
This paper is included in the Proceedings of the
2023 USENIX Annual Technical Conference.

July 10–12, 2023 • Boston, MA, USA
978-1-939133-35-9

Open access to the Proceedings of the
2023 USENIX Annual Technical Conference

is sponsored by

CXL-ANNS: Software-Hardware Collaborative
Memory Disaggregation and Computation for

Billion-Scale Approximate Nearest Neighbor Search
Junhyeok Jang, Computer Architecture and Memory Systems Laboratory, KAIST;

Hanjin Choi, Computer Architecture and Memory Systems Laboratory, KAIST and
Panmnesia, Inc.; Hanyeoreum Bae and Seungjun Lee, Computer Architecture

and Memory Systems Laboratory, KAIST; Miryeong Kwon and Myoungsoo Jung,
Computer Architecture and Memory Systems Laboratory, KAIST and Panmnesia, Inc.

https://www.usenix.org/conference/atc23/presentation/jang

CXL-ANNS: Software-Hardware Collaborative Memory Disaggregation and
Computation for Billion-Scale Approximate Nearest Neighbor Search

Junhyeok Jang∗, Hanjin Choi∗†, Hanyeoreum Bae∗, Seungjun Lee∗, Miryeong Kwon∗†, Myoungsoo Jung∗†

∗Computer Architecture and Memory Systems Laboratory, KAIST
†Panmnesia, Inc.

Abstract
We propose CXL-ANNS, a software-hardware collaborative
approach to enable highly scalable approximate nearest neigh-
bor search (ANNS) services. To this end, we first disaggregate
DRAM from the host via compute express link (CXL) and
place all essential datasets into its memory pool. While this
CXL memory pool can make ANNS feasible to handle billion-
point graphs without an accuracy loss, we observe that the
search performance significantly degrades because of CXL’s
far-memory-like characteristics. To address this, CXL-ANNS
considers the node-level relationship and caches the neighbors
in local memory, which are expected to visit most frequently.
For the uncached nodes, CXL-ANNS prefetches a set of nodes
most likely to visit soon by understanding the graph traversing
behaviors of ANNS. CXL-ANNS is also aware of the archi-
tectural structures of the CXL interconnect network and lets
different hardware components therein collaboratively search
for nearest neighbors in parallel. To improve the performance
further, it relaxes the execution dependency of neighbor search
tasks and maximizes the degree of search parallelism by fully
utilizing all hardware in the CXL network.

Our empirical evaluation results show that CXL-ANNS
exhibits 111.1× higher QPS with 93.3% lower query latency
than state-of-the-art ANNS platforms that we tested. CXL-
ANNS also outperforms an oracle ANNS system that has
DRAM-only (with unlimited storage capacity) by 68.0% and
3.8×, in terms of latency and throughput, respectively.

1 Introduction
Dense retrieval (also known as nearest neighbor search) has
taken on an important role and provides fundamental sup-
port for various search engines, data mining, databases, and
machine learning applications such as recommendation sys-
tems [1–8]. In contrast to the classic pattern/string-based
search, dense retrieval compares the similarity across differ-
ent objects using their distance and retrieves a given number
of objects, similar to the query object, referred to as k-nearest
neighbor (kNN) [9–11]. To this end, dense retrieval embeds
input information into a few thousand dimensional spaces
of each object, called a feature vector. Since these vectors
can encode a wide spectrum of data formats (e.g., images,
documents, sounds, etc.), dense retrieval understands an in-
put query’s semantics, resulting in more context-aware and

(a) Previous studies. (b) CXL-based approaches.

Figure 1: Various billion-scale ANNS characterizations.

accurate results than traditional search [6, 12, 13].
Even though kNN is one of the most frequently used search

paradigms in various applications, it is a costly operation
taking linear time to scan data [14, 15]. This computation
complexity unfortunately makes dense retrieval with a billion-
point dataset infeasible. To make the kNN search more practi-
cal, approximate nearest neighbor search (ANNS) restricts
a query vector to search only a subset of neighbors with a
high chance of being the nearest ones [15–17]. ANNS ex-
hibits good vector searching speed and accuracy, but it sig-
nificantly increases memory requirement and pressure. For
example, many production-level recommendation systems
already adopt billion-point datasets, which require tens of
TB of working memory space for ANNS; Microsoft search
engines (used in Bing/Outlook) require 100B+ vectors, each
being explained by 100 dimensions, which consume more
than 40TB memory space [18]. Similarly, several of Alibaba’s
e-commerce platforms need TB-scale memory spaces to ac-
commodate their 2B+ vectors (128 dimensions) [19].

To address these memory pressure issues, modern ANNS
techniques leverage lossy compression methods or employ
persistent storage, such as solid state disks (SSDs) and per-
sistent memory (PMEM), for their memory expansion. For
example, [20–23] split large datasets and group them into
multiple clusters in an offline time. This compression ap-
proach only has product quantized vectors for each cluster’s
centroid and searches kNN based on the quantized informa-
tion, making billion-scale ANNS feasible. On the other hand,
the hierarchical approach [24–28] accommodates the datasets
to SSD/PMEM, but reduces target search spaces by referring
to a summary in its local memory (DRAM). As shown in
Figure 1a, these compression and hierarchical approaches
can achieve the best kNN search performance and scalabil-

USENIX Association 2023 USENIX Annual Technical Conference 585

ity similar to or slightly worse than what an oracle1 system
offers. However, these approaches suffer from a lack of accu-
racy and/or performance, which unfortunately hinders their
practicality in achieving billion-scale ANNS services.

In this work, we propose CXL-ANNS, a software-hardware
collaborative approach that enables scalable approximate near-
est neighbor search (ANNS). As shown in Figure 1b, the main
goal of CXL-ANNS is to offer the latency of billion-point
kNN search even shorter than the oracle system mentioned
above while achieving high throughput without a loss of ac-
curacy. To this end, we disaggregate DRAM from the host
resources via compute express link (CXL) and place all essen-
tial datasets into its memory pool; CXL is an open-industry
interconnect technology that allows the underlying working
memory to be highly scalable and composable with a low
cost. Since a CXL network can expand its memory capacity
by having more endpoint devices (EPs) in a scalable manner,
a host’s root-complex (RC) can map the network’s large mem-
ory pool (up to 4PB) into its system memory space and use it
just like a locally-attached conventional DRAM.

While this CXL memory pool can make ANNS feasible
to handle billion-point graphs without a loss of accuracy, we
observe that the search performance degrades compared to
the oracle by as high as 3.9× (§3.1). This is due to CXL’s
far-memory-like characteristics; every memory request needs
a CXL protocol conversion (from CPU instructions to one
or more CXL flits), which takes a time similar to or longer
than a DRAM access itself. To address this, we consider the
relationship of different nodes in a given graph and cache the
neighbors in the local memory, which are expected to visit
frequently. For the uncached nodes, CXL-ANNS prefetches a
set of nodes most likely to be touched soon by understanding
the unique behaviors of the ANNS graph traversing algo-
rithm. CXL-ANNS is also aware of the architectural struc-
tures of the CXL interconnect network and allows different
hardware components therein to simultaneously search for
nearest neighbors in a collaborative manner. To improve the
performance further, we relax the execution dependency in the
KNN search and maximize the degree of search parallelism
by fully utilizing all our hardware in the CXL network.

We summarize the main contribution as follows:
• Relationship-aware graph caching. Since ANNS traverses
a given graph from its entry-node [10, 19], we observe that
the graph data accesses, associated with the innermost edge
hops, account for most of the point accesses (§3.2). Inspired
by this, we selectively locate the graph and feature vectors in
different places of the CXL memory network. Specifically,
CXL-ANNS allocates the node information closer to the entry
node in the locally-attached DRAMs while placing the other
datasets in the CXL memory pool.
• Hiding the latency of CXL memory pool. If it needs to tra-
verse (uncached) outer nodes, CXL-ANNS prefetches the

1In this paper, the term “Oracle” refers to a system that utilizes ample
DRAM resources with an unrestricted memory capacity.

datasets of neighbors, most likely to be processed in the next
step of kNN queries from the CXL memory pool. However,
it is non-trivial to figure out which node will be the next
to visit because of ANNS’s procedural data processing de-
pendency. We propose a simple foreseeing technique that
exploits a unique graph traversing characteristic of ANNS
and prefetches the next neighbor’s dataset during the current
kNN candidate update phase.
• Collaborative kNN search design in CXL. CXL-ANNS sig-
nificantly reduces the time wasted for transferring the feature
vectors back and forth by designing EP controllers to calcu-
late distances. On the other hand, it utilizes the computation
power of the CXL host for non-beneficial operations in pro-
cessing data near memory (e.g., graph traverse and candidate
update). This collaborative search includes an efficient design
of RC-EP interfaces and a sharding method being aware of
the hardware configurations of the CXL memory pool.
• Dependency relaxation and scheduling. The computation
sequences of ANNS are all connected in a serial order, which
makes them unfortunately dependent on execution. We exam-
ine all the activities of kNN query requests and classify them
into urgent/deferrable subtasks. CXL-ANNS then relaxes the
dependency of ANN computation sequences and schedules
their subtasks in a finer granular manner.

We validate all the functionalities of CXL-ANNS’s soft-
ware and hardware (including the CXL memory pool) by
prototyping them using Linux 5.15.36 and 16nm FPGA, re-
spectively. To explore the full design spaces of ANNS, we also
implement the hardware-validated CXL-ANNS in gem5 [29]
and perform full-system simulations using six billion-point
datasets [30]. Our evaluation results show that CXL-ANNS
exhibits 111.1× higher bandwidth (QPS) with 93.3% lower
query latency, compared to the state-of-the-art billion-scale
ANNS methods [20, 24, 25]. The latency and throughput be-
haviors of CXL-ANNS are even better than those of the oracle
system (DRAM-only) by 68.0% and 3.8×, respectively.

2 Background

2.1 Approximate Nearest Neighbor Search
The most accurate method to get k-nearest neighbors (kNN)
in a graph is to compare an input query vector with all data
vectors in a brute-force manner [9, 31]. Obviously, this sim-
ple dense retrieval technique is impractical mainly due to
its time complexity [10, 24]. In contrast, approximate near-
est neighbor search (ANNS) restricts the query vector to re-
trieve only a subset of neighbors that can be kNN with a high
probability. To meet diverse accuracy and performance re-
quirements, several ANNS algorithms such as tree-structure
based [32, 33], hashing based [11, 34, 35] and quantization
based approaches [20–23] have been proposed over the past
decades. Among the various techniques, ANNS algorithms
using graphs [10,19,24] are considered as the most promising

586 2023 USENIX Annual Technical Conference USENIX Association

Figure 2: Distance.

