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Abstract
This paper presents a principled approach to operating sys-
tem teaching that complements the existing practices. Our
methodology takes state transition systems as first-class cit-
izens in operating systems teaching and demonstrates how
to effectively convey non-trivial research systems to junior
OS learners within this framework. This paper also presents
the design and implementation of a minimal operating sys-
tem model with nine system calls covering process-based
isolation, thread-based concurrency, and crash consistency,
with a model checker and interactive state space explorer for
exhaustively examining all possible system behaviors.

1 Introduction

“Everything should be made as simple as possible,
but no simpler.” —Albert Einstein

The teaching foundation of operating system design and
implementation has been well-established for decades. From
Tanenbaum’s “Operating Systems: Design and Implementa-
tion (1987)” [45] to Arpaci-Dusseau’s “Operating Systems:
Three Easy Pieces (2018)” [3], students approach operating
systems by studying the layered design of abstractions over
processors, memory, and storage systems.

In parallel, researchers have observed the emergence of
fast, scalable, reliable, and secure systems over the past few
decades. This progress has been driven by the development
of innovative system technologies, such as hardware/software
co-design [24, 43], cross-stack integration [20, 23], program
analysis [11, 48], and formal methods [30, 31], among others.

This paper attempts to share these exciting ideas with junior
operating system learners under a unified theme by “adding
a layer of indirection.” Our key insight is to view all compo-
nents of a computer system–including hardware, applications,
and the operating systems that connect them–as state transi-
tion systems. By analyzing these components as informal yet
mathematically rigorous objects, we aim to bridge the gap

between theoretical concepts and practical system implemen-
tations.

This model-driven approach is grounded in several innova-
tive philosophies on operating systems education, which are
outlined below:

Everything is a state machine (Section 2). The key idea
of this paper is to consider state transition systems as the
foremost concept in teaching operating systems. The state-
machine abstraction is fundamental: the state of a modern
multi-processor system is essentially determined by regis-
ter/memory bit values, driven by the non-deterministic se-
lection of a single CPU executing a single-step instruction1.
The same abstraction is also applicable to any multi-threaded
program.

Consequently, we argue that it is beneficial to view the
operating system as both a state machine and a manager of
state machines. An operating system essentially leverages
application-invisible data structures (e.g., a page table) to
multiplex CPUs across processes and threads. This approach
provides a rigorous explanation of process management APIs:
fork/execve/exit functions simply clone, reset, and destroy live
state machines. This abstraction also encourages in-depth
discussions about fork [4] and the initial process state after
execve.

By adopting this state-machine-centric perspective, we can
explain research systems with a clear and rigorous foundation.
For instance, every debugger [12], trace [8], and profiler [9]
essentially “observes” runtime state snapshots, facilitating
discussions on interactive query debuggers [39], deterministic
full-system replay [16], time-travel failure reproduction [11],
snapshot-based fault tolerance [38], and state space explo-
ration [7] in an introductory-level operating system course.

Emulate state machines with executable models (Section 3).
Since state machine is a mathematically rigorous concept, we
could always emulate the execution of real state machines.
Although emulation has been widely adopted in operating sys-

1Under the assumption of race-freedom that instructions are serializable.
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System Call Description

fork() Create current thread’s heap and context clone
spawn( f ,xs) Spawn a heap-sharing thread executing f (xs)
sched() Switch to a non-deterministic thread
choose(xs) Return a non-deterministic choice among xs
write(xs) Write strings xs to standard output
bread(k) Return the value of block k
bwrite(k,v) Write block k with value v to a buffer
sync() Persist all outstanding block writes to storage
crash() Simulate a non-deterministic system crash

Table 1: System calls in the operating system model.

tem teaching2, this paper takes one step further by emulating
a “fully functional” operating system model with processes,
threads, a debug console, and block storage. The system calls
are listed in Table 1. The executable model approach has the
following advantages:

First, executable model is a foundation for exploring op-
erating system concepts. Synchronization primitives like Pe-
terson’s algorithm [34], condition variable, and semaphore
can be implemented over shared memory. The non-trivial
state copy behavior of fork() [4] can be reproduced under
this model. A file system checker can be carried out upon a
simulated crash().

Second, executable model is a behavioral specification
of real operating systems; it is the golden standard on the
application-observable behaviors. A model facilitates discus-
sions on the abstractions–the concrete implementation of the
fork() function may employ copy-on-write, but this should
remain transparent to a process. Such a model also motivates
the key idea behind formally verified systems like seL4 [25]
and Hyperkernel [31].

Enumeration demystifies operating systems (Section 4).
We design our emulator to handle all sources of non-
determinism in a coherent way: every system call (not merely
choose) returns a set of possible choices as callbacks. Conse-
quently, we can exhaustively enumerate all possible system
behaviors with little implementation effort.

Such a design finally leads to our MOSAIC (Modeled
Operating System And Interactive Checker) operating system
model and checker. MOSAIC adds lightweight formal meth-
ods [21, 47] to operating systems teaching. MOSAIC is capa-
ble of checking fork-based process parallelism, thread-based
shared memory concurrency, and crash consistency [36]. The
model checker’s output can be piped to an interactive state
space explorer that can be embedded in a Jupyter notebook
(Figure 3); thus, all non-trivial corner cases of the operating
system model can be rigorously explained.

In summary, this paper makes the following contributions:

2We loved the emulated process scheduler, virtual memory, and file sys-
tems in the “Three Easy Pieces” [3].

1. We propose a new “state-machine first” approach in the
breakdown of operating system teaching: (1) model sys-
tems as state machines, (2) realize models by emulation,
and (3) explore models by enumeration. This approach
enabled us to introduce non-trivial research systems to
junior operating system learners.

2. We design and implement MOSAIC, a minimal (500 lines
of code, including comments) executable operating sys-
tem model and checker, which strikes a balance between
understandability and functionality. MOSAIC can rig-
orously explain non-trivial textbook cases concerning
concurrency, virtualization, and persistence. MOSAIC is
available via

https://github.com/jiangyy/mosaic.

3. We incorporated these ideas in a first undergraduate oper-
ating system course (Section 5). This course became one
of the most popular operating system courses in China
and has attracted over 2,000,000 video views since its
initial release in 2020.

2 State Machines: First-class Citizens of Oper-
ating Systems

Philosophy 1: Everything is a state machine.

