuRF-Real’s extra key byte storage makes
an initial false-positive key much more likely to have a prefix
length of > 40 bits, resulting in more false positives making
it to step 3 .

The situation is similar with SuRF-Hash, which further
improves the FPR over SuRF-Real (Figure 4). As mentioned
in § 10.2.2, the idealized SuRF-Hash attack extracts 2490
keys vs. 2171 keys for the idealized SuRF-Real attack.

10.4 RocksDB+PBF key extraction
We evaluate an idealized prefix siphoning attack against
RocksDB’s PBF. We use a dataset of 50 M uniformly random
64-bit keys. We configure the PBF to store prefixes of length

USENIX Association 2023 USENIX Annual Technical Conference 729

l = 40 bits and to consume 18 bits/key (which is roughly the
space usage of SuRF in our experiments).

Step 1 (FindFPK) perform 1 M queries for uniformly
random 40-bit keys, which result in 457 false-positive keys.
The attack then attempts to extend these false positives into
full keys. It eventually extracts 46 keys, which matches the
expected number of prefix false positives observed in 1 M
random guesses (1M · 50M/240 = 45.4). Figure 8 plots the
attack’s amortized cost (queries per extracted key) as the at-
tack progresses. The PBF attack makes 160 M queries per
extracted key, which is 20× more queries/key than the SuRF
attack, but still three orders of magnitude better than a brute
force search. The reason for this difference is that the PBF at-
tack wastes effort trying to extend Bloom filter false positives
that are not prefix false positives.

11 Mitigation
Here, we discuss approaches for mitigating prefix siphoning
attacks. Unfortunately, every potential solution constitutes
some trade-off, whether in query performance, memory effi-
ciency, complexity, or other system aspects.

System-level approaches A system can block prefix si-
phoning attacks by only querying its key-value storage engine
for keys the requesting user is allowed to access. This ap-
proach requires re-architecting the system so that a key’s
ACL is kept outside of the key-value store. In addition, a sys-
tem can rate limit user requests, thereby slowing down prefix
siphoning attacks. This approach is viable only if the system
is not meant to handle a high rate of normal, benign requests.

Key-value store mitigation A key-value engine can block
prefix siphoning by maintaining separate filters for point and
range queries for each SSTable file. Unfortunately, this ap-
proach will double filter memory consumption. In addition,
it will not block attacks that target range queries (which we
believe are possible, and are currently exploring).

Filter-level mitigation A natural mitigation is for key-value
stores to employ non-vulnerable range filters. Like the sepa-
rate filter approach described above, this mitigation carries
the risk of being vulnerable to future extensions of prefix
siphoning to range queries.

In addition, the properties that make a range filter non-
vulnerable to point query-based prefix siphoning may limit its
utility in practice. For example, Rosetta (Robust Space-Time
Optimized Range Filter) [45] is a range filter that does not
conform to our vulnerable range filter characterization (§ 5.2),
but it lacks support for variable-length keys, which are impor-
tant in practice.

Rosetta uses Bloom filters for SuRF-like prefix-based fil-
tering. Rosetta assumes a bound on the possible key length
in bits, L. A Rosetta instance consists of L Bloom filters,
B1, . . . ,BL. When a key k is inserted into the filter, each i-bit
prefix is inserted into the i-th Bloom filter Bi. A Rosetta point

query thus simply queries BL, making Rosetta non-vulnerable
to prefix siphoning.

The Rosetta paper does not specify how variable-length
keys are handled. Its design is clearly incompatible with such
keys if there is no predetermined bound on their size. Even
if such a bound exists (and can thus be used for L), Rosetta
requires every key to be padded to L bits, so that point queries
function correctly. This requirement significantly increases
the filter’s memory consumption.

Encrypted key-value stores Disclosed keys reveal no sen-
sitive information if they are stored encrypted in the stor-
age engine. However, encrypting key-value pairs requires
re-architecting the entire system so it can query on encrypted
data [63, 64]. Most if not all deployed key-value stores do not
support such encryption.

12 Related Work

Key-value store timing attacks Existing key-value store
timing attacks aim to disclose stored values. These attacks
work by exploiting external mechanisms such as memory
deduplication [55] or memory compression [56], which can
be disabled for protection. In contrast, prefix siphoning ex-
ploits a mechanism of the key-value store itself, which can-
not be disabled for protection without suffering significant
throughput degradation and additional I/O traffic.

