
This paper is included in the Proceedings of the
2023 USENIX Annual Technical Conference.

July 10–12, 2023 • Boston, MA, USA
978-1-939133-35-9

Open access to the Proceedings of the
2023 USENIX Annual Technical Conference

is sponsored by

Distributed Transactions at
Scale in Amazon DynamoDB

Joseph Idziorek, Alex Keyes, Colin Lazier, Somu Perianayagam,
Prithvi Ramanathan, James Christopher Sorenson III, Doug Terry, and

Akshat Vig, Amazon Web Services
https://www.usenix.org/conference/atc23/presentation/idziorek

Distributed Transactions at Scale in Amazon DynamoDB

Joseph Idziorek, Alex Keyes, Colin Lazier, Somu Perianayagam
Prithvi Ramanathan, James Christopher Sorenson III, Doug Terry, Akshat Vig

dynamodb-paper@amazon.com

Amazon Web Services

Abstract
NoSQL cloud database services are popular for their
simple key-value operations, high availability, high scala-
bility, and predictable performance. These characteristics
are generally considered to be at odds with support for
transactions that permit atomic and serializable updates
to partitioned data. This paper explains how transactions
were added to Amazon DynamoDB using a timestamp
ordering protocol while exploiting the semantics of a key-
value store to achieve low latency for both transactional
and non-transactional operations. The results of experi-
ments against a production implementation demonstrate
that distributed transactions with full ACID properties
can be supported without compromising on performance,
availability, or scale.

1 Introduction

Application developers have come to rely on database
transactions for dealing with failures and concurrency in
a distributed system. ACID (atomicity, consistency, isola-
tion, and durability) properties simplify the development
process. Transaction atomicity ensures that sequences of
operations can be executed without worrying about fail-
ures leaving a partial result. Transaction isolation ensures
that the developer can write their code without worrying
about interference from concurrently executing applica-
tion instances that read and write shared data.

Despite their utility, NoSQL databases have not gen-
erally supported transactions. NoSQL databases such as
key-value stores emerged as an alternative to relational
databases with a strong emphasis on scalability and per-
formance, especially for customers moving their core
data into the cloud. Core features of relational databases,
including SQL queries and transactions, were sacrificed
to provide automatic partitioning for unlimited scalabil-
ity, replication for fault-tolerance, and low latency access
for predictable performance.

Amazon DynamoDB [9] (not to be confused with Dy-
namo [8]) powers applications for hundreds of thousands
of customers and multiple high-traffic Amazon systems
including Alexa, the Amazon.com sites, and all Amazon
fulfillment centers. In 2022, over the course of Prime
Day, Amazon systems made trillions of calls to the Dy-
namoDB API, and DynamoDB maintained high availabil-
ity while delivering single-digit millisecond responses
and peaking at 105.2 million requests per second. When
customers of DynamoDB requested ACID transactions,
the challenge was how to integrate transactional opera-
tions without sacrificing the defining characteristics of
this critical infrastructure service: high scalability, high
availability, and predictable performance at scale.

In designing the transaction protocol for DynamoDB,
we chose to build transactions differently from other sys-
tems and cloud services. The DynamoDB transaction
design has the following unique combination of capabili-
ties:

Transactions are submitted as single request. Transac-
tions have commonly been introduced into the database
application programming interface (API) with two op-
erations that begin and end a transaction (such as BE-
GIN and COMMIT in PostgreSQL). These operations
serve to delimit the sequence of database operations that
are performed within the transaction. The downside of
such an abstraction is that there might be a long time
between when an application starts a transaction and
when it completes its work by committing the transac-
tion. In a multi-tenant service, long-running transactions
are undesirable as they tie up system resources on servers
that manage data for multiple applications. Instead, Dy-
namoDB transactions comprise a set of operations that
are submitted as a single request and either succeed or
fail without blocking. Like other DynamoDB operations,
transactions provide predictable performance at scale,
which is an architectural tenet for DynamoDB.

Transactions rely on a transaction coordinator while
non-transaction operations bypass the two-phase coor-

USENIX Association 2023 USENIX Annual Technical Conference 705

dination. Requiring individual Gets and Puts to use the
full transaction coordination and commit protocol would
have had too great of a performance impact on these fre-
quent operations. Thus, all non-transaction operations in
DynamoDB are executed directly on the storage servers
for the data being accessed, while still being serialized
with respect to multi-item transactions.

Transactions update items in place. Increasingly,
multi-version concurrency control (MVCC) is employed
in database services so that read-only transactions can
access old versions of the data while transactions that
write data produce new versions. DynamoDB does not
support multiple versions of the same item, and adding
multi-version concurrency control would have entailed
major changes to the storage servers, required version
retention policies, and introduced additional storage costs
that would need to be passed on to our customers. The im-
plication of a single-version store for transaction process-
ing is that read-only and read-write transactions might
conflict.

Transactions do not acquire locks. While two-phase
locking is used traditionally to prevent concurrent trans-
actions from reading and writing the same data items, it
has drawbacks. Locking restricts concurrency and can
lead to deadlocks. Moreover, it requires a recovery mech-
anism to release locks when an application fails after
acquiring locks as part of a transaction but before that
transaction commits. To simplify the design and take ad-
vantage of low-contention workloads, DynamoDB uses
an optimistic concurrency control scheme that avoids
locking altogether.

Transactions are serially ordered using timestamps.
Techniques for ordering transactions based on times-
tamps [4] were devised decades ago. The basic idea is
that each transaction is assigned a timestamp that defines
its position in the serial order. As long as transactions
appear to execute at their assigned time, serializability is
achieved. A key innovation in the DynamoDB transaction
design is extending timestamp ordering to accommodate
and exploit the semantics of a key-value store.