This paper’s key contribution is the “state-machine first” ap-
proach to operating systems. By regarding both user-level
applications and kernels as state machines (Section 2.1), it
became obvious that operating systems are state machine
managers (Section 2.2). This section also discusses modern
computer systems and tools under the state machine perspec-
tive (Section 2.3).

2.1 Introducing State Machines in the Operat-
ing System Class

Program as a state machine. Every program run essentially
boils down to the execution of binary instructions, whose be-
havior is rigorously defined by a state machine in which states
are register/memory values and transitions are the execution
of one instruction at the program counter. We implement this
idea on Linux (Figure 1) to provide a definition of system
calls: system call is a state transition (e.g., via a trap instruc-
tion or any process-kernel communication mechanism [44])
for accessing the “exterior” of the state machine, e.g., writing
data to the operating system or changing the state machine’s
memory address space (via mmap or mprotect) and existence
(via exit). Without system calls, the program (state machine)
is a “closed world” that can only perform arithmetic and logi-
cal operations over memory and register values.
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1 #include "sys/syscall.h"
2 mov $SYS_write, %rax // write(
3 mov $1, %rdi // fd=1,
4 mov $hello, %rsi // buf=hello,
5 mov $16, %rdx // count=16
6 syscall // );
7 // "ret" here yields SIGSEGV
8 mov $SYS_exit, %rax // exit(
9 mov $1, %rdi // status=1

10 syscall // );
11 hello: ; .ascii "Hello, OS World\n"

mov $hello, %rsi 

0 0 …

Hello……

1

rax rsi
0

…
…

Hello……

Reg

Mem

1

rax rsi …
…

Hello……

Reg

Mem
… …

Initial state s0

Figure 1: A minimal “Hello World” program and its corre-
sponding state machine.

Bare-metal as a state machine. The bare-metal hardware
shares a similar model with binaries: a CPU essentially op-
erates as an infinite loop of instruction execution, which is
also the case for a full-system emulator [5]. In contrast to
user-level programs that can perform system calls, bare-metal
kernels (including operating systems) access the “external
world” via port or memory-mapped I/O and can be interrupted
as if a trap instruction is non-deterministically injected.

Discussions. The advantage of introducing the state machine
model early in an operating system course is that it fosters
a tendency of rigorous thinking–state transition systems are
well-defined mathematical objects. Specifically, we motivate
the students to think of what is the mathematically precise
definition of the process initial state. We explain that any pro-
cess’s initial state is well-defined by its binary executable and
the Application Binary Interface. We also demonstrate how
to inspect the initial state of the code in Figure 1 using stepi

in GDB and memory mapping files in procfs. We further en-
courage students to consider more involved details of process
states, such as the reasons behind the inability to perform a
function return (using a ret instruction) and the necessity of
wrapping C main functions with a __libc_start_main.

2.2 Operating System as a State Machine Man-
ager

Computer system stack on state machines. Virtualization
is the most fundamental mechanism of modern operating
systems. Each application in an operating system can be
regarded as a state machine whose initial memory layout
and state transitions are specified by its binary executable.

0 1 2 3

0

1

2

3

4

5

Application A

Application B

Mem

Reg

Operating

System


(Implementation)

Operating

System

(Model)

0 0 0 3 1 3

6

7

1 5
B A B

syscall

(nondeterministic)

……

“refinement mapping”

Figure 2: Operating system as a state machine manager. In
this example, the operating system “executes” state transitions
0→ 1 and 0→ 3→ 5 for applications A and B, respectively.

The operating system should give the application the illusion
that the state transition system runs continuously following
its specification, even though instruction execution could be
non-deterministically interrupted at any time.

The state-machine approach provides a natural “implemen-
tation” of virtualization: by making state snapshots of all
processes available and scheduling a process through “mov-
ing” a state machine to the CPU. The trap/interrupt handler
plays such a role: it stores the state machine’s registers in
the operating system’s private memory space, ensuring the
system-wide invariant that all application states can be re-
constructed. Subsequently, the operating system can continue
processing interrupts, executing system calls, and resuming
any process based on a predefined scheduling policy.

These arguments conclude our claim that “everything is a
state machine” and gives us a new picture of understanding
operating systems, as shown in Figure 2:

1. Application code is the developer’s specification of a
state machine.

2. Operating system code is the designer’s specification
of a state machine manager, a “superset” state machine
container of all application state machines.

3. The operating system provides system calls as services
and leverages application-invisible states (e.g., page ta-
ble) to give processes the illusion of continuous state
machine execution.

Process APIs on state machines. Following the idea that
running applications are state machines, the need for process
APIs became obvious: an operating system must provide
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mechanisms for manipulating the set of live state machines.
We found that the state machine language3 precisely and
concisely explains UNIX process APIs:

1. fork() makes a “full copy” of the currently running state
machine. Registers and the address space should appear
to be deeply copied. References to operating system
objects (e.g., file descriptors and signal handlers) should
also be copied, but with caution [4].

2. posix_spawn(...) creates a new state machine (always re-
sets to the initial state of an application) with controllable
state sharing with the parent.

3. execve(path, argv, envp) resets a running state machine
to the initial state specified by the binary file path, with
arguments argv and environment list envp placed in mem-
ory following the Application Binary Interface.

4. exit(status) removes the currently running state ma-
chine from the operating system, reclaims used re-
sources, and notifies any waiting process with the exit
status.

2.3 State Machines Meet Operating Systems
We discovered that the state-machine approach is not only
beneficial for clarifying operating system concepts, but it can
also serve as a fundamental basis for explaining non-trivial
research systems to students:

Understanding system execution. Theoretically, executing
a state transition system (be it an application or an operating
system kernel) results in an execution trace composed of state
snapshots connected by state transitions

tr = s0→ si→ . . .→ si+1→ . . . ,

as if we single-instruction debug the program and save a core
dump after each instruction execution. Such a trace contains
all information needed for understanding this specific pro-
gram execution.

However, such a massive trace (billions of instructions exe-
cuted per second and megabytes of snapshots) is impractical
and unnecessary to keep for any engineering practice. Debug-
gers provide the break/watchpoint mechanism to efficiently
stop at interested program points (sometimes with hardware
assistance like debug registers) and let the developer examine
the program states interactively.