Algorithm 1: Best-first Search
Input: query,
k := number of nearest neighbor to find
Output: k nearest neighbor of query

1 distance = calcDist(query, startNode)
2 CandidateArr = {startNode, distance}
3 curNode = startNode
4 CandidateArr.markVisited(curNode)
/* Main iteration (line 5∼10) */

5 while !candidateArr.allVisited() do
6 neighbors = Graph.neighbors(curNode)
7 distances = calcDist(query, neighbors)
8 CandidateArr.insert(neighbors, distances)
9 curNode = CandidateArr.getNextNode()

10 CandidateArr.markVisited(curNode)
11 return CandidateArr[: k]

solution, with great potential 2. This is because graph-based
approaches can better describe neighbor relationships and
traverse fewer points than the other approaches that operate
in a Euclidean space [19, 36–39].
Distance calculations. While there are various graph con-
struction algorithms for ANNS [10, 19, 24], the goal of their
query search algorithms is all the same or similar to each
other; it is simply to find k numbers of neighbors in the target
graph, which are expected to have the shortest distance from a
given feature vector, called query vector. There are two most
common methods to define such a distance between the query
vector and neighbor’s feature vector (called data vector): i)
L2 (Euclidean) distance and ii) angular distance. As shown in
Figure 2, these methods map the nodes that we compare into
a temporal dimension space using their own vector’s feature
elements. Let us suppose that there are n numbers of features
for each vector. Then, L2 and angular distances are calculated
by ∑i(Queryi −Datai)

2 and ∑i(Queryi ·Datai), respectively;
where Queryi and Datai are the ith feature of a given query
and data vectors, respectively (i ≤ n). These distance defini-
tions are simplified to reduce their calculation latency, which
differs from the actual distances in a multi-dimensional vector
space. This simplification works well since ANNS uses the
distances only for a relative comparison to search kNN.
Approximate kNN query search. Algorithm 1 explains the
graph traversing method that most ANNS employs [10,19,24].
The method, best-first search (BFS) [38, 40], traverses from
an entry-node (line ❸) and moves to neighbors getting closer
to the given query vector (lines ❺∼❿). While the brute-force
search explores a full space of the graph by systematically
enumerating all the nodes, ANNS uses a preprocessed graph
and visits a limited number of nodes for each hop. The graph is
constructed (preprocessed) to have the entry-node that arrives
all the nodes of its original graph within the minimum number
of average edge hops; this preprocessed graph guarantees that
there exists a path between the entry-node and any of the
given nodes. To minimize the overhead of graph traverse, BFS
employs a candidate array that includes the neighbors whose

2For the sake of the brevity, we use “graph-based approximate kNN
methods” and “ANNS” interchangeably.

(a) Compression-based approach. (b) Hierarchical approach.

Figure 3: Existing billion-scale ANNS methods.

distances (from the query vector) are expected to be shorter
than others. For each node visiting, BFS checks this candidate
array and retrieves unvisited node from the array (line ❻,
❾). It then calculates the distances of the node’s neighbors
(line ❼) by retrieving their vectors from the embedding table.
After this distance calculation, BFS updates the candidate
array with the new information, neighbors and distances (line
❽). All these activities are iterated (line ❺) until there is no
unvisited node in the candidate array. BFS finally returns the
k number of neighbors in the candidate array.

2.2 Towards Billion-scale ANNS
While ANNS can achieve good search speed and reasonable
accuracy (as it only visits the nodes in the candidate array),
it still requires maintaining all the original graph and vectors
in its embedding table. This renders ANNS difficult to have
billion-point graphs that exhibit high memory demands in
many production-level services [18,19]. To address this issue,
there have been many studies proposed [20–27], but we can
classify them into two as shown in Figures 3a and 3b.
Compression approaches. These approaches [20–23] reduce
the embedding table by compressing its vectors. As shown in
Figure 3a, they logically split the given graph into multiple
sub-groups, called clusters; the nodes A and E are classified
in the cluster X whereas the others are grouped as the cluster
Y. For each cluster, these approaches then encode the corre-
sponding vectors into a single, representative vector (called
centroid) by averaging all the vectors in the cluster. They then
replace all the vectors in the embedding table with their clus-
ter ID. Since the distances are calculated by the compressed
centroid vectors (rather than original data vectors), it exhibits
a low accuracy for the search. For example, the node E can be
selected as one of kNN although the node B sits closer to the
query vector. Another issue of these compression approaches
is the limited reduction rate in the size of the graph datasets.
Since they quantize only the embedding table, their billion-
point graph data have no benefit of the compression or even
get slightly bigger to add a set of shortcuts into the original
graph.
Hierarchical approaches. These approaches [24–27] store
all the graph and vectors (embedding table) to the underly-
ing SSD/PMEM (Figure 3b). Since SSD/PMEM are prac-

USENIX Association 2023 USENIX Annual Technical Conference 587

(a) Types of CXL EP. (b) CXL-based memory pool.

Figure 4: CXL’s sub-protocols and endpoint types.

tically slower than DRAM by many orders of magnitude,
these methods process kNN queries in two separate phases:
i) low-accuracy search and ii) high-accuracy search. The
former only refers to compressed or simplified datasets, simi-
lar to the datasets that the compression approaches use. The
low-accuracy search quickly finds out one or more nearest
neighbor candidates (without a storage access) thereby reduc-
ing the search space that the latter needs to process. Once it
has been completed, the high-accuracy search refers to the
original datasets associated with the candidates and processes
the actual kNN queries. For example, DiskANN [24] ’s low
accuracy search finds the kNN candidates using the com-
pressed datasets in DRAM. The high-accuracy search then
re-examines and re-ranks the order of kNN candidates by vis-
iting their actual vectors stored in SSD/PMEM. On the other
hand, HM-ANN [25] simplifies the target graph by adding
several shortcuts (across multiple edge hops) into the graph.
HM-ANN’s low-accuracy search scans a candidate closer to
the given query vector from the simplified graph. Once HM-
ANN detects the candidate, the high-accuracy search checks
its kNN by referring to all the graph and data vectors recorded
in SSD/PMEM.

2.3 Compute Express Link for Memory Pool
CXL is an open standard interconnect which can expand
memory over the existing PCIe physical layers in a scalable
option [41–43]. As shown in Figure 4a, CXL consists of three
sub-protocols: i) CXL.io, ii) CXL.cache, and iii) CXL.mem.
Based on which sub-protocols are used for the main commu-
nication, CXL EPs can be classified as Types.
Sub-protocols and endpoint types. CXL.io is basically the
same as the PCIe standard, which is aimed at enumerating the
underlying EPs and performing transaction controls. It is thus
used for all the CXL types of EPs to be interconnected to the
CXL CPU’s root-complex (RC) through PCIe. On the other
hand, CXL.cache is for an underlying EP to make its states
coherent with those of a CXL host CPU, whereas CXL.mem
supports simple memory operations (load/store) over PCIe.
Type 1 is considered by a co-processor or accelerator that does
not have memory exposed to CXL RC while Type 2 employs
internal memory, accessible from CXL RC. Thus, Type 1 only
uses CXL.cache (in addition to CXL.io), but Type 2 needs to

1 2 3 4 5 6
0

20
40
60
80

100

BigANN Yandex-T Yandex-D
Meta-S MS-T MS-S

Ac
cu

ra
cy

 (%
)

Memory Usage Reduction

Target (90%)

Figure 5: Accuracy.

BigANN

Yandex-T

Yandex-D

Meta-S
MS-T

Rand

0

50

100

150

N
o
rm

a
liz

e
d
 L

a
te

n
c
y

O
p
ta

n
e

C
o
m

p
u
te

B
ig

A
N

N

Y
a
n
d
e
x
-T

Y
a
n
d
e
x
-D

M
e
ta

-S

M
S

-T

DiskANN
HM-ANN

M
S

-S

Figure 6: Latency.

use both CXL.cache and CXL.mem. A potential example of
Type 1 and 2 can be FPGAs and GPUs, respectively. On the
other hand, Type 3 only uses CXL.mem (read/write), which
means that there is no interface for a device-side compute unit
to update its calculation results to CXL CPU’s RC and/or get
a non-memory request from the RC.
CXL endpoint disaggregation. Figure 4b shows how we
can disaggregate DRAM from host resources using CXL EPs,
in particular, Type 3; we will discuss why Type 3 is the best
device type for the design of CXL-ANNS, shortly. Type 3’s in-
ternal memory is exposed as a host-managed device memory
(HDM), which can be mapped to the CXL CPU’s host phys-
ical address (HPA) in the system memory just like DRAM.
Therefore, applications running on the CXL CPU can access
HDM (EP’s internal memory) through conventional mem-
ory instructions (loads/stores). Thanks to this characteristic,
HDM requests are treated as traditional memory requests in
CXL CPU’s memory hierarchy; the requests are first cached
in CPU cache(s). Once its cache controller evicts a line as-
sociated with the address space of HDM, the request goes
through to the system’s CXL RC. RC then converts one or
more memory requests into a CXL packet (called flit) that can
deal with a request or response of CXL.mem/CXL.cache. RC
passes the flit to the target EP using CXL.mem’s read or write
interfaces. The destination EP’s PCIe and CXL controllers
take the flit over, convert it to one or more memory requests,
and serve the request with the EP’s internal memory (HDM).
Type consideration for scaling-out. To expand the mem-
ory capacity, the target CXL network can have one or more
switches that have multiple ports, each being able to connect
a CXL EP. This switch-based network configuration allows
an RC to employ many EPs (upto 4K), but only for Type 3.
This is because CXL.cache uses virtual addresses for its cache
coherence management unlike CXL.mem. As the virtual ad-
dresses (brought by CXL flits) are not directly matched with
the physical address of each underlying EP’s HDM, the CXL
switches cannot understand where the exact destination is.