This paper presents the DynamoDB transaction API.
It also gives examples of how transactions may be used
in practice. Furthermore, it illustrates the path of a trans-
action through the service, describes optimizations to
timestamp ordering for workloads with a mix of trans-
actions and singleton operations on a key-value store
and, it reports the results of experiments run on a produc-
tion system, demonstrating predictable performance and
scalability.

Operation Description

PutItem
Inserts a new item or replaces an old
item with a new item.

UpdateItem
Updates an existing item or adds a
new item to the table if it doesn’t
already exist.

DeleteItem Deletes an item from the table
GetItem Reads the item with a given key

Table 1: DynamoDB CRUD APIs for items

2 DynamoDB Application Programming
Interface

2.1 Key-value store
DynamoDB [9] is a fully managed NoSQL database
service that provides fast and predictable performance
at any scale. DynamoDB was motivated by the lessons
learned from Dynamo [8] and shares most of the name
but little of its architecture. Customers create tables that
can grow to virtually any size. A DynamoDB table is
a collection of items, and each item is a collection of
attributes. Each item is uniquely identified by a primary
key. DynamoDB provides a simple interface to store or
retrieve items from a table or an index.

2.2 Read and write operations
Table 1 contains the primary operations available to
clients for reading and writing items in DynamoDB ta-
bles. Since DynamoDB is a key-value store, the most
common operations used by applications are for read-
ing an item (GetItem), inserting (PutItem), updating
(UpdateItem), and deleting (DeleteItem) an item with
a given key. These last three operations are collectively
called writes. A write operation can optionally specify a
condition that must be satisfied to be successful.

2.3 Transactional operations
As shown in Table 2, DynamoDB provides two oper-

ations for performing transactions: TransactGetItems
for read transactions and TransactWriteItems for
write transactions. These operations are submitted
as a single request and either succeed or fail im-
mediately without blocking. TransactGetItems and
TransactWriteItems are executed in a serializable or-
der with respect to other DynamoDB operations.
TransactGetItems retrieves the latest versions of

items from one or more tables. Since it conceptually
reads all of the items at a single point in time, the re-
turned values are from a consistent snapshot. DynamoDB
rejects the TransactGetItems request if a conflicting

706 2023 USENIX Annual Technical Conference USENIX Association

//Check if customer exists
Check checkItem = new Check()

.withTableName("Customers")

.withKey("CustomerUniqueId")

.withConditionExpression("attribute_exists(CustomerId)");

//Update status of the item in Products
Update updateItem = new Update()

.withTableName("Products")

.withKey("BookUniqueId")

.withConditionExpression("expected_status" = "IN_STOCK")

.withUpdateExpression("SET ProductStatus = SOLD");

//Insert the order item in the orders table
Put putItem = new Put()

.withTableName("Orders")

.withItem("{"OrderId": "OrderUniqueId", "ProductId" :"BookUniqueId", "CustomerId"
:"CustomerUniqueId", "OrderStatus":"CONFIRMED","OrderCost": 100}")

.withConditionExpression("attribute_not_exists(OrderId)")

TransactWriteItemsRequest twiReq = new TransactWriteItemsRequest()
.withTransactItems([checkItem ,putItem , updateItem]);

//Single transaction call to DynamoDB
DynamoDBclient.transactWriteItems(twiReq);

Listing 1: DynamoDB Write Transaction Example

Operation Description

TransactGetItems
Reads a set of items from
a consistent snapshot and
returns their values

TransactWriteItems

Performs a set of writes
that include PutItem, Up-
dateItem, and DeleteItem
operations and optionally
a set of conditions

CheckItem
Checks that the latest
value of an item matches
the condition

Table 2: DynamoDB Transaction APIs

operation is in the process of modifying any item being
read.
TransactWriteItems is a synchronous and idempo-

tent write operation that allows multiple items to be cre-
ated, deleted, or updated atomically in one or more tables.
TransactWriteItems uses a client request token to
guarantee idempotency. The transaction may optionally
include one or more preconditions on current values of
the items. DynamoDB rejects the TransactWriteItems
request if any of the preconditions are not met.

To motivate the need for multi-table write transactions
with preconditions, consider an online marketplace appli-
cation. The application stores data in three DynamoDB

tables - Customers, Products, and Orders. Upon reg-
istration, every customer receives a unique identifier that
is used as a key in the Customers table which stores cus-
tomer information such as customer id, customer billing
and shipping address. The Products table contains infor-
mation about the products, such as their price and avail-
ability; each product is uniquely identified by its product
identifier. Orders are stored in the Orders table where
each order has a unique identifier. A successful order
requires the customer account to be verified, the product
to be available and marked as sold, and the order itself to
be created. These operations should be performed atomi-
cally as a single transaction. Listing 1 gives an example
of a transaction that purchases a book. This transaction
verifies that the customer account exists without updating
any attributes in the Customers table using CheckItem,
verifies the book is in stock, and marks the product as sold
in the Products table using UpdateItem, and creates an
entry in the Orders table using PutItem.

3 Transaction execution

3.1 Transaction routing

All operations sent to DynamoDB reach a fleet of front-
end hosts called request routers. Request routers authenti-
cate each request and route the request to the appropriate
storage nodes based on the key being accessed. The map-
ping of key-range to storage nodes is maintained in a

USENIX Association 2023 USENIX Annual Technical Conference 707

Figure 1: DynamoDB Transactions high-level architecture

metadata subsystem.
Similar to non-transactional requests, each transaction

operation initially is received by a request router. The
request routers performs the needed authentication and
authorization of the request and forwards it to a fleet
of transaction coordinators. Any transaction coordinator
in the fleet can take responsibility for any transaction.
The transaction coordinator breaks the transaction into
item-level operations and runs a distributed protocol in
which the storage nodes for these items participate. Fig-
ure 1 illustrates the high-level diagram of the components
involved in the execution of a transaction.