Understanding a program’s execution usually only requires
a tiny fraction of information in the full trace tr. The trade-off
space of “what parts of tr to observe” leads to many impor-
tant mechanisms incorporated in the engineering of modern
operating systems, which are explained below.

3For brevity, we removed less critical mechanisms including signals,
process groups, and access control in this discussion. However, all of them
can be explained under the state machine perspective whenever needed.

Playing with snapshots. fork provides a verbatim copy of
a program’s state si with reasonably low cost. Holding such
program state snapshots yields interesting applications. One
is the Zygote process of Android [14], which copies initial-
ized Java virtual machine state to avoid repetitive and time-
consuming bootstrap-time class loading. Another example is
that one can take periodical clean-state snapshots (e.g., in the
idle state of an event loop) and fall back to a snapshot when
an unexpected error occurs [38].

Time-travel debugging. Developers use a debugger to in-
teractively examine tr, which can be enhanced by a query
language [39]. Debuggers can also enable time-travel de-
bugging by recording the differences between consecutive
states, essentially creating an undo log. Time-travel debug-
ging is already implemented in GDB [12]. Observing that
non-deterministic transitions are only a tiny fraction of tr, one
can also keep track of their locations and choices to enable a
deterministic replay [16, 33].

Trace and profiler. One can insert probes exclusively at state
transitions relevant to the application logic (e.g., function
calls and returns) and gather diagnostic data (e.g., call stack
traces). Trace utilities such as ftrace and Kprobe in Linux [8]
are widely used for debugging production failures.

One can place probes only at application logic relevant state
transitions (e.g., function calls and returns) to collect diagnos-
tic information (e.g., call stack trace). Such trace tools like
ftrace and Kprobe in Linux [8] are widely used in debugging
production failures.

The overhead associated with tracing can be further re-
duced through sampling, which involves periodically activat-
ing probes within a specified time interval. Such profilers
generate summaries of the sampled program states and are
extremely useful in diagnosing performance issues.

Runtime checkers. Runtime checkers can also be considered
as functions that accept tr as input and check it against spe-
cific bug patterns. A broad spectrum of checkers operate in
this manner: AddressSanitizer [40] asserts the absence of out-
of-bounds and use-after-free memory accesses. ThreadSani-
tizer [41] confirms that there are no conflicting shared mem-
ory accesses unordered by happens-before relations. Lock-
dep [29] checks whether all observed lock acquisition order-
ings do not form a cycle.

Symbolic execution and program verification. It is obvi-
ous that system calls can exhibit non-deterministic behavior.
However, it is less emphasized that such non-determinism
can be rigorously quantified; for instance, a read system call
returns only a finite number of possibilities. Thus, we can
enumerate all possible state transitions to capture all potential
program behaviors; however, this approach is only feasible in
a theoretical context. Even reading a 32-bit integer results in
232 distinct states.

Using a compact representation of a vast number of states
(e.g., using a symbolic value x to represent an “arbitrary”
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value of variable x) and imposing constraints on symbolic
values across branches results in a symbolic program veri-
fier [7].

3 An Executable Operating System Model

Philosophy 2: Emulate state machines with exe-
cutable models.

As state machines are mathematically rigorous constructs,
their usefulness is not limited to merely clarifying operating
system concepts. It is also feasible to develop executable state
machines that accurately emulate the behavior of processes
and operating systems.

Specifically, we leverage modern programming language
mechanisms like coroutines for lightweight in-process con-
text switches to implement a lightweight executable operating
system model with emulated threads, processes, and devices
(Section 3.1). This section also discusses how instructors
could use a model to simplify non-trivial textbook cases (Sec-
tion 3.2) and use models as behavioral specifications of real
systems (Section 3.3).

3.1 Emulating an Operating System

State machines (processes) and system calls. We implement
our operating system model in Python, a popular program-
ming language among students. A process is emulated by a
generator (stackless coroutine) object where process memory
is its local variables. System calls (Table 1) are emulated by
yield in which the generator saves its local state (local vari-
ables and program counter) in a closure and transfers control
to its caller4:

1 def main(msg): # an emulated application process
2 i = 0
3 while (i := i + 1):
4 yield 'SYS_write', msg, i # write(msg, i)
5 yield 'SYS_sched', # sched()

Our operating system model, as a state machine manager,
maintains a set of processes (continuable generators) and is an
infinite loop of yield trap handler, just like any real operating
system:

1 class OperatingSystem:
2 def __init__(self, procs): # OS initialization
3 self._procs = procs
4 self._current = procs[0]
5

6 def run(self): # the OS main loop
7 while True:
8 syscall, *args = self._current.__next__()

4In the MOSAIC implementation, the process code is stored in a stan-
dalone Python file. Applications invoke system calls in Table 1 as ordinary
function calls like x = sys_choose(['Head', 'Tail']), and MOSAIC rewrites
the AST by replacing all system call nodes to yield.

9 match syscall:
10 case 'SYS_write': # write to debug console
11 print(*args)
12 case 'SYS_sched': # switch to a random process
13 self._current = random.choice(self._procs)
14

15 OperatingSystem([main('ping'), main('pong')]).run()

Process APIs. Because deep-copying a generator object is
not allowed in Python, we implement fork() by creating a
new OperatingSystem object and replaying all executed sys-
tem calls to obtain a deep copy of the process. This requires
OperatingSystem to keep track of the non-deterministic choices
of all previously executed system calls. Processes have in-
creasing IDs starting from 1,000, and the child process ID is
returned on fork(). There is no exit() because returned gen-
erators are never scheduled and are considered exited. There
is also no execve() because its functionality largely overlaps
with spawn() and fork().

Threads and shared memory. The shared memory among
threads is emulated by the global heap variable, whose value
is updated before switching to a process/thread by

globals()['heap'] = self._current.heap,

and readers may notice that this heap models a “page table base
register” which is changed on context switches. spawn(f, *xs)

creates a new generator calling f with arguments xs and a
shared heap. The replay-based fork() obtains a deep copy of
the heap in the freshly allocated OperatingSystem object.

Devices. Writing to the debug console appends the message
to a buffer. Reading from the debug console can be imple-
mented by choose() from possible inputs. The emulated block
device is a key-value mapping, which maps each block’s ID
(any string like inode or even emojis) to its contents (any seri-
alizable data structure including strings and lists). All block
device writes are first appended to a queue to simulate real
disks with a volatile buffer [36]. Write-back happens only
when sync() is called.