3 A High-level Viewpoint of CXL-ANNS
3.1 Challenge Analysis of Billion-scale ANNS
Memory expansion with compression. While compression
methods allow us to have larger datasets, it is not scalable
since their quantized data significantly degrades the kNN
search accuracy. Figure 5 analyzes the search accuracy of
billion-point ANNS that uses the quantization-based com-

588 2023 USENIX Annual Technical Conference USENIX Association

Figure 7: CXL baseline architecture.

B
ig

A
N

N

Y
a
n
d
e
x
-T

Y
a
n
d
e
x
-D

M
e
ta

-S

M
S

-T

M
S

-S

0
1
2
3
4
5

S
lo

w
d
o
w

n

Figure 8: CXL.

pression described in §2.2. In this analysis, it reduces the em-
bedding table by 2×∼16×. We use six billion-point datasets
from [30]; the details of these datasets and evaluation envi-
ronment are the same as what we used in §6.1. As the density
of the quantized data vectors varies across different datasets,
the compression method exhibits different search accuracies.
While the search accuracies are in a reasonable range to ser-
vice with low compression rates, they significantly drop as
the compression rate of the dataset increases. It cannot even
reach the threshold accuracy that ANNS needs to support
(90%, recommended by [30]) after having 45.8% less data
than the original. This unfortunately makes the compression
impractical for billion-scale ANNS at high accuracy.
Hierarchical data processing. Hierarchical approaches can
overcome this low accuracy issue by adding one more search
step to re-rank the results of kNN search. This high-accuracy
search however increases the search latency significantly as
it eventually requires traversing the storage-side graph and
accessing the corresponding data vectors (in storage) en-
tirely. Figure 6 shows the latency behaviors of hierarchical
approaches, DiskANN [24] and HM-ANN [25]. In this test,
we use 480GB Optane PMEM [44] for DiskANN/HM-ANN
and compare their performance with the performance of an
oracle ANNS that has DRAM-only (with unlimited storage
capacity). One can observe from this figure that the storage
accesses of the high-accuracy search account for 87.6% of the
total kNN query latency, which makes the search latency of
DiskANN and HM-ANN worse than that of the oracle ANNS
by 29.4× and 64.6×, respectively, on average.
CXL-augmented ANNS. To avoid the accuracy drop and
performance depletion, this work advocates to directly have
billion-point datasets in a scalable memory pool, disaggre-
gated using CXL. Figure 7 shows our baseline architecture
that consists of a CXL CPU, a CXL switch, and four 1TB
Type 3 EPs that we prototype (§6.1). We locate all the billion-
point graphs and corresponding vectors to the underlying

Type 3 EPs (memory pool) while having ANNS metadata
(e.g. candidate array) in the local DRAM. This baseline al-
lows ANNS to access the billion-point datasets on the remote-
side memory pool just like conventional DRAMs thanks to
CXL’s instruction-level compatibility. Nevertheless, it is not
yet an appropriate option for practical billion-scale ANNS
due to CXL’s architectural characteristics that exhibit lower
performance than the local DRAM.

To be precise, we compare the kNN search latency of the
baseline with the oracle ANNS, and the results are shown
in Figure 8. In this analysis, we normalize the latency of the
baseline to that of the oracle for better understanding. Even
though our baseline does not show severe performance deple-
tion like what DiskANN/HM-ANNS suffer from, it exhibits
3.9× slower search latency than the oracle, on average. This is
because all the memory accesses associated with HDM(s) in-
sist the host RC convert them to a CXL flit and revert the flit to
memory requests at the EP-side. The corresponding responses
also requires this memory-to-flit conversion in a reverse order
thereby exhibiting the long latency for graph/vector accesses.
Note that this 3.6∼4.6× performance degradation is not ac-
ceptable in many production-level ANNS applications such
as recommendation systems [45] or search engines [46].

3.2 Design Consideration and Motivation
The main goal of this work is to make the CXL-augmented
kNN search faster than in-memory ANNS services working
only with locally-attached DRAMs (cf. CXL-ANNS vs. Ora-
cle as shown in Figure 8). To achieve this goal, we propose
CXL-ANNS, a software-hardware collaborative approach,
which considers the following three observations: i) node-
level relationship, ii) distance calculation, and iii) vector re-
duction.
Node-level relationship. While there are diverse graph struc-
tures [10, 19, 24] for the best-first search traverses (cf. Algo-
rithm 1), all of the graphs starts their traverses from a unique,
single entry-node as described in §2.1. This implies that the
graph traverse of ANNS visits the nodes closer to the entry-
node much more frequently. For example, as shown in Figure
9a, the node B is always accessed to serve a given set of kNN
queries targeting other nodes listed in the graph branch while
the node G is difficult to visit. To be precise, we examine the
average count to visit nodes in all the billion-point graphs
that this work evaluate when there are a million kNN query

(a) Traverse. (b) Nodes’ visit count.
Figure 9: Graph traverse.

Figure 10: End-to-end break-
down analysis.

(a) Reduction example. (b) Reduction ratio.
Figure 11: Data reduction.

USENIX Association 2023 USENIX Annual Technical Conference 589

requests. The results are shown in Figure 9b. One can observe
from this analysis that the nodes most frequently accessed
during the 1M kNN searches reside in the 2∼3 edge hops. By
appreciating this node-level relationship, we will locate the
graph and vector data regarding inner-most nodes (from the
entry-node) to locally-attached DRAMs while allocating all
the others to the underlying CXL EPs.
Distance calculation. To analyze the critical path of billion-
point ANNS, we decompose the end-to-end kNN search task
into four different sub-tasks, i) candidate update, ii) memory
access and iii) computing fractions of distance calculation,
and iv) graph traverse. We then measure the latency of each
sub-tasks on use in-memory, oracle system, which are shown
in Figure 10. As can be seen from the figure, ANNS dis-
tance calculation significantly contributes to the total execu-
tion time, constituting an average of 81.8%. This observation
stands in contrast to the widely held belief that graph traver-
sal is among the most resource-intensive operations [47–49].
The underlying reason for this discrepancy is that distance
calculation necessitates intensive embedding table lookups to
determine the data vectors of all nodes visited by ANNS. No-
tably, while these lookup operations have the same frequency
and pattern as graph traversal, the length of the data vectors
employed by ANNS is 2.0× greater than that of the graph
data due to their high dimensionality. Importantly, although
distance calculation exhibits considerable latency, it does not
require substantial computational resources, thus making it a
good candidate for acceleration using straightforward hard-
ware solutions.
Reducing data vector transfers. We can take the overhead
brought by distance calculations off the critical path in the
kNN search by bringing only the distance that ANNS needs
to check for each iteration its algorithm visits. As shown
in Figure 11a, let’s suppose that CXL EPs can compute a
distance between a given query vector and data vectors that
ANNS is in visit. Since ANNS needs the distance, a simple
scalar value, instead of all the full features of each data vector,
the amount of data that the underlying EPs transfer can be
reduced as many as each vector’s dimensional degrees. Figure
11b analyzes how much we can reduce the vector transfers
during services of the 1M kNN queries. While the vector
dimensions of each dataset varies (96∼256), we can reduce
the amount of data to load from the EPs by 73.3×, on average.

3.3 Collaborative Approach Overview
Motivated by the aforementioned observations, CXL-ANNS
first caches datasets considering a given graph’s inter-node
relationship and performs ANNS algorithm-aware CXL
prefetches (§4.1). This makes the performance of a naive
CXL-augmented kNN search comparable with that of the or-
acle ANNS. To go beyond, CXL-ANNS reduces the vector
transferring latency significantly by letting the underlying EPs
to calculate all the ANNS distances near memory (§5.1). As
this near-data processing is achieved in a collaborative man-

���

�
�
�
�
��
�
�
	

�

������� �	�����

�
	
�
�
��
��
�
�
	

�

�
�
�
�

��
�
��

�
�
�
��
�

�

�
�
�

�
�
�
��
�

�
�
�
�
��
�

�

����������
	
����

��������
��	������

�
�
�

�
�
�

�
�
�	

�

�
	
�
�

�

!
�"
#
#
�

��
	
	�
��
�
�	
��
�
��
�

�

�
�
��
�

��
�
�
�

$%
&
�

�
�
�

�
�
�
	�
�

������
��	�

�������

�����
�����	�
�

��������������

��������������

�������	�

��������	
� ��� ��������	
�

�

�

���

���	�������	���

�
�
�

��
"
�
"
�
�
���
��

��������

Figure 12: Overview.

ner between EP controllers and RC-side ANNS algorithm
handler, the performance can be limited by the kNN query
service sequences. CXL-ANNS thus schedules kNN search
activities in a fine-grained manner by relaxing their execu-
tion dependency (§5.3). Putting all together, CXL-ANNS is
designed for offering high-performance even better than the
oracle ANNS without an accuracy loss.

Figure 12 shows the high-level viewpoint of our CXL-
ANNS architecture, which mainly consists of i) RC-side soft-
ware stack and ii) EP-side data processing hardware stack.
RC-side software stack. This RC-side software stack is com-
posed of i) query scheduler, ii) pool manager, and iii) kernel
driver. At the top of CXL-ANNS, the query scheduler handles
all kNN searches requested from its applications such as rec-
ommendation systems. It splits each query into three subtasks
(graph traverse, distance calculation, and candidate update)
and assign them in different places. Specifically, the graph
traverse and candidate update subtasks are performed at the
CXL CPU side whereas the scheduler allocates the distance
calculation to the underlying EP by collaborating with the
underlying pool manager. The pool manager handles CXL’s
HPA for the graph and data vectors by considering edge hop
counts, such that it can differentiate graph accesses based on
the node-level relationship. Lastly, the kernel driver manages
the underlying EPs and their address spaces; it enumerates
the EPs and maps their HDMs into the system memory’s HPA
that the pool manager uses. Since all memory requests for
HPA are cached at the CXL CPU, the driver maps EP-side
interface registers to RC’s PCIe address space using CXL.io
instead of CXL.mem. Note that, as the PCIe spaces where the
memory-mapped registers exist is in non-cacheable area, the
underlying EP can immediately recognize what the host-side
application lets the EPs know.
EP-side hardware stack. EP-side hardware stack includes
a domain specific accelerator (DSA) for distance calculation
in addition to all essential hardware components to build a
CXL-based memory expander. At the front of our EPs, a phys-
ical layer (PHY) controller and CXL engine are implemented,
which are responsible for the PCIe/CXL communication con-
trol and flit-to-memory request conversion, respectively. The
converted memory request is forwarded to the underlying
memory controller that connects multiple DRAM modules at
its backend; in our prototype, an EP has four memory con-
trollers, each having a DIMM channel that has 256GB DRAM

590 2023 USENIX Annual Technical Conference USENIX Association

Figure 13: Data placement.

modules. On the other hand, the DSA is located between the
CXL engine and memory controllers. It can read data vectors
using the memory controllers while checking up the operation
commands through CXL engine’s interface registers. These
interface registers are mapped to the host non-cacheable PCIe
space such that all the commands that the host writes can be
immediately visible to DSA. DSA calculates the approximate
distance for multiple data vectors using multiple processing
elements (PEs), each having simple arithmetic units such as
adder/subtractor and multiplier.