Storage engine timing attacks Timing attacks mostly tar-
get cryptographic software rather than storage engines. Fu-
toransky et al. [35] extract private keys from a MySQL
database with a timing attack, but the attack relies on in-
sertions of attacker-chosen data. Wang et al. [59] show a
practical timing attack on a multi-user search system, such as
Elasticsearch.

13 Conclusion

This paper shows that certain range filters make LSM-trees
vulnerable to novel prefix siphoning timing attacks, which
exploit differences in query response times to reveal keys and
prefixes of keys stored in the LSM-tree. Our results show that
key-value store performance improvements may trade security
in exchange, and encourage practitioners and researchers to
evaluate the security impact of their work. We also hope
that our characterization of vulnerable range filters will spur
research on more secure filters.

Acknowledgments

We extend our deepest thanks to Yuvraj Patel, the paper’s
shepherd, and the anonymous reviewers for their dedication
and assistance in improving this paper and their valuable
feedback. We thank Guy Khazma for his work on an earlier
stage of this project.

730 2023 USENIX Annual Technical Conference USENIX Association

References
[1] CEPH. https://github.com/ceph/ceph.

[2] MongoDB. https://www.mongodb.com/.

[3] MySQL Server. https://github.com/mysql/
mysql-server.

[4] Amazon. Amazon S3. https://aws.amazon.com/
s3/, 2020.

[5] David G. Andersen, Jason Franklin, Michael Kaminsky,
Amar Phanishayee, Lawrence Tan, and Vijay Vasudevan.
FAWN: A Fast Array of Wimpy Nodes. In SOSP, 2009.

[6] Apache. Apache Flink — Stateful Computations over
Data Streams. https://flink.apache.org, 2022.

[7] Mikhail Bautin. How We Built a High Per-
formance Document Store on RocksDB?
https://www.yugabyte.com/blog/how-we-
built-a-high-performance-document-store-
on-rocksdb/, 2019.

[8] Michael A. Bender, Martin Farach-Colton, Rob John-
son, Russell Kraner, Bradley C. Kuszmaul, Dzejla
Medjedovic, Pablo Montes, Pradeep Shetty, Richard P.
Spillane, and Erez Zadok. Don’t Thrash: How to Cache
Your Hash on Flash. In VLDB, 2012.

[9] Peter Benjamin. s3-fuzzer. https://github.com/
pbnj/s3-fuzzer, 2017.

[10] Burton H. Bloom. Space / Time Trade-offs in Hash
Coding with Allowable Errors. CACM, 13(7), 1970.

[11] David Brumley and Dan Boneh. Remote Timing Attacks
are Practical. In USENIX Security Symposium, 2003.

[12] Zhichao Cao, Siying Dong, Sagar Vemuri, and
David H.C. Du. Characterizing, Modeling, and
Benchmarking RocksDB Key-Value Workloads at
Facebook. In FAST, 2020.

[13] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C
Hsieh, Deborah A Wallach, Mike Burrows, Tushar Chan-
dra, Andrew Fikes, and Robert E Gruber. Bigtable: A
Distributed Storage System for Structured Data. ACM
TOCS, 26(2), 2008.

[14] Guoqiang Jerry Chen, Janet L. Wiener, Shridhar Iyer,
Anshul Jaiswal, Ran Lei, Nikhil Simha, Wei Wang,
Kevin Wilfong, Tim Williamson, and Serhat Yilmaz.
Realtime Data Processing at Facebook. In SIGMOD,
2016.

[15] Alex Conway, Martín Farach-Colton, and Philip Shilane.
Optimal Hashing in External Memory. In ICALP, 2018.

[16] Alexander Conway, Abhishek Gupta, Vijay Chi-
dambaram, Martin Farach-Colton, Richard Spillane,
Amy Tai, and Rob Johnson. SplinterDB: Closing
the Bandwidth Gap for NVMe Key-Value Stores. In
USENIX ATC, 2020.

[17] Scott A. Crosby, Dan S. Wallach, and Rudolf H. Riedi.
Opportunities and Limits of Remote Timing Attacks.
ACM Transactions on Information and System Security,
12(3), 2009.

[18] Niv Dayan, Manos Athanassoulis, and Stratos Idreos.
Monkey: Optimal Navigable Key-Value Store. In SIG-
MOD, 2017.

[19] Niv Dayan, Manos Athanassoulis, and Stratos Idreos.
Optimal Bloom Filters and Adaptive Merging for LSM-
Trees. ACM TODS, 43(4), 2018.