3.2 Modeling Operating System Concepts
Such a surprisingly simple model can simplify textbook cases
that require non-trivial interactions across system layers and
are thus challenging to debug or even reproduce–we can selec-
tively model the essential elements of the system to minimize
the complexity:

A fork() in the road [4]. Fork is no longer simple, consid-
ering it conducts a full state copy of libraries and references
(handles) to operating system objects. Below is such a non-
trivial case related to the buffer mechanism in the standard C
libraries:

1 for (int i = 0; i < 2; i++) {
2 int pid = fork();
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3 printf("%d\n", pid);
4 }

(unix) $ ./a.out
1000
1001
0
0
1002
0

(unix) $ ./a.out | wc -l
8 # ???

Debugging the internal implementation of libc (even with a
much simpler implementation like musl [1]) to understand this
case requires substantial engineering efforts. Alternatively,
we first model this case by removing all low-level details of
process creation and focusing on the behavior of a fork-cloned
buffer:

1 def main():
2 heap.buf = ''
3 for _ in range(2):
4 pid = sys_fork() # heap.buf is deeply copied
5 sys_sched() # non-deterministic context switch
6 heap.buf += f'{pid}\n' # or sys_write()
7 sys_write(heap.buf) # flush buffer at exit

The executable model always gives a process schedule
to explain its outputs5. After fully understanding the model,
students can examine the system call traces and debug the
libc source code with less pain.

Understanding synchronization. Synchronization primi-
tives (mutexes, condition variables, semaphores, etc.) are usu-
ally informally introduced in a textbook or an operating sys-
tem course. Implementing them upon our operating system
model gives them a rigorous semantics specification6. Below
displays a model of the buggy producer-consumer implemen-
tation from Chapter 30 of “The Three Easy Pieces” [3], in
which a consumer may erroneously wake up another con-
sumer (instead of a producer), resulting in a deadlock:

1 def Tworker(name, delta):
2 for _ in range(N):
3 while heap.mutex == ' ': # mutex_lock()
4 sys_sched() # |- spin wait
5 heap.mutex = ' ' # |
6

7 while not (0 <= heap.count + delta <= BUFSIZE):
8 sys_sched()
9 heap.mutex = ' ' # cond_wait()

10 heap.cond.append(name) # |
11 while name in heap.cond: # |- spin wait
12 sys_sched() # |
13 while heap.mutex == ' ': # |- reacquire lock
14 sys_sched() # |
15 heap.mutex = ' ' # |

5The model checker (Section 4.1) can be used to exhaustively examine
all process schedules and understand the possible outputs.

6Our model assumes that the execution of statements between consecutive
sched() appears to be atomic and uninterruptible.

16

17 if heap.cond: # cond_signal()
18 t = sys_choose(heap.cond) # |
19 heap.cond.remove(t) # |- wake up anyone
20 sys_sched()
21

22 heap.count += delta # produce or consume
23

24 heap.mutex = ' ' # mutex_unlock()
25 sys_sched()
26

27 def main():
28 heap.mutex = ' ' # or
29 heap.count = 0 # filled buffer
30 heap.cond = [] # condition variable's wait list
31 sys_spawn(Tworker, 'Tp', 1) # delta=1, producer
32 sys_spawn(Tworker, 'Tc1', -1) # delta=-1, consumer
33 sys_spawn(Tworker, 'Tc2', -1) # delta=-1, consumer

At first glance, this model seems to diverge from the text-
book example, as all synchronization primitives are denoted
by spin-wait constructs (Lines 3-4, 11-12, and 13-14). How-
ever, this is intentional: spin wait reflects the specification that
the thread could not make any progress unless the synchro-
nization condition is satisfied (e.g., a mutex is in the unlocked
state or a condition variable has been signaled). Blocking wait
is merely one possible implementation. Such a model also
captures a detail often overlooked by students: a condition
variable contains an implicit re-acquisition of its associated
mutex (Lines 13–15) after being signaled. An executable
model facilitates the development of rigorous concepts in
operating systems.

The incorrect use of condition variable is also non-trivial:
manifesting the bug requires at least three threads (a producer
and two consumers) and N ≥ 2. Such a fact can be easily
verified by the model checker (Section 4.1). Running this
model under a uniform-random scheduler, there is only ap-
proximately an 8% chance of triggering the deadlock in which
all three threads Tp, Tc1 , and Tc2 are spinning on Line 11.

Finally, we found that emojis in the code can improve the
readability of program states: “ ” intuitively indicates that
a thread holds this mutex. Other cases include using
in Peterson’s algorithm [34] (instead of flag[2] and integer
values 0 or 1) to indicate a thread “raising hand” to enter the
critical section and to denote success or failure.

File system consistency and journaling. The emulated block
device enabled us to implement ideas in file systems without
tedious low-level device details. Recall that the block device
is conceptually a dict. Thus, we can assign blocks with intu-
itive names like 'bitmap1' to indicate a bitmap block in the
persistent storage. We can also use this dict as a file system
by mapping file names (e.g., '/tmp/a.txt') to their metadata
and contents (e.g., ('symlink', '/etc/passwd')) when the ac-
tual storage layout is not relevant. Below is a simplified model
of xv6 [10] log commit:

1 def main():
2 # 1. log the write to block #B
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3 head = sys_bread(0) # blocks #1, #2, ... are the log
4 free = max(log.values(), default=0) + 1 # allocate log
5 sys_bwrite(free, f'contents for #{B}')
6 sys_sync()
7

8 # 2. write updated log head
9 head = head | {B: free}

10 sys_bwrite(0, head)
11 sys_sync()
12

13 # 3. install transactions
14 for k, v in head.items():
15 content = sys_bread(v)
16 sys_bwrite(k, content)
17 sys_sync()
18

19 # 4. clear log head
20 sys_bwrite(0, {})
21 sys_sync()

With the model checking feature (Section 4.1), all possible
crash behaviors and potential file system inconsistencies can
be exhaustively explored.

3.3 Application: Specification of Systems
An operating system model can be useful beyond explaining
textbook cases. A model also provides a behavioral specifi-
cation for real operating systems, like a high-level reference
implementation. For example, it could be proved that the mu-
tex model in Section 3.2 has the following two properties:

1. Safety: as long as a thread holds a mutex, any other
thread’s lock acquisition never returns.

2. Liveness: a thread eventually acquires a mutex if threads
with acquired locks eventually release them under a fair
(random) scheduler.