4 Software Stack Design and Implementation
From the memory pool management viewpoint, we have to
consider two different system aspects: i) graph structuring
technique for the local memory and ii) efficient space mapping
method between HDM and graph. We will explain the design
and implementation details of each method in this section.

4.1 Local Caching for Graph
Graph construction for local caching. While the pool man-
ager allocates most graph data and all data vectors to the
underlying CXL memory pool, it caches the nodes, expected
to be most frequently accessed, in local DRAMs as much
as the system memory capacity can accommodate. To this
end, the pool manager considers how many edge hops (i.e.,
calculating the number of edge hops) exist from the fixed
entry-node to each node for its relationship-aware graph cache.
Figure 13 explains how the pool manager allocates the nodes
in a given graph to different places (local memory vs. CXL
memory pool). When constructing the graph, the pool man-
ager calculates per-node hop counts by leveraging a single
source shortest path (SSSP) algorithm [50, 51]; it first lets
all the nodes in the graph have a negative hop count (e.g.,
-1). Starting from the entry-node, the pool manager checks
all the nodes in one edge hop and increases its hop count.
It visits each of the nodes and iterates this process for them
until there is no node to visit in a breadth-first search manner.
Once each node has its own hop count, the pool manager
sorts them based on the hop count in an ascending order and
allocates the nodes from the top (having the smallest hop
count) to local DRAMs as many as it can. The available size
of the local DRAMs can be simply estimated by referring
to system configuration variables (sysconf()) of the total
number of pages (_SC_AVPHYS_PAGES) and the size of each
page (_SC_PAGESIZE). It’s important to mention that in this
study, the pool manager uses several threads within the user
space to execute SSSP, aiming to reduce the construction time

Figure 14: Memory management.

to a minimum. Once the construction is done, the threads are
terminated to make sure they do not consume CPU resources
when a query is given.

4.2 Data Placement on the CXL Memory Pool
Preparing CXL for user-level memory. When mapping
HDM to the system memory’s HPA, CXL CPU should be
capable of recognizing different HDMs and their size whereas
each EP needs to know where its HDM is assigned in HPA.
As shown in Figure 14, our kernel driver checks PCIe con-
figuration space and figures out CXL devices at the PCIe
enumeration time. The driver then checks RC information
from the system’s data structure describing the hardware com-
ponents that show where the CXL HPA begins (base), such
as device tree [52] or ACPI [53]. From the base, our kernel
driver allocates each HDM as much as it defines in a con-
tiguous space. It lets the underlying EPs know where each of
corresponding HDM is mapped in HPA, such that they can
convert the address of memory requests (HPA) to its original
HDM address. Once all the HDMs are successfully mapped
to HPA, the pool manager allocates each HDM to different
places of user-level virtual address space that the query sched-
uler operates on. This memory-mapped HDM, called CXL
arena, guarantees per-arena continuous memory space and
allows the pool manager to distinguish different EPs at the
user-level.
Pool management for vectors/graph. While CXL arenas
directly expose the underlying HDMs of CXL EPs to user-
level space, it should be well managed to accommodate all
the billion-point datasets appreciating their memory usage
behaviors. The pool manager considers two aspects of the
datasets; the data vectors (i.e., embedding table) should be
located in a substantially large and consecutive memory space
while the graph structure requires taking many neighbor lists
with variable length (16B∼1KB). The pool manager employs
stack-like and buddy-like memory allocators, which grow up-
ward and downward in each CXL arena, respectively. The
former allocator has a range pointer and manages memory
for the embedding table, similar to stack. The pool manager
allocates the data vectors across multiple CXL arenas in a
round-robin manner by considering the underlying EP archi-
tecture. This vector sharding method will be explained in §5.1.
In contrast, the buddy-like allocator employs a level pointer,

USENIX Association 2023 USENIX Annual Technical Conference 591

(a) PE architecture. (b) Sharding.

Figure 15: Distance calculation.

each level consisting of a linked list, which connects data
chunks with different size (from 16B to 1KB). Like Linux
buddy memory manager [54], it allocates the CXL memory
spaces as much as each neighbor list exactly requires and
merge/split the chunk(s) based on the workload behaviors. To
make each EP balanced, the pool manager allocates the neigh-
bor lists for each hop in round-robin manner across different
CXL arenas.

5 Collaborative Query Service Acceleration

5.1 Accelerating Distance Calculation
Distance computing in EP. As shown in Figure 15a, a
processing element (PE) of DSA has arithmetic logic tree
connecting a multiplier and subtractor at each terminal for
element-wise operations. Depending on how the dataset’s
features are encoded, the query and data vectors are routed
differently to the two units as input. If the features are encoded
for the Euclidean space, the vectors are supplied to the subtrac-
tor for L2 distance calculation. Otherwise, the multiplexing
logics directly deliver the input vectors to the multiplier by
bypassing the subtractor such that it can calculate the angular
distance. Each terminal simultaneously calculates individual
elements of the approximate distance, and the results are ac-
cumulated by going through the arithmetic logic tree network
from the terminal to its root. In addition, each PE’s terminal
reads data from all four different DIMM channels in parallel,
thus maximizing the EP’s backend DRAM bandwidth.
Vector sharding. Even though each EP has many PEs (10 in
our prototype), if we locate the embedding table from the start
address of an EP in a consecutive order, EP’s backend DRAM
bandwidth can be bottleneck in our design. This is because
each feature vector in the embedding table is encoded by high
dimensional information (∼256 dimensions, taking around
1KB). To address this, our pool manager shards the embedding
table in a column wise and stores different parts of the table
across the different EPs. As shown in Figure 15b, this vector
sharding splits each vector into multiple sub-vectors based
on each EP’s I/O granularity (256B). Each EP simultaneously
computes its sub-distance from the split data vector that the
EP accommodates. Later, the CXL CPU accumulates the sub-
distances to get the final distance value. Note that, since the
L2 and angular distances are calculated by accumulating the
output of element-wise operations, the final distance is the

Figure 16: Interface.

same as the results of the sub-distance accumulation using
vector sharding.
Interfacing with EP-level acceleration. Figure 16 shows
how the interface registers are managed to let the underlying
EPs compute a distance where the data vectors exist. There
are two considerations for the interface design and implemen-
tation. First, multiple EPs perform the distance calculation
for the same neighbors in parallel thanks to vector sharding.
While the neighbor list contains many node ids (≤200), it
is thus shared by the underlying EPs. Second, handling in-
terface registers using CXL.io is an expensive operation as
CPU should be involved in all the data copies. Considering
these two, the interface registers handle only the event of com-
mand arrivals, called doorbell whereas each EP’s CXL engine
pulls the corresponding operation type and neighbor list from
the CPU-side local DRAM (called a command buffer) in an
active manner. This method can save the time for CPU to
move the neighbor list to each EP’s interface registers one by
one as the CXL engine brings all the information if there is
any doorbell update. The CXL engine also pushes results of
distance calculation to the local DRAM such that the RC-side
software directly accesses the results without an access of
the underlying CXL memory pool. Note that all these com-
munication buffers and registers are directly mapped to the
user-level virtual addresses in our design such that we can
minimize the number of context switches between user and
kernel mode.

5.2 Prefetching for CXL Memory Pool
Figure 17a shows our baseline of collaborative query service
acceleration, which lets EPs compute sub-distances while
ANNS’s graph traverse and candidate update (including sub-
distance accumulation) are handled at the CPU-side. This
scheduling pattern is iterated until there is no kNN candidates
to visit futher (Algorithm 1). A challenge of this baseline
approach is traversing graph can be started once the all node
information is ready at the CPU-side. While local caching

Figure 17: Prefetching.

Bi
gA

N
N

Ya
nd

ex
-T

Ya
nd

ex
-D

M
et

a-
S

M
S-

T
M

S-
S0

25
50
75

100

N
ex

t N
od

e
(%

)

Newly Calc. Node
Old Cand. Array

Figure 18: Next
node’s source.

592 2023 USENIX Annual Technical Conference USENIX Association

0 2 4 6 8
0

25
50
75

100

CXL CPU
ANNS PE

U
til

iz
at

io
n

(%
)

Time (us)

CPU Idle
(42%)

Figure 18: Resource
utilization. Figure 19: Query scheduling.

of our pool manager addreses this, it yet shows a limited
performance. It is required to go through the CXL memory
pool to get nodes, which does not sit in the innermost edge
hops. As its latency to access the underlying memory pool is
long, the graph traverse can be postponed comparably. To this
end, our query scheduler prefetches the graph information
earlier than the actual traverse subtask needs, as shown in
Figure 17b.

While this prefetch can hide the long latency imposed by
the CXL memory pool accesses, it is non-trivial as the prefetch
requires knowing the nodes that the next (future) iteration of
the ANNS algorithm will visit. Our query scheduler specu-
lates the nodes to visit and brings their neighbor information
by referring to the candidate array, which is inspired by an
observation that we have. Figure 18 shows which nodes are
accessed in the graph traverse of the next iteration across all
the datasets that we tested. We can see that 82.3% of the to-
tal visiting nodes are coming from the candidate array (even
though its information is not yet updated for the next step).

5.3 Fine-Granular Query Scheduling
Our collaborative search query acceleration can reduce the
amount of data to transfer significantly and successfully hide
the long latency imposed by the CXL memory pool. However,
computing kNN search in different places makes the RC-side
ANNS subtasks pending until EPs complete their distance
calculation. Figure 18 shows how much the RC-side subtasks
(CXL CPU) stay idle, waiting for the distance results. In
this evaluation, we use Yandex-D as a representative of the
datasets, and its time series are analyzed for the time visiting
only first two nodes for their neighbor search. The CXL CPU
performs nothing while EPs calculate the distances, which
take 42% of the total execution time for processing those two
nodes. This idle time cannot be easily removed as candidate
update cannot be processed without having their distance.