3.2 Timestamp ordering
Timestamp ordering [4, 13] is used to define the logi-
cal execution order of transactions. Upon receiving a
transaction request, the transaction coordinator assigns a
timestamp to the transaction using the value of its current
clock. To handle the overall transactions load, there are a
large number of transaction coordinators operating in par-
allel, and different transaction coordinators assign times-
tamps to different transactions. As long as transactions
appear to execute at their assigned time, serializability is
achieved.

Once a timestamp has been assigned and preconditions
checked, the storage nodes participating in the transac-
tion can perform their portions of the transaction without
coordination. Each storage node independently is respon-
sible for ensuring that requests involving its items are
executed in the proper order and for rejecting conflicting
transactions that cannot be ordered properly.

Although serializability holds even if the transaction
coordinators do not have synchronized clocks, more ac-
curate clocks result in more successful transactions and
a serialization order that complies with real time. The
clocks in the coordinator fleet are sourced from the AWS
time-sync service [1], thus keeping them closely in sync

(within a few microseconds). However, even with per-
fectly synchronized clocks, transactions can arrive at stor-
age nodes out-of-order due to message delays in the net-
work, failures and recovery of transaction coordinators,
and other system issues. Storage nodes deal with transac-
tions that arrive in any order using stored timestamps.

3.3 Write transaction protocol
A two-phase protocol ensures that all of the writes within
a transaction are performed atomically and in the proper
order. To achieve atomicity, the transaction coordinator
prepares all items in the first phase. In the second phase, if
all the storage nodes accept the transaction, then the trans-
action coordinator commits the transaction and instructs
the storage nodes to perform their writes. If any of the
storage node cannot accept the transaction, then the trans-
action coordinator will cancel the transaction. Listing
2 shows the pseudo code for the TransactWriteItem
protocol.

To implement timestamp ordering for write trans-
actions, DynamoDB records the timestamp of the
write operation with every item. All write opera-
tions including singleton writes and writes within
TransactWriteItems update the item timestamp.

Storage nodes also persist per-transaction metadata
for each in-flight transaction, including the transaction’s
identifier and timestamp. This metadata is attached to
items that are part of the transaction and remain with the
items during partition-related changes, such as split. This
ensures that such changes do not interfere with transac-
tions and can happen in parallel. This information about a
transaction is updated and checked during the two-phase
protocol and can be discarded once the transaction has
completed.

In the prepare phase of the protocol, the transaction co-
ordinator sends a message to the primary storage nodes
for the items being written. This prepare message in-

708 2023 USENIX Annual Technical Conference USENIX Association

Figure 2: Two-phase protocol

TransactWriteItem(TransactWriteItems input):
#Prepare all items
TransactionState = PREPARING
for operation in input:

sendPrepareAsyncToSN(operation)

waitForAllPreparesToComplete()

#Evaluate whether to commit or cancel the
transaction
if all prepares succeeded:

TransactionState = COMMITTING
for operation in input:

sendCommitAsyncToSN(operation)
waitForAllCommitsToComplete()
TransactionState = COMPLETED
return SUCCESS

else:
TransactionState = CANCELLING
for operation in input:

sendCancellationAsyncToSN(operation)
waitForAllCancellationsToComplete()
TransactionState = COMPLETED
return ReasonForCancellation

Listing 2: TransactWriteItem protocol

cludes the transaction timestamp, transaction ID, and the
operation that the transaction intends to perform on the
item. The storage node accepts the transaction if all of
the following criteria are true for every local item that is
part of the transaction:

• All preconditions on the item are met.

• Writing the item would not violate of any of the
system restrictions such as exceeding the maximum
item size.

• The transaction’s timestamp is greater than the
item’s timestamp indicating when it was last writ-
ten.

• The set of previously accepted transactions that are
attempting to write the same item is empty.

Listing 3 shows the pseudo code for prepare phase of
the TransactWriteItem protocol. Note that these last
two conditions are correct but over restrictive and can be
relaxed as discussed in the next section.

If the transaction is accepted by all the participating
storage nodes, then the transaction coordinator will com-
mit the transaction. If the transaction is not accepted by
any of the participating storage nodes, then the transac-
tion coordinator will cancel the transaction. After the
decision has been made to commit the transaction, each
participant storage node performs the desired writes on
its local items and records the timestamp of the trans-
action as the items’ last write timestamp. Items for
which a precondition was checked but that are not being
written also have their timestamps updated. Listing 4
shows the pseudo code for commit/cancel phase of the
TransactWriteItem protocol.

After all participant storage nodes have executed the
commit or cancellation, the transaction coordinator re-
sponds to the request router with a “completed” message
and whether the transaction successfully committed. The
request router forwards this response to the customer.