Because everything is a state machine (and thus a well-defined
mathematical object), it could be theoretically possible to
prove that a real system’s implementation is consistent with a
model by constructing a refinement mapping7. This is exactly
the idea behind formally verified systems like seL4 [25] (with
a Haskell executable model) and Hyperkernel [31] (with a
Python executable model), which all modeled operating sys-
tems as a state machine. Even though the technical details
of the research work may be too involved for first-time oper-
ating system learners, state machines still facilitate grasping
the fundamental concepts underlying them–one could always
perform a “brute-force prove” by enumerating all reachable
vertices on the state transition graph for finite systems.

Models are also useful as a behavioral reference for real sys-
tem implementations. A more practical “refinement mapping”
is to feed the same workload to both a model and a real system.
Cross-checking the model and system traces validates the im-
plementation’s correctness. For example, executing the same

7One fundamental result of program verification is that refinement map-
pings between high-level and low-level specifications always exist [2].

1 Q←{[]}; // the queue of traces pending checking
2 S←∅; // the set of checked states
3 while ¬Q.empty() do
4 tr← Q.pop() ;
5 ⟨s,choices⟩ ← replay(tr);
6 if s /∈ S then
7 S← S∪{s}; // add the unexplored state to S
8 for c ∈ choices do
9 Q.push(tr :: c); // extend tr with c and append to Q

Algorithm 1: The MOSAIC model checker

fork() sequence (assuming that all forks succeed) should yield
identical process trees for both the model and a student’s op-
erating system kernel. Such an approach is also known as the
lightweight formal method [22] and has been widely adopted
in validating practical systems [6].

4 One Model Checker to Rule Them All

Philosophy 3: Enumeration demystifies operating
systems.

The executable model’s behavior can be exhaustively explored
by enumerating all possible non-deterministic choices. This
section presents such a model checker (Section 4.1) and its ap-
plication to operating system teaching (Section 4.2), followed
by short quantitative experiments in Section 4.3.

4.1 MOSAIC Model Checker Design and Im-
plementation

Instead of executing a system call immediately, all MOSAIC
systems calls return a dict mapping possible choices (which
can be regarded as labeled transitions in the state machine)
to lambda callbacks for actually performing the system call,
even if there is only one unique choice:

1 def sys_sched(self):
2 return { # all possible choices
3 f't{i+1}': (lambda i=i: self._switch_to(i)) # callback
4 for i, th in enumerate(self._threads)
5 if is_runnable(th.context)
6 }
7

8 def sys_fork(self, *args):
9 return { # only one choice

10 'fork': (lambda: self._do_fork())
11 }

Such a design yields a simple replay-based state space ex-
plorer as shown in Algorithm 1. The algorithm is a straightfor-
ward breadth-first search that memorizes traversed states in S.
A trace is a chronological list of each system call’s selected
choice. Replaying a trace will always reach the next system
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Figure 3: The interactive thread interleaving space explorer
on MOSAIC’s results of checking a spin lock implementa-
tion. Process and thread states are plotted as vertices. Thread
program counters are highlighted on the source code like a
debugger. Clicking a vertex expands its children.

call’s non-deterministic choices (Line 5), or there is no choice
(choices =∅) when all processes and threads are terminated.

For finite-state models, the algorithm always terminates and
produces a state transition graph whose vertices are traces in S
and edges are labeled with c in Line 9. MOSAIC serializes the
state transition graph as a JSON file. Both states (generator
states, heaps, debug console output, and storage state) and
transitions (labeled edges) are serialized. We encourage the
students to follow the UNIX philosophy and pipe the text
output to different backends:

1. Simply grep stdout | sort | uniq -c for a quick (and
dirty, perhaps unsound) check for all possible debug
console outputs.

2. Any JSON query or viewer like jq [15] to extract fields of
interest (e.g., variable values or block device contents).

3. Our interactive state explorer (Figure 3) in which one
can selectively expand nodes in the state transition graph.
This interactive explorer is particularly handy for class
demonstration.

4.2 Model Checking for Fun and Profits
The ability to exhaustively explore the state space makes a
model checker suitable for rigorously explaining non-trivial
cases in operating systems. A few such cases are shown below.

Processes and TOCTTOU attack. Both UNIX and our op-
erating system model lack a mechanism (e.g., transactions
[13, 37]) to enforce the atomicity across system calls and
may be subject to time-of-check to time-of-use attacks. We
demonstrate such a case of process-level race from [46]:

1 def main():
2 sys_bwrite('/etc/passwd', ('plain', 'secret...'))
3 sys_bwrite('file', ('plain', 'data...'))
4 pid = sys_fork()

5 sys_sched()
6 if pid == 0: # attacker: symlink file -> /etc/passwd
7 sys_bwrite('file', ('symlink', '/etc/passwd'))
8 else: # sendmail (root): write to plain file
9 filetype, contents = sys_bread('file') # for check

10 if filetype == 'plain':
11 sys_sched() # TOCTTOU interval
12 filetype, contents = sys_bread('file') # for use
13 match filetype:
14 case 'symlink': filename = contents
15 case 'plain': filename = 'file'
16 sys_bwrite(filename, 'mail')
17 sys_write(f'{filename} written')
18 else:
19 sys_write('rejected')

MOSAIC reveals that “/etc/passwd written” is possible and
gives such a process schedule. The exhaustive search can also
reveal that the two sys_sched in Lines 6 and 10 are essential
to produce such a result.

Hardness of shared-memory concurrency. Understanding
thread interleaving can be difficult. Restoring the global or-
dering of shared memory accesses on thread-local read/write
sequences is NP-Complete [17]. One interesting case is the
possible outcomes of concurrent tot++, assuming that loads
and stores are atomic (i.e., a sequentially consistent memory
model) and the compiler does not merge multiple tot++:

1 def Tsum():
2 for _ in range(N):
3 tmp = heap.tot # load(tot)
4 sys_sched()
5 heap.tot = tmp + 1 # store(tot)
6 sys_sched()
7

8 def main():
9 heap.tot = 0

10 for _ in range(T):
11 sys_spawn(Tsum)

MOSAIC reveals that tot can be 2 regardless of N and T
(for N,T ≥ 2) and gives such a thread schedule in which one
thread “holds” a value of 2 in the last iteration of the loop and
does not write it back until all other threads are terminated.
We used the N = 3,T = 2 case as an exam problem, and
approximately half of the students got wrong.