To address this, our query scheduler relaxes the execution
dependency on the candidate update and separates such an
update into urgent and deferrable procedures. Specifically,
the candidate update consists of i) inserting (updating) the
array with the candidates, ii) sorting kNN candidates based
on their distance, and iii) node selection to visit. The node
selection is an important process because the following graph
traverse requires knowing the nodes to visit (urgent). However,
sorting/inserting kNN candidates maintain the k numbers of
neighbors in the candidate array, which are not to be done

Figure 21: Prototype.

CPU 40 O3 cores, ARM v8, 3.6GHz
L1/L2 $: 64KiB/2MiB per core

Local memory 128GiB, DDR4-3200
CXL memory 1 CXL switch
pool 256GiB/device, DDR4-3200
Storage 4× Intel Optane 900P 480 GB

CXL-ANNS 1 GHz, 10 ANNS PE/device,
2 distance calc. unit/PE

Table 1: Simulation setup.

immediately. Thus, as shown in Figure 19, the query sched-
uler performs the node selection before the graph traverse,
but it executes the deferrable operations during the distance
calculation time by delaying them in a fine-granular manner.

6 Evaluation
6.1 Evaluation Setup
Prototype and Methodology. Given the lack of a publicly
available, fully functional CXL system, we constructed and
validated the CXL-ANNS software and hardware in an oper-
ational real system (Figure 21). This hardware prototype is
based on a 16nm FPGA. To develop our CXL CPU prototype,
we adapted the RISC-V CPU [55]. The prototype integrates
4 ANNS EPs, each equipped with four memory controllers,
linked to the CXL CPU via a CXL switch. The system’s
software for the prototype, including the kernel driver, is com-
patible with Linux 5.15.36. For the ANNS execution, we
adjusted Meta’s open ANNS library, FAISS v1.7.2 [56].

Unfortunately, the prototype system does not offer the flex-
ibility needed to explore various ANNS design spaces. As a
remedy, we also established a hardware-validated full-system
simulator [29] that represents CXL-ANNS, which was uti-
lized for evaluation. This model replicates all operational
cycles extracted from the hardware prototype and is cross-
validated with our real system at the cycle level. We conducted
simulation-based studies in this evaluation, the system details
of which are outlined in Table 1. Notably, the system emulates
the server utilized in Meta’s production environment [57]. Al-
though our system by default uses 4 EPs, our system increases
their count for specific workloads (e.g., Meta-S) that neces-
sitate larger memory spaces (more than 2TB) compared to
others.
Workloads. We use billion-scale ANNS datasets from Bi-
gANN benchmark [30], a public ANNS benchmark that mul-
tiple companies (e.g., Microsoft, Meta) participate in. Their
important characteristics are summarized in Table 2. In addi-
tion, since ANNS-based services often need different number

Candidate arr. sizeDataset Dist. Num.
vecs.

Emb.
dim.

Avg. num.
neighbors k=1 k=5 k=10

Num.
devices.

BigANN L2 1B 128 31.6 30 75 150 4
Yandex-T Ang. 1B 200 29.0 440 900 2500 4
Yandex-D L2 1B 96 66.9 300 700 1700 4

Meta-S L2 1B 256 190 1200 2800 5600 8
MS-T L2 1B 100 43.1 60 130 250 4
MS-S L2 1B 100 87.4 580 100 200 4

Table 2: Workloads.

USENIX Association 2023 USENIX Annual Technical Conference 593

xx x x x x x0.01
0.1

1
10

100

N
o
rm

a
liz

e
d
 Q

P
S Comp Hr-D Hr-H Orcl Base EPAx Cache CXLA

K=5 K=10K=1
BigANN Yandex-T Yandex-D Meta-S MS-T MS-S

X indicates failure (recall@k lower than 0.9)

K=5 K=10K=1K=5 K=10K=1K=5 K=10K=1K=5 K=10K=1K=5 K=10K=1

Figure 22: Throughput (queries per second).

(a) BigANN. (b) Yandex-D.

Figure 23: Recall-QPS curve.

0.0
0.2
0.6
0.8
1.0

5

N
or

m
al

iz
ed

 L
at

en
cy Candidate Update Distance Calc. Graph Traverse Interface

BigANN Yandex-D MS-TMeta-S
C O E$ABD

4.08.9 5.1 1.2 20.9

Yandex-T

C:Comp D:Hr-D H:Hr-H O:Orcl B:Base E:EPAx $:Cache A:CXLA

Lo
w

 re
ca

ll

Lo
w

 re
ca

ll

Lo
w

 re
ca

ll

Lo
w

 re
ca

ll

MS-S

6.1

H C O E$ABDH C O E$ABDH C O E$ABDH C O E$ABDH C O E$ABDH

35.9 14.6 13.5 3.2 39.3 12.4

Figure 24: Single query latency (k = 10).

Dataset Base CXL-
ANNS

BigANN 3.0 0.3
Yandex-T 66.0 7.4
Yandex-D 55.7 5.3

Meta-S 1121.2 34.2
MS-T 6.0 0.6
MS-S 107.2 8.6

* unit: ms

Table 3: Latency.

of nearest neighbors [3, 19], we evaluated our system on the
various k (e.g., 1, 5, 10). We generated the graph for ANNS
by using state-of-the-art algorithm, NSG, employed by pro-
duction search services in Alibaba [19]. Since the accuracy
and performance of BFS can vary on the size of the candidate
array, we only show the performance behavior of our system
when its accuracy is 90%, as recommended by the BigANN
benchmark. The accuracy is defined as recall@k; the ratio
of the exact k number of neighbors that are included in the k
number of output nearest neighbors of ANNS.
Configurations. We compare CXL-ANNS with 3 state-of-the-
art large-scale ANNS systems. For the compression approach,
we use a representative algorithm, product quantization [20]
(Comp). It compresses the data vector by replacing the vec-
tor with the centroid of its closest cluster (see §2.2). For the
hierarchical approach, we use DiskANN [24] (Hr-D) and
HM-ANN [25] (Hr-H) for the evaluation. The two methods
employ compressed embedding table and simplified graphs
to reduce the number of SSD/PMEM accesses, respectively.
For fair comparison, we use the same storage device, Intel
Optane [44], for both Hr-D/H. For CXL-ANNS, we evalu-
ated its multiple variants to distinguish the effect of each
method we propose. Specifically, Base places the graph and
embedding table in CXL memory pool and lets CXL CPU
execute the subtasks of ANNS. Compared to Base, EPAx per-
forms distance calculation by using DSA inside the ANNS EP.
Compared to EPAx, Cache employs relationship-aware graph
caching and prefetching. Lastly, CXLA employs all the meth-
ods we propose, including fine-granular query scheduling. In
addition, we compare oracle system (Orcl) that uses unlim-
ited local DRAM. We will show that CXL-ANNS makes the
CXL-augmented kNN search faster than Orcl.

6.2 Overall Performance
We first compare the throughput and latency of various sys-
tems we evaluated. We measured the systems’ throughput by
counting the number of processed queries per second (QPS,

in short). Figure 22 shows the QPS of all ks, while Figure 24
digs the performance behavior deeper for k=10 by breaking
down the latency. We chose k=10 following the guide from
BigANN benchmark. The performance behavior for k=1,5
are largely same with when k=10. For both figures, we nor-
malized the values by that of Base when k=10. The original
latencies are summarized in Table 3.

As shown in Figure 22, the QPS gets lower when the k
increases for all the systems we tested. This is because, the
BFS visits more nodes to find more nearest neighbors. On the
other hand, while Comp exhibits comparable QPS to Orcl, it
fails to reach the target recall@k (0.9) for 7 workloads. This is
because Comp cannot calculate the exact distance since it re-
places the original vector with the centroid of a cluster nearby.
This can also be observed in Figure 23. The figure shows
the accuracy and QPS when we vary the size of candidate
array for two representative workloads. BigANN represents
the workloads that Comp does reach the target recall, while
Yandex-D represents the opposite. We can see that Comp
converges at low recall@10 of 0.92 and 0.58, respectively,
while other systems reach the maximum recall@10.

In contrast, hierarchical approaches (Hr-D/H) reaches the
target recall@k for all the workloads we tested, by re-ranking
the search result. However, they suffer from the long la-
tency of underlying SSD/PMEM while accessing their un-
compressed graph and embedding table. Such long latency
significantly depletes the QPS of Hr-D and Hr-H by 35.9×
and 77.6× compared to Orcl, respectively. Consider Figure
24 to better understand; Since Hr-D only calculates the dis-
tance for the limited number of nodes in the candidate array, it
exhibits 20.1× shorter distance calculation time compared to
Hr-H, which starts a new BFS on original graph stored in SS-
D/PMEM. However, Hr-D’s graph traverse takes longer time
than that of Hr-H by 16.6×. This is because, Hr-D accesses
the original graph in SSD/PMEM for both low/high-accuracy
search while Hr-H accesses the original graph only for their
high-accuracy search.

594 2023 USENIX Annual Technical Conference USENIX Association

Figure 25: Data transfer.
Figure 26: Local
caching.

0
20
40
60
80

L1
 C

ac
he

 M
is

s
H

an
dl

in
g

Ti
m

e
(n

s) EPAx NoPrefetch
Cache Orcl

BigA
NN

Yan
de

x-T

Yan
de

x-D
MS-T

Meta
-S

2.
0

2.
8

MS-S

Figure 27: Cache miss
handling time.

0
50

100

U
ti
liz

a
ti
o
n
 (

%
) Cache

CPU idle Single Iteration

 C

X
L
 C

P
U

 P
E

 C
X

L
 e

n
g
in

e

0 2 4 6 8 10
0

50
100

Time (us)

ReducedCXLA

Figure 28: CPU/PE utilization
(Yandex-D).

As shown in Figure 22, Base does not suffer from accuracy
drop or the performance depletion of Hr-D/H since it employs
a scalable memory pool that CXL offers. Therefore, it signif-
icantly improves the QPS by 9.4× and 20.3×, compared to
Hr-D/H, respectively. However, Base still exhibits 3.9× lower
throughput than Orcl. This is because Base experiences the
long latency of memory-to-flit conversion while accessing
the graph/embedding in CXL memory pool. Such conversion
makes Base’s graph traverse and distance calculation longer
by 2.6× and 4.3×, respectively, compared to Orcl.