[20] Niv Dayan and Stratos Idreos. Dostoevsky: Better
Space-Time Trade-Offs for LSM-Tree Based Key-Value
Stores via Adaptive Removal of Superfluous Merging.
In SIGMOD, 2018.

[21] Niv Dayan and Stratos Idreos. The Log-Structured
Merge-Bush & the Wacky Continuum. In SIGMOD,
2019.

[22] Niv Dayan and Moshe Twitto. Chucky: A Succinct
Cuckoo Filter for LSM-Tree. In SIGMOD, 2021.

[23] Tom de Vries. Teh s3 bucketeers. https://github.
com/tomdev/teh_s3_bucketeers/, 2021.

[24] Biplob Debnath, Sudipta Sengupta, and Jin Li. SkimpyS-
tash: RAM Space Skimpy Key-Value Store on Flash-
Based Storage. In SIGMOD, 2011.

[25] Siying Dong, Mark Callaghan, Leonidas Galanis,
Dhruba Borthakur, Tony Savor, and Michael Stumm.
Optimizing Space Amplification in RocksDB. In CIDR,
2017.

[26] Phil Eaton. What’s the big deal about key-value
databases like FoundationDB and RocksDB?
https://notes.eatonphil.com/whats-the-
big-deal-about-key-value-databases.html,
2022.

[27] Nathan Eddy. Cloud Misconfig Exposes 3TB of Sensi-
tive Airport Data in Amazon S3 Bucket: ’Lives at Stake’.
https://www.darkreading.com/application-
security/cloud-misconfig-exposes-3tb-
sensitive-airport-data-amazon-s3-bucket,
2022.

[28] David Eisenstat. Structured data encoding in Cock-
roachDB SQL. https://github.com/cockroachdb/

USENIX Association 2023 USENIX Annual Technical Conference 731

https://github.com/ceph/ceph
https://www.mongodb.com/
https://github.com/mysql/mysql-server
https://github.com/mysql/mysql-server
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
https://flink.apache.org
https://www.yugabyte.com/blog/how-we-built-a-high-performance-document-store-on-rocksdb/
https://www.yugabyte.com/blog/how-we-built-a-high-performance-document-store-on-rocksdb/
https://www.yugabyte.com/blog/how-we-built-a-high-performance-document-store-on-rocksdb/
https://github.com/pbnj/s3-fuzzer
https://github.com/pbnj/s3-fuzzer
https://github.com/tomdev/teh_s3_bucketeers/
https://github.com/tomdev/teh_s3_bucketeers/
https://notes.eatonphil.com/whats-the-big-deal-about-key-value-databases.html
https://notes.eatonphil.com/whats-the-big-deal-about-key-value-databases.html
https://www.darkreading.com/application-security/cloud-misconfig-exposes-3tb-sensitive-airport-data-amazon-s3-bucket
https://www.darkreading.com/application-security/cloud-misconfig-exposes-3tb-sensitive-airport-data-amazon-s3-bucket
https://www.darkreading.com/application-security/cloud-misconfig-exposes-3tb-sensitive-airport-data-amazon-s3-bucket
https://github.com/cockroachdb/cockroach/blob/master/docs/tech-notes/encoding.md

cockroach/blob/master/docs/tech-notes/
encoding.md, 2021.

[29] Robert Escriva, Bernard Wong, and Emin Gün Sirer.
HyperDex: A Distributed, Searchable Key-Value Store.
In SIGCOMM, 2012.

[30] Facebook. RocksDB. https://github.com/
facebook/rocksdb.

[31] Facebook. MyRocks. http://myrocks.io/, 2015.

[32] Facebook. MyRocks record format. https://github.
com/facebook/mysql-5.6/wiki/MyRocks-record-
format, 2019.

[33] Bin Fan, David G. Andersen, Michael Kaminsky, and
Michael Mitzenmacher. Cuckoo Filter: Practically Bet-
ter Than Bloom. In CoNEXT, 2014.

[34] Roy Thomas Fielding. Architectural Styles and the
Design of Network-based Software Architectures. PhD
thesis, University of California, Irvine, 2000.

[35] Ariel Futoransky, Damián Saura, and Ariel Waissbein.
The ND2DB Attack: Database Content Extraction Using
Timing Attacks on the Indexing Algorithms. In WOOT,
2007.

[36] Tom Van Goethem, Christina Pöpper, Wouter Joosen,
and Mathy Vanhoef. Timeless Timing Attacks: Exploit-
ing Concurrency to Leak Secrets over Remote Connec-
tions. In USENIX Security Symposium, 2020.