Persistence and crash consistency. Upon crash(), MOSAIC
automatically explores all 2n possible crash disks, assuming
that any of the n buffered block I/O requests could be lost [36].
By modeling a file operation that involves multiple block
updates (inode, bitmap, and data), an instructor can clearly
and rigorously illustrate potential inconsistencies in a file
system upon a system crash. Below is a textbook case in
Chapter 42 of “The Three Easy Pieces” [3]:

1 def main():
2 # intially, file has a single block #1
3 sys_bwrite('file.inode', 'i [#1]')
4 sys_bwrite('used', '#1')
5 sys_bwrite('#1', '#1 (old)')
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Subject Parameters # State Memory Time

fork-buf
(7 LOC)

n = 1 (p = 2) 15 17.0 MB < 0.1s
n = 2 (p = 4) 557 19.8 MB 3.3s (171 st/s)
n = 3 (p = 8) Timeout (> 60s)

cond-var
(34 LOC)

n = 1; tp = 1; tc = 1 33 17.3 MB < 0.1s
n = 1; tp = 1; tc = 2 306 19.7 MB 0.1s (2 912 st/s)
n = 2; tp = 1; tc = 2 2 799 26.0 MB 0.8s (3 343 st/s)
n = 2; tp = 2; tc = 1 4 666 30.5 MB 1.4s (3 247 st/s)

xv6-log
(27 LOC)

n = 2 55 17.3 MB < 0.1s
n = 4 265 19.2 MB < 0.1s
n = 8 6 157 40.2 MB 1.3s (4 810 st/s)

n = 10 28 687 93.9 MB 20.7s (1 385 st/s)

tocttou
(24 LOC)

p = 2 33 17.4 MB < 0.1s
p = 3 97 17.8 MB 0.2s (413 st/s)
p = 4 367 19.4 MB 2.7s (135 st/s)
p = 5 1 402 23.5 MB 30.2s (46 st/s)

parallel-inc
(11 LOC)

n = 1; ts = 2 40 17.2 MB < 0.1s
n = 2; ts = 2 164 18.0 MB < 0.1s
n = 2; ts = 3 6 635 37.4 MB 1.4s (4 580 st/s)
n = 3; ts = 3 52 685 139.5 MB 14.1s (3 725 st/s)

fs-crash
(25 LOC)

n = 2 90 17.5 MB < 0.1s
n = 4 332 19.4 MB < 0.1s
n = 8 5 136 36.2 MB 2.6s (1 944 st/s)

n = 10 Timeout (> 60s)

Table 2: Evaluation subjects and results. p, t, n denote the
number of processes, threads, and loop iterations, respectively.
All experiments were performed on an i7-6700 Linux PC
with 4 GB RAM running Python 3.11. Each configuration is
repeated for 10 times, and the average number is reported.

6 sys_sync()
7

8 # append a block #2 to the file
9 sys_bwrite('file.inode', 'i [#1 #2]') # inode

10 sys_bwrite('used', '#1 #2') # bitmap
11 sys_bwrite('#1', '#1 (new)') # data block 1
12 sys_bwrite('#2', '#2 (new)') # data block 2
13 sys_crash() # system crash
14

15 # display file system state at crash recovery
16 inode = sys_bread('file.inode')
17 used = sys_bread('used')
18 sys_write(f'{inode:10}; used: {used:5} | ')
19 for i in [1, 2]:
20 if f'#{i}' in inode:
21 b = sys_bread(f'#{i}')
22 sys_write(f'{b} ')

MOSAIC’s self-explanatory outputs verified that the one-
page informal arguments in the textbook are indeed exhaustive
and correctly covered all possible cases. MOSAIC can also
check the journal implementation in Section 3.2 by adding
crash() to the code and reveal that removing the sync() in
Line 6 may result in file system inconsistency.
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State machine model of 
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Thread APIs
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Figure 4: Major modules and their dependencies in our oper-
ating system course. The concept of state-machine is a good
foundation for thread-based concurrency, and thus we intro-
duce concurrency first in the course.

4.3 Experiments
We evaluate the performance of MOSAIC by checking the six
representative models in Sections 3.2 and 4.2. Both experi-
mental subjects and results are listed in Table 2. As expected,
MOSAIC cannot address the state space explosion problem
and has no comparable performance with a state-of-the-art
software model checker with dedicated optimizations. Further-
more, programs that extensively fork is significantly slower
(benchmarks fork-buf and tocttou) because our fork() is imple-
mented by a full-system replay. Nevertheless, checking thou-
sands of nodes per minute could be considered sufficiently
useful for instructional purposes, and our design choice is to
make a functional model checker minimal and elegant.

5 A New Operating System Course

We design a new operating system course from scratch based
on “The Three Easy Pieces” [3] and our teaching philosophies:
everything is a state machine, emulate state machines with
executable models, and enumeration demystifies operating
systems. The course syllabus is shown in Figure 4. This
section presents the impacts of the state machine perspective
(Section 5.1) and model checker (Section 5.2) in the course
design, followed by discussions in Section 5.3.

5.1 State Machines and Operating Systems
In addition to introducing the key concepts in operating sys-
tems using state machines, the state machine perspective also
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brings the following advantages in establishing a high-level
understanding of important concepts regarding computer sys-
tems in a natural and coherent way.

Don’t panic in hacking real systems! All students had a hard
time in debugging real (even minimal) systems, including but
not limited to operating system kernel, even if we provided
skeletal code, tool chain, and state visualization scripts.

The state-machine perspective provides a natural reflex on
how to deal with bugs or unexpected behavior in real systems:
All bugs in computer systems are essentially some anomaly
in the state-machine’s execution trace. Given an unlimited
amount of time, one just seeks the first abnormal state, and the
root cause is right there. We teach students this (impractical)
debugging principle and motivate students to consider clever
tricks to make this procedure fast, robust, and easy.

For example, the essence of printf-debugging is to provide
a high-level digest of the state-machine trace, which helps
in narrowing down the scope of the initial anomalous state.
One can also employ defensive programming by inserting
assertions to the validity of states. These lessons are usually
less taught in an operating system class but are essential for
surviving hacking or implementing a large-scale system.