Compared to Base, EPAx significantly diminishes the dis-
tance calculation time by a factor of 119.4×, achieved by
reducing data vector transfer through the acceleration of dis-
tance calculation within the EPs. While this EP-level accel-
eration introduces an interface overhead, this overhead only
represents 5.4% of the Base’s distance calculation latency.
Hence, EPAx reduces the query latency by 7.5× on average,
relative to Base. It’s important to highlight that EPAx’s la-
tency is 1.9× lower than Orcl’s, which has unlimited DRAM.
This discrepancy stems from Orcl’s insufficient grasp of the
ANNS algorithm and its behaviour, which results in consider-
able data movement overhead during data transfer between
local memory and the processor complex. Additional details
can be found in Figure 25, depicting the volume of data trans-
fer via PCIe for the CXL-based systems. The figure shows that
EPAx eliminates data vector transfer, thereby cutting down
data transfer by 21.1×.

Further, Cache improves EPAx’s graph traversal time by
3.3×, thereby enhancing the query latency by an average of
32.7%. This improvement arises because Cache retains in-
formation about nodes anticipated to be accessed frequently
in the local DRAM, thereby handling 59.4% of graph traver-
sal within the local DRAM (Figure 26). The figure reveals a
particularly high ratio for BigANN and Yandex-T, at 92.0%.
As indicated in Table 2, their graphs have a relatively small
number of neighbors (31.6 and 29.0, respectively), resulting
in their graphs being compact at an average of 129.3GB. In
contrast, merely 13.8% of Meta-S’s graph accesses are ser-
viced from local memory, attributable to its extensive graph.
Nevertheless, even for Meta-S, Cache enhances graph traver-
sal performance by prefetching graph information before ac-
tual visitation. As depicted in Figure 24, this prefetching can
conceal CXL’s prolonged latency, reducing Meta-S’s graph
traversal latency by 72.8%. While prefetching would intro-
duce overhead in speculating the next node visit, it is insignif-

icant, accounting for only 1.3% of the query latency. These
caching and prefetching techniques yield graph processing
performance similar to that of Orcl. We will explain the details
of prefetching shortly.

Lastly, as depicted in Figure 22, CXLA boosts the QPS
by 15.5% in comparison to Cache. This is due to CXLA’s
enhancement of hardware resource utilization by executing
deferrable subtasks and distance calculations concurrently
in the CXL CPU and PE, respectively. As illustrated in Fig-
ure 24, such scheduling benefits Yandex-T, Yandex-D, and
Meta-S more so than others. This is attributable to their use
of a candidate array that is, on average, 16.3× larger than
others, which allows for the overlap of updates with distance
calculation time. Overall, CXLA attains a significantly higher
QPS than Orcl, surpassing it by an average factor of 3.8×.

6.3 Collaborative Query Service Analysis
Prefetching. Figure 27 compares the L1 cache miss handling
latency while accessing the graph for the CXL-based systems
we tested. We measured the latency by dividing the total L1
cache miss handling time of CXL CPU by the number of
L1 cache access. The new system, NoPrefetch, disables the
prefetching from Cache. As shown in Figure 27, EPAx’s la-
tency is as long as 75.4ns since it accesses slow CXL memory
whenever there is a cache miss. NoPrefetch alleviates such
problem thanks to local caching, shortening the latency by
45.8%. However, when the dataset uses a large graph (e.g.
Meta-S, MS-S), only 24.5% of the graph can be cached in
local memory. This makes NoPrefetch’s latency 2.3× higher
than that of Orcl. In contrast, Cache significantly shortens
the latency by 8.5× which is even shorter than that of Orcl.
This is because Cache can foresee the next visiting nodes and
loads the graph information in the cache in advance. Note
that, Orcl accesses local DRAM on demand on cache miss.
Utilization. Figure 28 shows the utilization of CXL CPU,
PE, CXL engine on a representative dataset (Yandex-D). To
clearly provide the behavior of our fine-granule scheduling,
we composed a CXL-ANNS with single-core CXL CPU and
single PE per device and show their behavior in a timeline.
The upper part of the figure shows the behavior of Cache
that does not employ the proposed scheduling. We plot CXL
CPU’s utilization as 0 when it polls the distance calculation
results of PE, since it does not perform any useful job during
that time. As shown in the figure, CXL CPU idles for 42.0%
of the total time waiting for the distance calculation result. In

USENIX Association 2023 USENIX Annual Technical Conference 595

0.0

0.5

1.0

1.5

N
or

m
al

iz
ed

 L
at

en
cy

Devices
 C

an
d.

 u
pd

at
e

 D
is

ta
nc

e
ca

lc
.

 G
ra

ph
 tr

av
er

se

 In
te

rfa
ce

 O
rc

l
C

XL
A

1B 2B 4B

4 6 10

Figure 29: Device scal-
ing (Yandex-D).

0
1
2
3
4
5

N
or
m
al
iz
ed

Q
PS

Host 2 Host 4 Host 6

BigA
NN
Yan

dex
-T
Yan

dex
-D
Met

a-S MS-
T
MS-

S
4 8 4 8 4 8 8 16 4 8 4 8

Devices

Host 1

Figure 30: Host Sensitivity.

contrast, CXLA reduces the idle time by 1.3×, relaxing the
dependency between ANNS subtasks. In the figure, we can
see that the CXL CPU’s candidate update time overlaps with
the time CXL engine and PE handling the command. As a
result, CXLA improves the utilization of hardware resources
in CXL network by 20.9%, compared to Cache.

6.4 Scalability Test
Bigger Dataset. To evaluate the scalability of CXL-ANNS,
we increase the number of data vectors in Yandex-D by 4B,
and connect more EP to CXL CPU to accommodate their data.
Since there is no publicly available dataset that is as large
as 4B, we synthetically generated additional 3B vectors by
adding noise to original 1B vectors. As shown in Figure 29,
we can see that the latency of Orcl increases as we increase the
scale of dataset. This is because larger dataset makes BFS visit
more nodes to maintain the same level of recall. On the other
hand, we can see the interface overhead of CXLA increases
as we employ more devices to accommodate bigger dataset.
This is because the CXL CPU should notify more devices for
the command arrival by ringing the doorbell. Despite such
overhead, CXLA exhibits 2.7× lower latency than Orcl thanks
to its efficient collaborative approach.
Multi-host. In a disaggregated system, a natural way to in-
crease the system’s performance is to employ more host CPUs.
Thus, we evaluate the CXL-ANNS that supports multiple
hosts in the CXL network. Specifically, we split EP’s re-
sources such as HDM and PEs and then allocate each of
them to one the the CXL hosts in the network. For ANNS, we
partition the embedding table and make each host responsible
for finding kNN from different partitions. Once all the CXL
hosts find the kNN, the system gathers them all and rerank
the neighbors to finally select kNN among them.

Figure 30 shows the QPS of multi-host ANNS. The QPS
is normalized to that when we use single CXL host with
the same number of EPs that we used before. Note that we
also show the QPS when we employ more number of EPs
than we used before. When the number of EPs stays the
same, the QPS increases until we connect 4 CXL hosts in the
system. However the QPS drops when the number of CXL
hosts is 6. This is because the distance calculation by limited
number of PEs became the bottleneck; the commands from
the host pends since there is no availabe PE. Such problem
can be addressed by having more EPs in the system, thereby
distributing the computation load. As we can see in the figure,

when we double the number of EPs in the network, we can
improve the QPS when we have 6 CXL hosts in the system.

7 Discussion and Acknowledgments

GPU-based distance calculation. Recent research has be-
gun to leverage the massive parallel processing capabilities
of GPUs to enhance the efficiency of graph-based ANNS
services [58, 59]. While GPUs generally exhibit high perfor-
mance, our argument is that it’s not feasible for CPU+GPU
memory to handle the entirety of ANNS data and tasks, as
detailed in Section 1. Even under the assumption that ANNS
is functioning within an optimal in-memory computing envi-
ronment, there are two elements to consider when delegating
distance computation to GPUs. The first point is that GPUs
require interaction with the host’s software and/or hardware
layers, which incurs a data transfer overhead for computation.
Secondly, ANNS distance computations can be carried out us-
ing a few uncomplicated, lightweight vector processing units,
making GPUs a less cost-efficient choice for these distance
calculation tasks.

In contrast, CXL-ANNS avoids the burden of data move-
ment overhead, as it processes data in close proximity to its
actual location and returns only a compact result set. This
approach to data processing is well established and has been
validated through numerous application studies [48, 60–66].
Moreover, CXL-ANNS effectively utilizes the cache hierar-
chy and can even decrease the frequency of accesses to the
underlying CXL memory pool. It accomplishes this through
its CXL-aware and ANNS-aware prefetching scheme, which
notably enhances performance.
Acknowledgments. The authors thank anonymous reviewers
for their constructive feedback as well as Panmnesia for their
technical support. The authors also thank Sudarsun Kannan
for shepherding this paper. This work is supported by Panm-
nesia and protected by one or more patents. Myoungsoo Jung
is the corresponding author (mj@camelab.org)

8 Conclusion

We propose CXL-ANNS, a software-hardware collaborative
approach for scalable ANNS. CXL-ANNS places all the
dataset into its CXL memory pool to handle billion-point
graphs while making the performance of the kNN search com-
parable with that of the (local-DRAM only) oracle system. To
this end, CXL-ANNS considers inter-node relationship and
performs ANNS-aware prefetches. It also calcualate distances
in its EP while scheduling the ANNS subtasks to utilize all
the resources in the CXL network. Our empirical results show
that CXL-ANNS exhibits 111.1× better performance com-
pared to the state-of-the-art billion-scale ANNS methods and
3.8× better performance than oracle system, respectively.

596 2023 USENIX Annual Technical Conference USENIX Association

References

[1] Rihan Chen, Bin Liu, Han Zhu, Yaoxuan Wang, Qi Li,
Buting Ma, Qingbo Hua, Jun Jiang, Yunlong Xu,
Hongbo Deng, et al. Approximate nearest neighbor
search under neural similarity metric for large-scale rec-
ommendation. In Proceedings of the 31st ACM Interna-
tional Conference on Information & Knowledge Man-
agement (CIKM), 2022.