Items that have been deleted require special handling
since, once they are deleted, there is no longer a last write
timestamp. Instead of maintaining tombstones for deleted
items, which would incur both a high storage cost and
garbage collection cost if items are frequently created and
deleted, DynamoDB stores a partition-level max delete
timestamp. When an item is deleted, if the deleting trans-
action’s timestamp is greater than the current max delete
timestamp, then the max delete timestamp is set to the
transaction’s timestamp. When a storage node receives a
prepare message for a write to a non-existent item, it com-
pares the new transaction’s timestamp against the maxi-
mum delete timestamp to decide whether to accept or re-

USENIX Association 2023 USENIX Annual Technical Conference 709

def processPrepare(PrepareInput input):
item = readItem(input)

if item != NONE:
if evaluateConditionsOnItem(item , input.conditions)

AND evaluateSystemRestrictions(item , input)
AND item.timestamp < input.timestamp
AND item.ongoingTransactions == NONE:

item.ongoingTransaction = input.transactionId
return SUCCESS

else:
return FAILED

else: #item does not exist
item = new Item(input.item)
if evaluateConditionsOnItem(input.conditions)

AND evaluateSystemRestrictions(input)
AND partition.maxDeleteTimestamp < input.timestamp:

item.ongoingTransaction = input.transactionId
return SUCCESS

return FAILED

Listing 3: TransactWriteItem protocol - Prepare phase

ject the transaction. Storing the max delete timestamp at
a partition level provides a correct and efficient solution.
In the current approach, transactions may be cancelled in
instances where they would not have been cancelled if
tombstones were maintained for deleted items. Though
in practice, an insignificant percentage of transactions
are cancelled due to the transaction’s timestamp being
lower than the partition’s maximum delete timestamp.

3.4 Read transaction protocol

Read transactions are also performed using a two-phase
protocol, though in a different manner from write trans-
actions and from other systems. The standard timestamp
ordering scheme maintains a read timestamp on each
item. Updating this timestamp for operations in a read
transaction would have turned every read into a more
costly write operation on persistent, replicated data. To
avoid this latency and cost, DynamoDB devised a two-
phase writeless protocol for executing read transactions.

In the first phase of the protocol, the transaction co-
ordinator reads all the items that are in the transaction’s
read-set. If any of these items are currently being writ-
ten by another transaction, then the read transaction is
rejected; otherwise, the read transaction moves to the sec-
ond phase. In its response to the transaction coordinator,
the storage node not only returns the item’s value but also
its current committed log sequence number (LSN). The
current committed LSN of the item is the sequence num-
ber of the last write that the storage node performed and
acknowledged to the client. The LSN increases monoton-
ically.

In the second phase, the items are read again. If there

have been no changes to the items between the two
phases, namely the LSNs have not changed, then the
read transaction returns successfully with all of the item
values that were fetched. In the case where an item has
been updated between the two rounds of the protocol, the
read transaction is rejected.

In both failure and success cases, the storage node re-
turns the LSN. By doing so, the transaction coordinator is
able to redrive another round of reads for all items with-
out having to restart the entire transaction. In the event
that the item is being prepared by a write transaction, the
storage node simply rejects the read.

3.5 Recovery and fault tolerance

Since DynamoDB automatically recovers from storage
node failures, such failures are of no concern to the trans-
action protocol. If a storage node that is the primary for
an item fails, then leadership will fail over to another
storage node that is part of that item’s replication group.
The metadata about transactions that had been accepted
by the previous primary node is persistently stored and
replicated within the group, and so is immediately avail-
able to the new primary. Transaction coordinators when
continuing the transaction protocol are not even aware
that they may be communicating with a different set of
participating storage nodes.

Transaction coordinator failures are of greater concern.
Transaction coordinators can fail because of hardware or
software issues. To ensure atomicity of transactions and
that transactions complete in the face of failures, coor-
dinators maintain a persistent record of each transaction
and its outcome in a ledger. A recovery manager peri-

710 2023 USENIX Annual Technical Conference USENIX Association

def processCommit(CommitInput input):
item = readItem(input)

if item == NONE
OR item.ongoingTransaction != input.transactionId:
return COMMIT_FAILED

applyChangeForCommit(item , input.writeOperation)
item.ongoingTransaction = NONE
item.timestamp = input.timestamp
return SUCCESS

def processCancel(CancellationInput input):
item = readItem(input)

if item == NONE
OR item.ongoingTransaction != input.transactionId:

return CANCELLATION_FAILED

item.ongoingTransaction = NONE

#item was only created as part of this transaction
if item was created during prepare:

deleteItem(item)

return SUCCESS

Listing 4: TransactWriteItem protocol - Commit/Cancel phase

odically scans the ledger looking for transactions that
have not yet been completed (and for which a reason-
able amount of time has passed since the transaction
was received). Such stalled transactions are assigned to
a new transaction coordinator who resumes executing
the transaction protocol. In the case where a transaction
coordinator is incorrectly determined to have failed and
its transaction reassigned, it is okay for multiple coordi-
nators to be finishing the same transaction at the same
time since duplicate attempts to write an item are ignored
by its storage node.

When the transaction has been fully processed, a com-
pleted record is written to the ledger indicating that no
further work is required. Information about a transaction
can be purged from the ledger when it has been com-
pleted, though retaining these records turns out to be
useful for monitoring and debugging.

The transaction ledger is a DynamoDB table with
transaction identifiers as the key. Multiple recovery man-
agers regularly scan the ledger in parallel for stalled trans-
actions that must be resumed. Each recovery manager
starts its scan of the table from a random key and scans
up to thousands of transactions.

Storage nodes also invoke recovery when local items
have stalled transactions. If a storage node receives a
write or read for an item that is already being written by
another transaction, then it checks to see if the pending
transaction on the item may have stalled. If the accepted

transaction has a timestamp that is older than some thresh-
old, the storage node sends a message with the key for
the item and the pending transaction id. The recovery
manager receiving this message checks the ledger for
the state of the transaction and, if the transaction has not
been completed, resumes its execution.