One classroom story is using a profiler (i.e., “frequent” state
sampler) in diagnosing an unexpected 100% CPU usage on an
idle workload in a production system in on a specific machine.
The perf tool [9] attributes the hot spot to an xhci-related
function, which leads us to a short-circuited USB port.

Concurrency meets state machines. The model checking
community has long represented concurrent programs as state
transition systems, and model checking is widely recognized
as a computationally intensive technique that frequently en-
counters state explosion issues. Nevertheless, employing ex-
haustive enumeration is not the sole efficient approach to
harness the capabilities of state machines.

The concept of data race, an important topic in operating
system courses, refers to the simultaneous access of a shared
memory location by two threads or processors (with at least
one performing a write). Data races are considered harmful
in systems programming.

When one checks a state machine trace against data races, it
is essential to examine all types of state transitions that could
lead to memory access [41]. However, two sources of mem-
ory access may be overlooked by students: (1) fetching an
instruction from the program counter and (2) stack operations,
including function and interrupt returns.

We let the students experience a subtle data race in an op-
erating system kernel lab that requires students to migrate a
process from one processor to another. The destination proces-
sor could not immediately schedule the process. Otherwise,
there will be a data race on the kernel’s interrupt stack.

Demystifying compilers. It is not obvious to students that C
programs can also be represented by state transition systems.
We use the example in Figure 5 (a non-recursive “Tower of

1 void hanoi(int n, int from, int to, int via) {
2 if (n == 1) {
3 printf("%d -> %d\n", from, to);
4 } else {
5 hanoi(n - 1, from, via, to);
6 hanoi(1, from, to, via);
7 hanoi(n - 1, via, to, from);
8 }
9 }

1 typedef struct { int pc, n, from, to, via; } Frame;
2 #define call(...) ({*(++top) = (Frame) {0, __VA_ARGS__};})
3 #define ret() ({top--;})
4 #define jmp(loc) ({f->pc = (loc) - 1;})
5

6 void hanoi_nr(int n, int from, int to, int via) {
7 Frame stk[64], *top = stk - 1, *f;
8 call(n, from, to, via);
9 while ((f = top) >= stk) {

10 switch (f->pc) {
11 case 0: if (f->n == 1) {
12 printf("%d -> %d\n", f->from, f->to); jmp(4);
13 } break;
14 case 1: call(f->n - 1, f->from, f->via, f->to); break;
15 case 2: call(1, f->from, f->to, f->via); break;
16 case 3: call(f->n - 1, f->via, f->to, f->from); break;
17 case 4: ret(); break;
18 default: assert(0);
19 }
20 f->pc++;
21 }
22 }

stack frames

n=3, f=1, t=3, v=2hanoi(PC=5)

n=3, f=1, t=3, v=2hanoi(PC=6)

n=3, f=1, t=3, v=2hanoi(PC=6)

n=3, f=1, t=3, v=2hanoi(PC=6)

n=2, f=1, t=2, v=3hanoi(PC=1)

hanoi(2, 1, 2, 3)

stack frames

…

global/allocated memory
…

global/allocated memory

(Line 5)

Figure 5: State machine perspective of C programs. hanoi_nr
is also an “executable model” emulating recursions for rigor-
ously understanding the semantics of C programs.

Hanoi” implementation) to illustrate that the “runtime state”
of C programs consists of static variables, heap memory, and a
list of stack frames. State transitions are small-step expression
evaluations at the top-most stack frame’s program counter.

Compilers should always generate equivalent assembly
(low-level state machine specification) from source code
(high-level state machine specification). Therefore, a funda-
mental question is what kinds of translation are allowed for
an optimized compiler. Notably, such deliberations are fre-
quently neglected throughout the undergraduate curriculum,
including in courses specifically addressing compilers.
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With the conceptual model of state machines, the correct-
ness of translation is essentially the equivalence between two
state machines. This naturally leads to the definition of ex-
ternal observable equivalence between systems: given that
system calls are the only way of influencing the remaining
parts of the system, two programs are considered equivalent if
they generate identical system call traces for the same inputs,
and one program terminates if and only if the other program
terminates. This principle serves as the core concept behind a
verified compiler such as CompCert [27].

5.2 Modeling and Model Checking in Action

Models and emulation are everywhere. Models in an oper-
ating system course may not be limited to Python-implement
system calls. We advocate using minimal but functionally
“working” models, even they are implemented using a lower-
level programming language.

One particular example is that we long had difficulties in
explaining the ELF dynamic linker and loader to the students
due to the unnecessarily excessive complexity of the ELF
format. We identified that the problem stems from the fact
that the ELF design is intended to be read exclusively by
machines, rather than humans.

Therefore, we design a simplified binary format imple-
mented using GNU C preprocessor and assembly. The bi-
nary file contains merely a magic number, a NULL-terminating
symbol table whose entries are macros like IMPORT(printf) or
EXPORT(main), followed by assembly instructions. By reusing
GCC and binary utilities, we implement the full toolchain of
linker, loader, and an objdump equivalent in 200 lines of C code.
Student and social media feedback indicate that such a model
significantly flattens the learning curve of dynamic loading.

Formal method meets operating systems. We motivate the
need for a model checker by making substantial (boring) ef-
forts to draw a state transition graph to prove the safety and
liveness of Peterson’s mutex algorithm [34]. It is then obvious
that a program like MOSAIC can replace human labor by em-
ulation. We received positive feedback from students on their
first contact with the model-checking approach, particularly
the interactive visualizer (Figure 3), which is embedded in a
Jupyter notebook for in-class demonstrations. The machine-
generated state transition graph is also generally more reliable
than the informal arguments in popular textbooks [42].

Another advantage of a model checker over existing teach-
ing methods is the immediate feedback when answering “what
if” questions related to changes in assumptions, implementa-
tions, and other factors. We encourage students to extensively
experiment with the model, e.g., to see if the system breaks
with added sched() or removed sync().

The gap between models and real systems. We also teach
students that models do not fully reflect the real world. Models
are good at making all assumptions explicit, e.g., MOSAIC

assumes the atomicity of statements between consecutive
sched() calls and a sequentially consistent memory model.