[2] Yanhao Zhang, Pan Pan, Yun Zheng, Kang Zhao, Yingya
Zhang, Xiaofeng Ren, and Rong Jin. Visual search at
alibaba. In Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery &
Data Mining (KDD), 2018.

[3] Jianjin Zhang, Zheng Liu, Weihao Han, Shitao Xiao,
Ruicheng Zheng, Yingxia Shao, Hao Sun, Hanqing
Zhu, Premkumar Srinivasan, Weiwei Deng, et al. Uni-
retriever: Towards learning the unified embedding based
retriever in bing sponsored search. In Proceedings of
the 28th ACM SIGKDD Conference on Knowledge Dis-
covery and Data Mining (KDD), 2022.

[4] Jianguo Wang, Xiaomeng Yi, Rentong Guo, Hai Jin,
Peng Xu, Shengjun Li, Xiangyu Wang, Xiangzhou Guo,
Chengming Li, Xiaohai Xu, et al. Milvus: A purpose-
built vector data management system. In Proceedings
of the 2021 International Conference on Management
of Data (SIGMOD), 2021.

[5] Minjia Zhang and Yuxiong He. Grip: Multi-store
capacity-optimized high-performance nearest neighbor
search for vector search engine. In Proceedings of the
28th ACM International Conference on Information and
Knowledge Management (CIKM), 2019.

[6] Jui-Ting Huang, Ashish Sharma, Shuying Sun, Li Xia,
David Zhang, Philip Pronin, Janani Padmanabhan,
Giuseppe Ottaviano, and Linjun Yang. Embedding-
based retrieval in facebook search. In Proceedings of
the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining (KDD), 2020.

[7] Jiawen Liu, Zhen Xie, Dimitrios Nikolopoulos, and
Dong Li. RIANN: Real-time incremental learning
with approximate nearest neighbor on mobile devices.
In 2020 USENIX Conference on Operational Machine
Learning (OpML 20), 2020.

[8] Chieh-Jan Mike Liang, Hui Xue, Mao Yang, Lidong
Zhou, Lifei Zhu, Zhao Lucis Li, Zibo Wang, Qi Chen,
Quanlu Zhang, Chuanjie Liu, et al. Autosys: The de-
sign and operation of learning-augmented systems. In
Proceedings of the 2020 USENIX Conference on Usenix
Annual Technical Conference, pages 323–336, 2020.

[9] Vincent Garcia, Eric Debreuve, and Michel Barlaud.
Fast k nearest neighbor search using gpu. In 2008 IEEE
Computer Society Conference on Computer Vision and
Pattern Recognition Workshops. IEEE, 2008.

[10] Yu A Malkov and Dmitry A Yashunin. Efficient and
robust approximate nearest neighbor search using hierar-
chical navigable small world graphs. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2018.

[11] Aristides Gionis, Piotr Indyk, Rajeev Motwani, et al.
Similarity search in high dimensions via hashing. In
VLDB, 1999.

[12] Pandu Nayak. Understanding searches better than ever
before. https://blog.google/products/search/
search-language-understanding-bert/, 2019.

[13] Charlie Waldburger. As search needs evolve, microsoft
makes ai tools for better search available to researchers
and developers. https://news.microsoft.com/
source/features/ai/bing-vector-search/,
2019.

[14] Roger Weber, Hans-Jörg Schek, and Stephen Blott.
A quantitative analysis and performance study for
similarity-search methods in high-dimensional spaces.
In VLDB, 1998.

[15] Piotr Indyk and Rajeev Motwani. Approximate near-
est neighbors: towards removing the curse of dimen-
sionality. In Proceedings of the thirtieth annual ACM
symposium on Theory of computing, 1998.

[16] Sunil Arya, David M Mount, Nathan S Netanyahu, Ruth
Silverman, and Angela Y Wu. An optimal algorithm
for approximate nearest neighbor searching fixed dimen-
sions. Journal of the ACM (JACM), 45(6), 1998.

[17] Ting Liu, Andrew Moore, Ke Yang, and Alexander Gray.
An investigation of practical approximate nearest neigh-
bor algorithms. In L. Saul, Y. Weiss, and L. Bottou,
editors, Advances in Neural Information Processing Sys-
tems (NIPS), 2004.

[18] Harsha Simhadri. Research talk: Approximate
nearest neighbor search systems at scale. https:
//www.youtube.com/watch?v=BnYNdSIKibQ&list=
PLD7HFcN7LXReJTWFKYqwMcCc1nZKIXBo9&index=9,
2021.

[19] Cong Fu, Chao Xiang, Changxu Wang, and Deng Cai.
Fast approximate nearest neighbor search with the navi-
gating spreading-out graph. Proceedings of the VLDB
Endowment, 2019.

[20] Herve Jegou, Matthijs Douze, and Cordelia Schmid.
Product quantization for nearest neighbor search. IEEE

USENIX Association 2023 USENIX Annual Technical Conference 597

https://blog.google/products/search/search-language-understanding-bert/
https://blog.google/products/search/search-language-understanding-bert/
https://news.microsoft.com/source/features/ai/bing-vector-search/
https://news.microsoft.com/source/features/ai/bing-vector-search/
https://www.youtube.com/watch?v=BnYNdSIKibQ&list=PLD7HFcN7LXReJTWFKYqwMcCc1nZKIXBo9&index=9
https://www.youtube.com/watch?v=BnYNdSIKibQ&list=PLD7HFcN7LXReJTWFKYqwMcCc1nZKIXBo9&index=9
https://www.youtube.com/watch?v=BnYNdSIKibQ&list=PLD7HFcN7LXReJTWFKYqwMcCc1nZKIXBo9&index=9

Transactions on Pattern Analysis and Machine Intelli-
gence, 2010.

[21] Ruiqi Guo, Philip Sun, Erik Lindgren, Quan Geng,
David Simcha, Felix Chern, and Sanjiv Kumar. Ac-
celerating large-scale inference with anisotropic vector
quantization. In International Conference on Machine
Learning (ICML), 2020.

[22] Tiezheng Ge, Kaiming He, Qifa Ke, and Jian Sun. Op-
timized product quantization for approximate nearest
neighbor search. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
2013.

[23] Artem Babenko and Victor Lempitsky. The inverted
multi-index. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2014.

[24] Suhas Jayaram Subramanya, Fnu Devvrit, Harsha Vard-
han Simhadri, Ravishankar Krishnawamy, and Rohan
Kadekodi. Diskann: Fast accurate billion-point near-
est neighbor search on a single node. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,
and R. Garnett, editors, Advances in Neural Information
Processing Systems (NeurIPS), 2019.

[25] Jie Ren, Minjia Zhang, and Dong Li. Hm-ann: Efficient
billion-point nearest neighbor search on heterogeneous
memory. Advances in Neural Information Processing
Systems (NeurIPS), 2020.

[26] Aditi Singh, Suhas Jayaram Subramanya, Ravis-
hankar Krishnaswamy, and Harsha Vardhan Simhadri.
Freshdiskann: A fast and accurate graph-based ANN
index for streaming similarity search. arXiv preprint
arXiv:2105.09613, 2021.

[27] Siddharth Gollapudi, Neel Karia, Varun Sivashankar,
Ravishankar Krishnaswamy, Nikit Begwani, Swapnil
Raz, Yiyong Lin, Yin Zhang, Neelam Mahapatro,
Premkumar Srinivasan, et al. Filtered-diskann: Graph
algorithms for approximate nearest neighbor search with
filters. In Proceedings of the ACM Web Conference 2023
(WWW 23), 2023.

[28] Qi Chen, Bing Zhao, Haidong Wang, Mingqin Li,
Chuanjie Liu, Zengzhong Li, Mao Yang, and Jingdong
Wang. Spann: Highly-efficient billion-scale approxi-
mate nearest neighbor search. In 35th Conference on
Neural Information Processing Systems (NeurIPS 2021),
2021.

[29] Jason Lowe-Power, Abdul Mutaal Ahmad, Ayaz Akram,
Mohammad Alian, Rico Amslinger, Matteo Andreozzi,
Adrià Armejach, Nils Asmussen, Brad Beckmann,
Srikant Bharadwaj, et al. The gem5 simulator: Version
20.0+. arXiv preprint arXiv:2007.03152, 2020.

[30] Harsha Vardhan Simhadri, George Williams, Martin
Aumüller, Matthijs Douze, Artem Babenko, Dmitry
Baranchuk, Qi Chen, Lucas Hosseini, Ravishankar Kr-
ishnaswamny, Gopal Srinivasa, et al. Results of the
neurips’21 challenge on billion-scale approximate near-
est neighbor search. In NeurIPS 2021 Competitions and
Demonstrations Track. PMLR, 2022.

[31] Sunil Arya and David M Mount. Approximate nearest
neighbor queries in fixed dimensions. In Proceedings of
the fourth annual ACM-SIAM symposium on Discrete
algorithms (SODA), 1993.

[32] Marius Muja and David G Lowe. Scalable nearest neigh-
bor algorithms for high dimensional data. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
2014.

[33] Jingdong Wang, Naiyan Wang, You Jia, Jian Li, Gang
Zeng, Hongbin Zha, and Xian-Sheng Hua. Trinary-
projection trees for approximate nearest neighbor search.
IEEE transactions on pattern analysis and machine in-
telligence, 36(2):388–403, 2013.

[34] Qiang Huang, Jianlin Feng, Yikai Zhang, Qiong Fang,
and Wilfred Ng. Query-aware locality-sensitive hashing
for approximate nearest neighbor search. Proceedings
of the VLDB Endowment, 2015.

[35] Yifang Sun, Wei Wang, Jianbin Qin, Ying Zhang, and
Xuemin Lin. Srs: solving c-approximate nearest neigh-
bor queries in high dimensional euclidean space with a
tiny index. Proceedings of the VLDB Endowment, 2014.

[36] Martin Aumüller, Erik Bernhardsson, and Alexander
Faithfull. Ann-benchmarks: A benchmarking tool for
approximate nearest neighbor algorithms. In Interna-
tional conference on similarity search and applications.
Springer, 2017.

[37] Karima Echihabi, Kostas Zoumpatianos, Themis Pal-
panas, and Houda Benbrahim. Return of the lernaean
hydra: experimental evaluation of data series approxi-
mate similarity search. Proceedings of the VLDB En-
dowment, 2019.