[37] Guy Golan-Gueta, Edward Bortnikov, Eshcar Hillel, and
Idit Keidar. Scaling Concurrent Log-Structured Data
Stores. In EuroSys, 2015.

[38] Google. LevelDB. https://github.com/google/
leveldb.

[39] Adi Kaufman, Moshik Hershcovitch, and Adam Mor-
rison. Prefix Siphoning: Exploiting LSM-Tree Range
Filters For Information Disclosure (Full Version). arXiv
e-prints, abs/2306.04602, 2023.

[40] Redis Lab. Redis. https://github.com/redis/
redis.

[41] Cockroach Labs. CockroachDB. https://www.
cockroachlabs.com/, 2022.

[42] Avinash Lakshman and Prashant Malik. Cassandra:
A Decentralized Structured Storage System. SIGOPS
Operating Systems Review, 44(2), 2010.

[43] Hyeontaek Lim, Bin Fan, David G. Andersen, and
Michael Kaminsky. SILT: A Memory-efficient, High-
performance Key-value Store. In SOSP, 2011.

[44] LinkedIn. FollowFeed: LinkedIn’s Feed Made Faster
and Smarter. https://engineering.linkedin.
com/blog/2016/03/followfeed--linkedin-s-
feed-made-faster-and-smarter, 2016.

[45] Siqiang Luo, Subarna Chatterjee, Rafael Ketsetsidis, Niv
Dayan, Wilson Qin, and Stratos Idreos. Rosetta: A Ro-
bust Space-Time Optimized Range Filter for Key-Value
Stores. In SIGMOD, 2020.

[46] Netflix. Application Data Caching using SSDs. http:
//techblog.netflix.com/2016/05/application-
data-caching-using-ssds.html, 2016.

[47] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc
Kwiatkowski, Herman Lee, Harry C. Li, Ryan McElroy,
Mike Paleczny, Daniel Peek, Paul Saab, David Stafford,
Tony Tung, and Venkateshwaran Venkataramani. Scal-
ing Memcache at Facebook. In NSDI, 2013.

[48] OWASP. Insecure Direct Object Reference Prevention
Cheat Sheet. https://cheatsheetseries.owasp.
org/cheatsheets/Insecure_Direct_Object_
Reference_Prevention_Cheat_Sheet.html, 2021.

[49] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Eliz-
abeth O’Neil. The Log-Structured Merge-Tree (LSM-
Tree). Acta Informatica, 33(4):351–385, 1996.

[50] Jordan Potti. Awsbucketdump. https://github.com/
jordanpotti/AWSBucketDump, 2018.

[51] Pandian Raju, Rohan Kadekodi, Vijay Chidambaram,
and Ittai Abraham. PebblesDB: Building Key-Value
Stores Using Fragmented Log-Structured Merge Trees.
In SOSP, 2017.

[52] Sean Rhea, Eric Wang, Edmund Wong, Ethan Atkins,
and Nat Storer. LittleTable: A Time-Series Database
and Its Uses. In SIGMOD, 2017.

[53] Dan Salmon. S3scanner. https://github.com/
sa7mon/S3Scanner, 2022.

[54] Apache Samza. State Management. http:
//samza.apache.org/learn/documentation/
0.8/container/state-management.html, 2017.

[55] Martin Schwarzl, Erik Kraft, Moritz Lipp, and Daniel
Gruss. Remote Memory-Deduplication Attacks. In
NDSS, 2022.

[56] Martin Schwarzl, Pietro Borrello Gururaj Saileshwar,
Hanna Müller, Michael Schwarz, and Daniel Gruss.
Practical Timing Side-Channel Attacks on Memory
Compression. In IEEE S&P, 2023.