4 Adapting timestamp ordering for key-
value operations

The classic timestamp ordering concurrency control
scheme [4, 13] can be extended with novel optimizations
when applied to a key-value store where reads and writes
of individual items are mixed with multi-item transac-
tions. Individual key get and whole item put operations
can be added to an ordered execution history, while allow-
ing for increased concurrency and the ability to execute
operations out of order. We have implemented some of
these techniques in DynamoDB and others we plan to
integrate as we hear more feedback from our customers.
This section describes our innovations on timestamp or-
dering along with the benefits.

Reads to individual items can always be performed
successfully even if there is a prepared transaction that is
attempting to write that item. A get operation that is not
part of a transaction is routed directly to a storage node
that is responsible for the key of the item being read, by-
passing transaction coordinators. The contacted storage

USENIX Association 2023 USENIX Annual Technical Conference 711

node immediately returns the latest stored value regard-
less of whether a prepared transaction may later overwrite
the item. Implicitly, this get operation is assigned a read
timestamp that is later than the write timestamp on the
stored item and before the commit timestamp of the pre-
pared transaction. In other words, the read is serialized
between the last completed write and the pending trans-
action.

Writes to individual items can be performed immedi-
ately and serialized before any prepared transactions in
many cases. Non-transactional put requests are also di-
rectly routed to the storage nodes for the item being writ-
ten. The primary storage node assigns a write timestamp
that is earlier than the timestamps of any transactions
in the prepared state. Note that a prepared transaction
has not yet performed its intended write to the item, and
thus it is okay for a received put to jump ahead of such
a transaction in the serialization order. The same holds
for individual modify and delete operations that are re-
ceived directly by storage nodes. The outcome of such
operations will likely be overwritten by a prepared trans-
action if and when it commits. There is one case where
a single-item write cannot jump ahead of a previously
prepared transaction, namely when a condition on the
item had been checked during the process of preparing
the transaction and the newly received write operation
may violate that condition. For example, suppose that a
write transaction is attempting to withdraw 100 dollars
from a bank account and it includes a pre-condition to en-
sure that the current balance contains sufficient funds. If
this transaction is in the prepared state, and its condition
has been verified, then the system cannot allow another
withdrawal that reduces the balance below 100 dollars
to jump ahead of the prepared transaction. Nor can the
system permit the item to be deleted. In general, it is
challenging for storage nodes to determine whether a pre-
viously checked arbitrary condition might be violated by
a newly received write. However, doing so for common
conditions, like numerical bounds checking, could sub-
stantially reduce rejected write operations in contentious
workloads.

Writes to individual items can be performed immedi-
ately or delayed and serialized after any prepared trans-
actions in other cases. Even if a newly arriving single
item write operation violates a checked condition for a
prepared transaction, the storage node need not reject the
write. The storage node can buffer the write operation
until the transaction completes. Note that an already pre-
pared transaction is expected to commit or cancel quickly.
Waiting for the transaction is not likely to add significant
delay to new write operations and the added delay is
typically less than rejecting the write and requiring the
client to resubmit it. Once the transaction is completed, a
queued write operation can be assigned a later timestamp

and serialized after the transaction. As a further optimiza-
tion, if the storage node receives a put or delete operation
that has no precondition, then this operation can be as-
signed a write timestamp that is later than that of any
previously prepared transactions and can be performed
immediately. If and when a prepared transaction with an
earlier timestamp commits, its writes will be ignored.

Write transactions can be accepted even with an old
timestamp. If a write operation that is part of a transac-
tion arrives at a storage node that has already performed
a write (either an individual put or transactional put op-
eration) with a later write timestamp, this transaction
can still be accepted and enter the prepared state. If this
transaction is committed, its write operation is ignored
with the observation that, even if performed earlier, it
would have been completely overwritten by the later put
operation. This argument does not hold if the last write
was a modify operation that partially updated the item’s
contents. The benefit of accepting a transaction with an
old timestamp, although it has no effect on some items
being written, is that the transaction may contain write
operations on other items that are allowed to complete.

Multiple transactions that write the same item may
be prepared at the same time. A storage node that has
already prepared a transaction can accept a second trans-
action that is attempting to write the same item. That
is, for any given item, a series of transactions that are
writing the item may enter the prepared state before any
of those transactions commit and perform their writes. If
the transactions contain put operations that fully over-
write the item’s contents (or delete operations), then
the transactions can actually commit in any order as long
as the put (or delete) of the transaction with the latest
timestamp is the last one to be performed. Transactions
with modify operations that perform partial updates must
execute in their assigned timestamp order since the final
value of the item depends on the sequence of execution.

Read transactions can be executed in a single round
rather than using a two-phase protocol. A transaction
that reads multiple items could complete in a single phase
as follows. Suppose that storage nodes supported a vari-
ant of the GetItem operation, called GetItemWithTimes-
tamp, that takes a read timestamp as a parameter in ad-
dition to a primary key. This GetItemWithTimestamp
operation returns the latest value of the item if its last
write timestamp is earlier than the given read timestamp
and if any prepared transactions have later timestamps,
and otherwise rejects the request. When presented with a
new read transaction, the transaction coordinator assigns
a timestamp for the transaction and calls GetItemWith-
Timestamp in parallel for each item that is being read.
The coordinator buffers the item values that are fetched.
If none of the storage nodes reject the get call for having
an old timestamp, then the coordinator returns the set of

712 2023 USENIX Annual Technical Conference USENIX Association

buffered values as the response to the read transaction
call; otherwise, it returns an exception. This approach
is optimistic in that a concurrent write to any one of
the items being read could cause the transaction to be
rejected. While conceptually simple, there is a subtle po-
tential problem with this approach, namely the storage
node could later accept a write with a timestamp that is
earlier than that of the previously executed read transac-
tion. That could cause a subsequent read-only transac-
tion to not be serializable with respect to a previously
executed transaction. This is a well-known issue with
timestamp ordering and is avoided by having storage
nodes maintain a timestamp recording when each item
was last read in addition to the last write timestamp. Stor-
age nodes would then require future write transactions
to have timestamps that are later than both the previous
read and write timestamps on all items being written.