[38] Mengzhao Wang, Xiaoliang Xu, Qiang Yue, and Yuxi-
ang Wang. A comprehensive survey and experimental
comparison of graph-based approximate nearest neigh-
bor search. arXiv preprint arXiv:2101.12631, 2021.

[39] Wen Li, Ying Zhang, Yifang Sun, Wei Wang, Mingjie Li,
Wenjie Zhang, and Xuemin Lin. Approximate nearest
neighbor search on high dimensional data—experiments,
analyses, and improvement. IEEE Transactions on
Knowledge and Data Engineering, 2019.

598 2023 USENIX Annual Technical Conference USENIX Association

[40] Kiana Hajebi, Yasin Abbasi-Yadkori, Hossein Shahbazi,
and Hong Zhang. Fast approximate nearest-neighbor
search with k-nearest neighbor graph. In Twenty-Second
International Joint Conference on Artificial Intelligence
(IJCAI), 2011.

[41] CXL Consortium. Compute ex-
press link 3.0 white paper. https://
www.computeexpresslink.org/_files/ugd/
0c1418_a8713008916044ae9604405d10a7773b.pdf,
2022.

[42] Huaicheng Li, Daniel S Berger, Lisa Hsu, Daniel Ernst,
Pantea Zardoshti, Stanko Novakovic, Monish Shah,
Samir Rajadnya, Scott Lee, Ishwar Agarwal, et al. Pond:
Cxl-based memory pooling systems for cloud platforms.
In Proceedings of the 28th ACM International Confer-
ence on Architectural Support for Programming Lan-
guages and Operating Systems, 2023.

[43] Hasan Al Maruf, Hao Wang, Abhishek Dhanotia, Jo-
hannes Weiner, Niket Agarwal, Pallab Bhattacharya,
Chris Petersen, Mosharaf Chowdhury, Shobhit Kanaujia,
and Prakash Chauhan. Tpp: Transparent page placement
for cxl-enabled tiered-memory. In Proceedings of the
28th ACM International Conference on Architectural
Support for Programming Languages and Operating
Systems, Volume 3, pages 742–755, 2023.

[44] Intel. Optane ssd 9 series. https://www.intel.com/
content/www/us/en/products/details/memory-
storage/consumer-ssds/optane-ssd-9-
series.html, 2021.

[45] Michael Anderson, Benny Chen, Stephen Chen, Summer
Deng, Jordan Fix, Michael Gschwind, Aravind Kalaiah,
Changkyu Kim, Jaewon Lee, Jason Liang, et al. First-
generation inference accelerator deployment at face-
book. arXiv preprint arXiv:2107.04140, 2021.

[46] Jeffrey Dean and Luiz André Barroso. The tail at scale.
Communications of the ACM, 2013.

[47] Guohao Dai, Tianhao Huang, Yuze Chi, Ningyi Xu,
Yu Wang, and Huazhong Yang. Foregraph: Explor-
ing large-scale graph processing on multi-fpga archi-
tecture. In Proceedings of the 2017 ACM/SIGDA In-
ternational Symposium on Field-Programmable Gate
Arrays (FPGA), 2017.

[48] Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur
Mutlu, and Kiyoung Choi. A scalable processing-in-
memory accelerator for parallel graph processing. In
Proceedings of the 42nd Annual International Sympo-
sium on Computer Architecture (ISCA), 2015.

[49] Shafiur Rahman, Nael Abu-Ghazaleh, and Rajiv Gupta.
Graphpulse: An event-driven hardware accelerator for
asynchronous graph processing. In 2020 53rd Annual
IEEE/ACM International Symposium on Microarchitec-
ture (MICRO). IEEE, 2020.

[50] Mikkel Thorup. Undirected single-source shortest paths
with positive integer weights in linear time. J. ACM,
46(3):362–394, 1999.

[51] Andy Diwen Zhu, Xiaokui Xiao, Sibo Wang, and Wen-
qing Lin. Efficient single-source shortest path and
distance queries on large graphs. In The 19th ACM
SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, KDD 2013. ACM, 2013.

[52] Linaro. The devicetree specification. .https://
www.devicetree.org/.

[53] Inc UEFI Forum. Advanced configuration and power
interface (acpi) specification version 6.4. https://
uefi.org/specs/ACPI/6.4/, 2021.

[54] Kenneth C. Knowlton. A fast storage allocator. Com-
munications of the ACM, 1965.

[55] Christopher Celio, Pi-Feng Chiu, Borivoje Nikolic,
David A Patterson, and Krste Asanovic. Boomv2: an
open-source out-of-order risc-v core. In First Work-
shop on Computer Architecture Research with RISC-V
(CARRV), 2017.

[56] Herve Jegou, Matthijs Douze, Jeff Johnson, Lu-
cas Hosseini, Chengqi Deng, and Alexandr Guzhva.
Faiss. https://github.com/facebookresearch/
faiss, 2018.

[57] Udit Gupta, Carole-Jean Wu, Xiaodong Wang, Maxim
Naumov, Brandon Reagen, David Brooks, Bradford Cot-
tel, Kim Hazelwood, Mark Hempstead, Bill Jia, et al.
The architectural implications of facebook’s dnn-based
personalized recommendation. In 2020 IEEE Inter-
national Symposium on High Performance Computer
Architecture (HPCA), pages 488–501. IEEE, 2020.

[58] Weijie Zhao, Shulong Tan, and Ping Li. Song: Approxi-
mate nearest neighbor search on gpu. In 2020 IEEE 36th
International Conference on Data Engineering (ICDE).
IEEE, 2020.

[59] Yuanhang Yu, Dong Wen, Ying Zhang, Lu Qin, Wen-
jie Zhang, and Xuemin Lin. Gpu-accelerated proximity
graph approximate nearest neighbor search and construc-
tion. In 2022 IEEE 38th International Conference on
Data Engineering (ICDE). IEEE, 2022.

[60] Miryeong Kwon, Donghyun Gouk, Sangwon Lee, and
Myoungsoo Jung. Hardware/software co-programmable

USENIX Association 2023 USENIX Annual Technical Conference 599

https://www.computeexpresslink.org/_files/ugd/0c1418_a8713008916044ae9604405d10a7773b.pdf
https://www.computeexpresslink.org/_files/ugd/0c1418_a8713008916044ae9604405d10a7773b.pdf
https://www.computeexpresslink.org/_files/ugd/0c1418_a8713008916044ae9604405d10a7773b.pdf
https://www.intel.com/content/www/us/en/products/details/memory-storage/consumer-ssds/optane-ssd-9-series.html
https://www.intel.com/content/www/us/en/products/details/memory-storage/consumer-ssds/optane-ssd-9-series.html
https://www.intel.com/content/www/us/en/products/details/memory-storage/consumer-ssds/optane-ssd-9-series.html
https://www.intel.com/content/www/us/en/products/details/memory-storage/consumer-ssds/optane-ssd-9-series.html
. https://www.devicetree.org/
. https://www.devicetree.org/
https://uefi.org/specs/ACPI/6.4/
https://uefi.org/specs/ACPI/6.4/
https://github.com/facebookresearch/faiss
https://github.com/facebookresearch/faiss

framework for computational SSDs to accelerate deep
learning service on large-scale graphs. In 20th USENIX
Conference on File and Storage Technologies (FAST 22),
2022.

[61] Youngeun Kwon, Yunjae Lee, and Minsoo Rhu. Tensor-
dimm: A practical near-memory processing architecture
for embeddings and tensor operations in deep learning.
In Proceedings of the 52nd Annual IEEE/ACM Inter-
national Symposium on Microarchitecture (MICRO),
2019.

[62] Miryeong Kwon, Junhyeok Jang, Hanjin Choi, Sangwon
Lee, and Myoungsoo Jung. Failure tolerant training with
persistent memory disaggregation over cxl. IEEE Micro,
2023.

[63] Jun Heo, Seung Yul Lee, Sunhong Min, Yeonhong Park,
Sung Jun Jung, Tae Jun Ham, and Jae W Lee. Boss:
Bandwidth-optimized search accelerator for storage-
class memory. In 2021 ACM/IEEE 48th Annual Inter-
national Symposium on Computer Architecture (ISCA).
IEEE, 2021.

[64] Liu Ke, Udit Gupta, Benjamin Youngjae Cho, David
Brooks, Vikas Chandra, Utku Diril, Amin Firoozshahian,
Kim Hazelwood, Bill Jia, Hsien-Hsin S Lee, et al. Rec-
nmp: Accelerating personalized recommendation with
near-memory processing. In 2020 ACM/IEEE 47th An-
nual International Symposium on Computer Architec-
ture (ISCA). IEEE, 2020.

[65] Nika Mansouri Ghiasi, Jisung Park, Harun Mustafa,
Jeremie Kim, Ataberk Olgun, Arvid Gollwitzer, Damla
Senol Cali, Can Firtina, Haiyu Mao, Nour Almad-
houn Alserr, et al. Genstore: a high-performance in-
storage processing system for genome sequence anal-
ysis. In Proceedings of the 27th ACM International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2022.

[66] Joel Nider, Craig Mustard, Andrada Zoltan, John Rams-
den, Larry Liu, Jacob Grossbard, Mohammad Dashti,
Romaric Jodin, Alexandre Ghiti, Jordi Chauzi, et al. A
case study of processing-in-memory in off-the-shelf sys-
tems. In USENIX Annual Technical Conference (ATC),
2021.

600 2023 USENIX Annual Technical Conference USENIX Association

	Introduction
	Background
	Approximate Nearest Neighbor Search
	Towards Billion-scale ANNS
	Compute Express Link for Memory Pool

	A High-level Viewpoint of CXL-ANNS
	Challenge Analysis of Billion-scale ANNS
	Design Consideration and Motivation
	Collaborative Approach Overview

	Software Stack Design and Implementation
	Local Caching for Graph
	Data Placement on the CXL Memory Pool

	Collaborative Query Service Acceleration
	Accelerating Distance Calculation
	Prefetching for CXL Memory Pool
	Fine-Granular Query Scheduling

	Evaluation
	Evaluation Setup
	Overall Performance
	Collaborative Query Service Analysis
	Scalability Test

	Discussion and Acknowledgments
	Conclusion