732 2023 USENIX Annual Technical Conference USENIX Association

https://github.com/cockroachdb/cockroach/blob/master/docs/tech-notes/encoding.md
https://github.com/cockroachdb/cockroach/blob/master/docs/tech-notes/encoding.md
https://github.com/facebook/rocksdb
https://github.com/facebook/rocksdb
http://myrocks.io/
https://github.com/facebook/mysql-5.6/wiki/MyRocks-record-format
https://github.com/facebook/mysql-5.6/wiki/MyRocks-record-format
https://github.com/facebook/mysql-5.6/wiki/MyRocks-record-format
https://github.com/google/leveldb
https://github.com/google/leveldb
https://github.com/redis/redis
https://github.com/redis/redis
https://www.cockroachlabs.com/
https://www.cockroachlabs.com/
https://engineering.linkedin.com/blog/2016/03/followfeed--linkedin-s-feed-made-faster-and-smarter
https://engineering.linkedin.com/blog/2016/03/followfeed--linkedin-s-feed-made-faster-and-smarter
https://engineering.linkedin.com/blog/2016/03/followfeed--linkedin-s-feed-made-faster-and-smarter
http://techblog.netflix.com/2016/05/application-data-caching-using-ssds.html
http://techblog.netflix.com/2016/05/application-data-caching-using-ssds.html
http://techblog.netflix.com/2016/05/application-data-caching-using-ssds.html
https://cheatsheetseries.owasp.org/cheatsheets/Insecure_Direct_Object_Reference_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Insecure_Direct_Object_Reference_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Insecure_Direct_Object_Reference_Prevention_Cheat_Sheet.html
https://github.com/jordanpotti/AWSBucketDump
https://github.com/jordanpotti/AWSBucketDump
https://github.com/sa7mon/S3Scanner
https://github.com/sa7mon/S3Scanner
http://samza.apache.org/learn/documentation/0.8/container/state-management.html
http://samza.apache.org/learn/documentation/0.8/container/state-management.html
http://samza.apache.org/learn/documentation/0.8/container/state-management.html

[57] Russell Sears and Raghu Ramakrishnan. BLSM: A Gen-
eral Purpose Log Structured Merge Tree. In SIGMOD,
2012.

[58] Mark Sutherland, Babak Falsafi, and Alexandros Daglis.
Cooperative Concurrency Control for Write-Intensive
Key-Value Workloads. In ASPLOS, 2023.

[59] Liang Wang, Paul Grubbs, Jiahui Lu, Vincent Bind-
schaedler, David Cash, and Thomas Ristenpart. Side-
Channel Attacks on Shared Search Indexes. In IEEE
S&P, 2017.

[60] Peng Wang, Guangyu Sun, Song Jiang, Jian Ouyang,
Shiding Lin, Chen Zhang, and Jason Cong. An Efficient
Design and Implementation of LSM-Tree Based Key-
Value Store on Open-Channel SSD. In EuroSys, 2014.

[61] Brian Warehime. insp3ctor. https://github.com/
brianwarehime/inSp3ctor, 2018.

[62] Ian Williams. Bucket finder. https://github.com/
FishermansEnemy/bucket_finder, 2013.

[63] Xingliang Yuan, Yu Guo, Xinyu Wang, Cong Wang,
Baochun Li, and Xiaohua Jia. EncKV: An Encrypted
Key-Value Store with Rich Queries. In ASIA CCS, 2017.

[64] Xingliang Yuan, Xinyu Wang, Cong Wang, Chen Qian,
and Jianxiong Lin. Building an Encrypted, Distributed,
and Searchable Key-Value Store. In ASIA CCS, 2016.

[65] Huanchen Zhang, Hyeontaek Lim, Viktor Leis, David G.
Andersen, Michael Kaminsky, Kimberly Keeton, and
Andrew Pavlo. SuRF: Practical Range Query Filtering
with Fast Succinct Tries. In SIGMOD, 2018.

USENIX Association 2023 USENIX Annual Technical Conference 733

https://github.com/brianwarehime/inSp3ctor
https://github.com/brianwarehime/inSp3ctor
https://github.com/FishermansEnemy/bucket_finder
https://github.com/FishermansEnemy/bucket_finder

	Introduction
	Background
	Key-value stores
	LSM-based data stores
	Filters
	Range filters

	Motivation: avoiding key disclosure
	Threat model
	Prefix siphoning
	High-level ideas
	Vulnerable range filter characterization
	Prefix siphoning template
	Learning to distinguish positive from negative keys
	Extracting keys

	SuRF prefix siphoning
	SuRF primer
	Vulnerability of SuRF
	Finding a false-positive key (FindFPK)
	Identifying a shared prefix (IdPrefix)

	Prefix Bloom filter prefix siphoning
	Prefix Bloom filter primer
	Vulnerability of the PBF
	Finding l-bit false-positive keys (FindFPK)

	Complexity analysis
	Implementation issues
	Evaluation
	Experimental setup
	RocksDB+SuRF-Real key extraction
	Negative/positive query time differences
	Key extraction

	Attack analysis
	Efficiency
	Sensitivity to dataset size
	Sensitivity to SuRF FPR

	RocksDB+PBF key extraction

	Mitigation
	Related Work
	Conclusion