The discrepancies between a model and an actual system
are explained by careful examination of these assumptions.
Peterson’s algorithm is correct only under proper assumptions–
specifically, a sequentially consistent memory model as if
context switches only happen on instruction boundaries. For
Peterson’s algorithm, we provide an equivalent C implemen-
tation to illustrate how compiler and memory barriers may
impact the program’s behavior.

5.3 Student Acceptance and Discussions

Student Feedback. After publicizing the course lecture notes,
demonstrations, and videos on the Internet, we received an
excessive amount of positive feedback. Comments included
statements like, “It is remarkable that such a comprehensive
explanation of operating system principles can be provided in
an undergraduate-level course.” Students conveyed that they
“gained valuable insights on overcoming the panic in hacking
large-scale systems in this course.”

There are also controversial arguments on the appropri-
ateness of incorporating state machines as a key concept in
operating system courses. However, we have also received
feedback from the industry professionals supporting our ap-
proach by indicating that state machines are one of the most
fundamental abstractions for controlling complexity in build-
ing production systems.

Since the first public release of the course in 2020, the
video has received more than 2,000,000 plays on the Internet.
Moreover, this course has been conferred the "Test-of-Time
Teaching Award of the Department," as chosen by alumni
who evaluated all courses in their curriculum.

Usefulness of models. Modeling is a versatile technique for
establishing concepts and understanding. Modeling can also
control the complexity by selectively hiding low-level im-
plementation details. Another major advantage of executable
models is making operating system concepts rigorous. Con-
cepts (e.g., mutex, condition variable, and crash consistency)
can be defined by “all possible behaviors on a model.”

One may argue that any model behavior can be manifested
by real workloads, and thus students should have first-hand
experiences on real systems. We consider understanding the
model (and thus the concepts) a critical step before students
can hack real systems. Otherwise, the excessive and irrele-
vant implementation details can be a significant source of
distraction.

Limitations. The “state-machine perspective” motivates the
key insights and high-level designs of operating systems well.
However, such over-simplification may yield students over-
looking the challenges of implementing real systems. There-
fore, we still consider the “hands-on approach,” [26] in which
students implement their own operating system kernel on
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emulated bare metal, an indispensable part of an operating
system course8.

MOSAIC only models a small fraction of an operating sys-
tem. More are missing, and one has to model them explicitly:
file descriptors, signals, futexes, RAID, network stack, etc.
Theoretically, it could be possible to model them in MOSAIC;
however, we preferred simplicity in our model design and
leaving these mechanisms to user-level applications like we
did in Sections 3.2 and 4.2.

The implementation of MOSAIC also has limitations: main
must be a Python generator (rather than a stackful coroutine).
Thus, system calls are not allowed in functions being called by
main. MOSAIC also assumes that the program being checked
is deterministic. Non-determinism beyond system calls (e.g.,
random numbers) results in unsound model-checking results.
Considering that MOSAIC is a pedagogical model checker
and an instructor can easily bypass these limitations; thus,
they are not a significant obstacle to adopting MOSAIC in
practice.

6 Related Work

Emerging from the logic and programming language com-
munity, formal methods (mainly model checking and formal
verification) has been widely adopted in the validation and
verification of computer systems [6, 25, 27, 31, 47]. The key
idea of formal methods is to treat specifications, models, and
implementations as unambiguously-defined mathematical ob-
jects and prove properties by exhaustive search or axiomatic
reasoning.

Despite a growing trend of formal method applications
for computer systems, the teaching practice of “classical”
operating systems remains classical on the layered abstrac-
tions of computer systems [3, 42] and the “hands-on” ap-
proach [26] in which students hack teaching operating system
kernels [10, 19, 35] over emulators like QEMU [5] to fully
understand all low-level implementation techniques.

There are attempts to incorporate model checking in teach-
ing computer systems. Hamberg and Vaandrager [18] mod-
eled textbook concurrency control algorithms using the Up-
paal modeling language and checker. Michael et al. [28] target
real Java programs on a message-passing model and check
against all possibilities of message reorderings, drops, and
duplications. Both concurrent programs and distributed sys-
tems are classical application scenarios of a model checker.
To the best of our knowledge, we are the first to apply formal
methods throughout an entire operating system course.

MOSAIC models a fully functional operating system by the
unified treatment of non-determinism in system calls (Sec-
tion 4.1). MOSAIC can check the interactions between pro-
cesses, threads, and devices. Such a design resembles the

8Students all had a hard time debugging a bare-metal kernel. Such experi-
ences further motivate the need for debugging aids and dynamic analysis in
Section 2.3.

EXPLODE system [47] for model checking real storage sys-
tems, in which all non-determinism and fault injection are
implemented upon choose().

As a pedagogical model checker, MOSAIC’s primary use
is to explain real operating system behaviors by mapping
the model’s execution traces (e.g., examples in Sections 3.2
and 4.2) to real systems. Such an approach belongs to the
paradigm of lightweight formal methods [21, 22], which
strongly emphasizes practicability rather than the full sound-
ness of a proof. Lightweight formal methods have been proven
effective against validating excessively complex real sys-
tems [6]. Like other pedagogical model checkers [28], we
intentionally trade off the performance with understandabil-
ity. Compared with fully verified systems [31], MOSAIC is
functional but with magnitudes less code.

Emulation is also a widely-adopted approach in operating
system teaching, which facilitates students establishing a cor-
rect and rigorous understanding of concepts. The exercises
of “Three Easy Pieces” [3] are based on a substantial amount
of independent emulators. MOSAIC as a unified model, on
the other hand, can model (and check) the interplay between
different levels of system mechanisms, e.g., how file system
operations and process-level race result in a TOCTTOU attack
in Section 4.2.

Finally, (replicated) state machines also play a fundamental
role in distributed systems [32]. Formal methods became
increasingly necessary in handling the counter-intuitive corner
cases often overlooked by informal arguments. We believe
that getting familiar early with such a paradigm on rigorous
modeling and reasoning in a first operating system course can
inspire the future generation of system researchers.

7 Conclusion

This paper presents a state-machine-first and model-based
approach to teaching operating systems. By leveraging mod-
eling and model checking, we can define operating system
concepts rigorously, explore system behaviors exhaustively,
and motivate non-trivial research systems intuitively under a
unified framework in a first operating system course. We be-
lieve that this paper’s teaching philosophies have the potential
to lead a paradigm shift in the teaching of operating systems.
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