Transactions that write multiple items in a single par-
tition can be executed in a single round rather than using
a two-phase protocol. If all of the items that are being
written in a transaction happen to reside in the same par-
tition, and hence are stored on the same storage nodes,
then the transaction does not require separate prepare and
commit rounds. Since there is only one primary storage
node participating in the transaction, it can perform all
of the pre-condition checks that are required to accept
the transaction and then immediately perform the write
operations. The contacted storage node informs the trans-
action coordinator whether the transaction completed
successfully.

5 Experiments

This section presents our findings about the performance
of transaction requests along various dimensions, such as
request rate, transaction size, and contentious workloads.

5.1 Comparison of latencies for varying
throughput of transactions

We conducted an experiment that scaled up the transac-
tion request rate while maintaining the same number of
operations per transaction to demonstrate that scale has
a minimal effect on the latency of transactions in Dy-
namoDB. There were three workloads in this experiment:
one with fifty percent writes and fifty percent reads, one
with one hundred percent reads, and one with one hun-
dred percent writes. A uniform key distribution and an
item size of 900 bytes were used in these tests. Workloads
were scaled from 100 thousand to 1 million operations
per second. Note that 1 million operations per second are
not same as 1 million transactions per second, as each
transaction consists of 3-operations. Figure 3 and Fig-
ure 4 shows the 50th and 99th percentile performance of

Figure 3: Comparison of TransactGetItems latencies
for varying throughput

Figure 4: Comparison of TransactWriteItems laten-
cies for varying throughput

TransactGetItems and TransactWriteItems opera-
tions for each workload. With the increase in throughput,
both TransactGetItems and TransactWriteItems
exhibit negligible variances at P50. The latency increases
slightly at P99 as the request rate increases; this is due
to increased java garbage collection on the transaction
coordinators when the load is heavier.

5.2 Comparison of latencies for varying
number of operations per transaction

We conducted an experiment to evaluate the impact of
transaction size on performance by varying the number
of read and write operations per transaction while main-
taining a constant total number of operations. The same
uniform key distribution and items of 900 bytes were
used as the previous test. Workloads ranged from access-
ing 3 to 100 items per transaction at a constant rate of 1
million items per second.

Figure 5 and Figure 6 show the performance of the
read and write transactions for the various workloads at

USENIX Association 2023 USENIX Annual Technical Conference 713

Figure 5: Comparison of latencies for varying number of
operations per TransactGetItems request

Figure 6: Comparison of latencies for varying number of
operations per TransactWriteItems request

the 50th and 99th percentiles. As the number of opera-
tions in each transaction increases, so does the latency.
Although reads and writes to items within a transaction
are processed in parallel, the latency of the transaction
request is determined by its slowest operation. Trans-
actions that involve a greater number of operations are
more likely to experience a slow read or write. Addition-
ally, the latency of TransactWriteItems is determined
by the time it takes to persist the request to the ledger.
Larger requests take longer to write to the ledger. Also,
large transactions result in a larger message payload for
the request, which takes longer to travel over the network
between the request router and transaction coordinator.

5.3 Comparison of latencies for transac-
tions vs non-transactions

To examine the performance of transactions vs
non-transactional requests to DynamoDB, we con-
ducted an experiment comparing the performance
of single operation transactional reads and writes

Figure 7: Comparison of latencies for GetItem vs single
operation TransactGetItems request

Figure 8: Comparison of latencies for PutItem vs single
operation TransactWriteItems request

against non-transactional singleton reads and writes.
For this experiment, we ran tests that submitted
100 thousand requests per second for each of the
following DynamoDB APIs; TransactWriteItems
(transactional write), TransactGetItems (transactional
read), PutItem (singleton non-transactional write), and
strongly consistent GetItem (singleton non-transactional
read). Each request accessed a 900 byte item using the
same uniform key distribution that was used in the previ-
ous experiment.

Figure 7 shows the performance of single operation
transactional vs non-transactional reads at the 50th and
99th percentile. Latency for read transactions is slightly
less than 2x the latency for non-transactional reads, on
account of the two consistent reads that are required as
part of the TransactGetItems protocol.

Figure 8 shows the performance of single operation
transactional vs non-transactional writes at the 50th and
99th percentiles. Latency for write transactions is about
4x the latency of non-transactional writes. This is as a
result of the two-phase write protocol being executed

714 2023 USENIX Annual Technical Conference USENIX Association

Figure 9: Cancellation rates for workloads with con-
tention index = 0.001

on each TransactWriteItems request, with additional
overhead being added for writing and checkpointing the
transaction state to the Transaction Ledger.

5.4 Comparison of cancellation rate for
varied contentious workloads

To examine the performance of transactions on con-
tentious workloads, we ran an experiment with a fixed
pool of hot items while scaling up throughput. Contention
arises when multiple transactions are concurrently try-
ing to access the same items(which are referred to as
hot items). In this context, a contention index [16] refers
to the fraction of hot items that are accessed by a given
transaction. For these experiments, throughput was scaled
from 10 thousand to 100 thousand transactions per sec-
ond with a fixed contention index of 0.001, which indi-
cates that each transaction accesses one of one thousand
hot items [16]. The experiments ran with three differ-
ent workloads: workload A consists of write transactions
only, workload B consists of 50% write transactions +
50% read transactions, and workload C consists of trans-
actions + non-transactions operations (25% write transac-
tions, 25% read transactions, 25% non-transaction writes,
25% non-transaction consistent reads). Each transaction
accesses 10 items with one of the items being from the
hot item pool and the remaining 9 items being from a
much larger set of keys. For non-transaction reads and
writes, each item is chosen from the hot item pool. For
each test, we measured the cancellation rate, which is the
percentage of requests that were rejected because of a
conflict with another transaction on a given item.

Figure 9 reports the cancellation rates for the work-
loads with contention index = 0.001. For all workloads,
the cancellation rate increases with the transaction re-
quest rate. As each item can only be acted upon by a
single transaction at a time, the level of contention and
the cancellation rate rise when more transactions include

Figure 10: Cancellation rates for workload B with con-
tention index = 0.001. Note: each request type represents
an equal portion of total traffic

Figure 11: Cancellation rates for workload C with con-
tention index = 0.001. Note: each request type represents
an equal portion of total traffic

operations on the pool of hot items. Workload A, write
transactions only, had the highest rate of cancellations for
all transaction requests rates. Comparatively, workload B,
with 50% write transactions and 50% read transactions,
had about half the cancellation rate as workload A at all
levels of throughput. The cancellation rates are lower for
workload B as read transactions cannot be the source of
conflict.

A TransactGetItems operation will be cancelled (re-
jected) if any item being read has a write transaction
in progress or if the item has changed between the two
phases, but will not trigger a cancellation of any other op-
eration. Moreover, figure 10 highlights that read and write
transactions were cancelled at similar rates for workload
B at all throughput levels with both types of transactions
only getting cancelled if there was an ongoing write trans-
action on the targeted item.

Workload C had the lowest cancellation rates at all
throughput levels, as a result of having fewer sources of
conflict than the other workloads. Figure 11 provides a

USENIX Association 2023 USENIX Annual Technical Conference 715

breakdown of cancellation rates by operation type for
workload C. GetItem (non-transaction reads) had no
cancellations at all throughput levels as they are seri-
alizable with transactions and do not get rejected; if a
GetItem request is received while a write transaction is
in progress on a given item, the GetItem will read the cur-
rent item value without conflict. Both UpdateItem (non-
transaction writes) and TransactWriteItems (write
transactions) have comparable cancellation rates as these
requests will only be cancelled because of a conflict if
there is an ongoing TransactWriteItems operation on
the targeted items. Finally, TransactGetItems (read
transactions) had the highest cancellation rate of any
operation during this test since read transactions execute
optimistically and conflict with any concurrent write.

6 Related work

A growing number of NoSQL databases have added sup-
port for transactions in recent years. Each of these sys-
tems choose different tradeoffs, resulting in a variety of
isolation levels, expressiveness, and relationships with
non-transactional writes [3, 5, 12, 14–17].

Many of the systems use a two-phase commit protocol
that is similar to DynamoDB’s protocol. G-store [7] and
L-store [11] are two examples of systems that propose an
alternative to two-phase commit protocols. They avoid
the two-phase commit protocol by co-locating all the
keys of the transaction on the node that processes the
transaction and executing the transaction on that single
node.

Some systems use locks [2,16] for concurrency control,
while others use timestamps. Different systems use vari-
ous sources of time, including precise clocks [5], local
nodes’ clocks, and hybrid logical clocks [10]. Granola [6]
is an example of system that uses both locks and times-
tamps for concurrency control; a transaction is executed
either in locking mode or timestamp mode.

7 Conclusion

Adding transactions to DynamoDB without impacting
the scale, availability, durability and predictability that
customers have come to expect was a daunting task. In-
stead of the limited form of transactions provided in previ-
ous systems, customers asked for full ACID transactions
updating multiple items from different partitions of the
same table or across different tables. Working backwards
from customer scenarios informed us that long running
transactions were not required and that the workloads
were not highly contentious. We designed transactions as
single-shot operations with optimistic concurrency con-
trol using timestamp ordering to ensure that transactions

are both serializable and scalable. This work shows that
transactions implemented in a replicated and partitioned
NoSQL database can be achieved with high scalability,
high availability, and predictable performance.

8 Acknowledgements

DynamoDB transactions have been greatly influenced by
the invaluable feedback of our customers, driving us to
innovate on their behalf. We are fortunate to be accom-
panied by an exceptional team throughout this journey.
We express our appreciation to Shawn Bice, Andrew Cer-
tain, Raju Gulabani, Amit Gupta, Rishabh Jain, Vaibhav
Jain, Nate Riley, Tony Petrossian, Amit Purohit, Julien
Ridoux, Rashmi Krishnaiah Setty, Stefano Stefani, Ben-
jamin Wood, Ming-Chuan Wu, and the entire DynamoDB
team for their contributions that have been instrumental
to the success of this project. We are grateful to the anony-
mous reviewers and our shepherd, Leonid Ryzhyk, for
their invaluable contributions in refining this paper. Spe-
cial thanks to Chris Andreson, Darcy Jayne, and Murat
Demirbas for going the extra mile to provide valuable
assistance.

References

[1] Keeping time with amazon time sync ser-
vice. https://aws.amazon.com/blogs/aws/keeping-
time-with-amazon-time-sync-service/.

[2] M. K. Aguilera, A. Merchant, M. Shah, A. Veitch,
and C. Karamanolis. Sinfonia: A new paradigm
for building scalable distributed systems. In Pro-
ceedings of Twenty-first ACM SIGOPS Symposium
on Operating Systems Principles, SOSP ’07, pages
159–174, New York, NY, USA, 2007. ACM.

[3] J. Baker, C. Bond, J. C. Corbett, J. Furman, A. Khor-
lin, J. Larson, J.-M. Leon, Y. Li, A. Lloyd, and
V. Yushprakh. Megastore: Providing scalable,
highly available storage for interactive services.
2011.

[4] P. A. Bernstein and N. Goodman. Timestamp-based
algorithms for concurrency control in distributed
database systems. In Proceedings of the Sixth In-
ternational Conference on Very Large Data Bases -
Volume 6, VLDB ’80, pages 285–300. VLDB En-
dowment, 1980.

[5] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost,
J. J. Furman, S. Ghemawat, A. Gubarev, C. Heiser,
P. Hochschild, W. Hsieh, S. Kanthak, E. Kogan,
H. Li, A. Lloyd, S. Melnik, D. Mwaura, D. Nagle,

716 2023 USENIX Annual Technical Conference USENIX Association

S. Quinlan, R. Rao, L. Rolig, Y. Saito, M. Szyma-
niak, C. Taylor, R. Wang, and D. Woodford. Span-
ner: Google’s globally-distributed database. In
Proceedings of the 10th USENIX Conference on
Operating Systems Design and Implementation,
OSDI’12, page 251–264, USA, 2012. USENIX As-
sociation.

[6] J. Cowling and B. Liskov. Granola:{Low-
Overhead} distributed transaction coordination.
In 2012 USENIX Annual Technical Conference
(USENIX ATC 12), pages 223–235, 2012.

[7] S. Das, D. Agrawal, and A. El Abbadi. G-store: a
scalable data store for transactional multi key ac-
cess in the cloud. In Proceedings of the 1st ACM
symposium on Cloud computing, pages 163–174,
2010.

[8] G. DeCandia, D. Hastorun, M. Jampani, G. Kakula-
pati, A. Lakshman, A. Pilchin, S. Sivasubramanian,
P. Vosshall, and W. Vogels. Dynamo: Amazon’s
highly available key-value store. SIGOPS Oper.
Syst. Rev., 41(6):205–220, oct 2007.

[9] M. Elhemali, N. Gallagher, N. Gordon, J. Idziorek,
R. Krog, C. Lazier, E. Mo, A. Mritunjai, S. Peri-
anayagam, T. Rath, S. Sivasubramanian, J. C. S. III,
S. Sosothikul, D. Terry, and A. Vig. Amazon Dy-
namoDB: A scalable, predictably performant, and
fully managed NoSQL database service. In 2022
USENIX Annual Technical Conference (USENIX
ATC 22), pages 1037–1048, Carlsbad, CA, July
2022. USENIX Association.

[10] S. S. Kulkarni, M. Demirbas, D. Madappa, B. Avva,
and M. Leone. Logical physical clocks. In Inter-
national Conference on Principles of Distributed
Systems, pages 17–32. Springer, 2014.

[11] Q. Lin, P. Chang, G. Chen, B. C. Ooi, K.-L. Tan,
and Z. Wang. Towards a non-2pc transaction man-
agement in distributed database systems. In Pro-
ceedings of the 2016 International Conference on
Management of Data, pages 1659–1674, 2016.

[12] D. Peng and F. Dabek. Large-scale incremental
processing using distributed transactions and notifi-
cations. In 9th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 10),
2010.

[13] D. P. Reed. Implementing atomic actions on decen-
tralized data (extended abstract). In Proceedings of
the Seventh ACM Symposium on Operating Systems
Principles, SOSP ’79, pages 163–, New York, NY,
USA, 1979. ACM.

[14] K. Ren, D. Li, and D. J. Abadi. Slog: Serializable,
low-latency, geo-replicated transactions. Proceed-
ings of the VLDB Endowment, 12(11), 2019.

[15] R. Taft, I. Sharif, A. Matei, N. VanBenschoten,
J. Lewis, T. Grieger, K. Niemi, A. Woods, A. Birzin,
R. Poss, et al. Cockroachdb: The resilient geo-
distributed sql database. In Proceedings of the 2020
ACM SIGMOD International Conference on Man-
agement of Data, pages 1493–1509, 2020.

[16] A. Thomson, T. Diamond, S.-C. Weng, K. Ren,
P. Shao, and D. J. Abadi. Calvin: Fast distributed
transactions for partitioned database systems. In
Proceedings of the 2012 ACM SIGMOD Interna-
tional Conference on Management of Data, SIG-
MOD ’12, pages 1–12, New York, NY, USA, 2012.
ACM.

[17] M. Tyulenev, A. Schwerin, A. Kamsky, R. Tan,
A. Cabral, and J. Mulrow. Implementation of
cluster-wide logical clock and causal consistency
in mongodb. In Proceedings of the 2019 Interna-
tional Conference on Management of Data, pages
636–650, 2019.

USENIX Association 2023 USENIX Annual Technical Conference 717

	Introduction
	DynamoDB Application Programming Interface
	Key-value store
	Read and write operations
	Transactional operations

	Transaction execution
	Transaction routing
	Timestamp ordering
	Write transaction protocol
	Read transaction protocol
	Recovery and fault tolerance

	Adapting timestamp ordering for key-value operations
	Experiments
	Comparison of latencies for varying throughput of transactions
	Comparison of latencies for varying number of operations per transaction
	Comparison of latencies for transactions vs non-transactions
	Comparison of cancellation rate for varied contentious workloads

	Related work
	Conclusion
	Acknowledgements

