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Abstract
The microservice architecture is a novel paradigm for

building and operating distributed applications in many
organizations. This paradigm changes many aspects of how
distributed applications are built, managed, and operated
in contrast to monolithic applications. It introduces new
challenges to solve and requires changing assumptions about
previously well-known ones. But, today, the characteristics
of large-scale microservice architectures are invisible outside
their organizations, depressing opportunities for research.
Recent studies provide only partial glimpses and represent only
single design points. This paper enriches our understanding of
large-scale microservices by characterizing Meta’s microser-
vice architecture. It focuses on previously unreported (or
underreported) aspects important to developing and research-
ing tools that use the microservice topology or traces of request
workflows. We find that the topology is extremely heteroge-
neous, is in constant flux, and includes software entities that do
not cleanly fit in the microservice architecture. Request work-
flows are highly dynamic, but local properties can be predicted
using service and endpoint names. We quantify the impact of
obfuscating factors in microservice measurement and conclude
with implications for tools and future-work opportunities.

1 Introduction
Microservice architectures are the de-facto method for build-
ing distributed systems in large-scale organizations [8, 13].
The basic tenants of this architectural style are well-known—
monolithic applications are decomposed into smaller software
services that communicate with one another over well-defined
APIs, facilitating independence of different development
teams, increased deployment velocity, and fine-grained
scaling [11, 22]. But, outside of this basic understanding, there
is a lack of clarity about industrial microservice architectures’
design choices and their resulting characteristics. This
ambiguity curtails the impact of microservices research. It is
impossible to identify the microservice designs to which im-
provements suggested in the literature are best suited or which
assumptions about microservices’ characteristics are valid.

There has been a plethora of research seeking to improve
the community’s understanding of microservices. Many
are qualitative, focusing on reasons for deploying microser-
vice architectures [18, 24, 39], methods for decomposing
monolithic applications to microservice architectures with
many smaller services [9, 17, 36], and difficulties introduced
by microservice architectures [39]. Though useful, they do
not provide quantitative data about different organizations’

microservice architectures, such as (but not limited to) their
scale, topologies, or communication methods, all of which
are critical to inform future research.

The community has also created many open-source testbeds
built with the microservices design philosophy [1, 13, 46]. But,
their scale and complexity do not match that of large-scale
organizations’ microservice architectures. Past research has
shown that these testbeds exhibit much simpler behaviors
than industrial architectures [31]. As a result, quantitative
data about microservices obtained from these testbeds are not
representative of industrial microservice architectures where
the microservice architectural style is perhaps most valuable.
This is concerning due to the number of research papers that
rely on these testbeds [12, 14, 23, 25, 37, 38, 40, 43, 44]. For
example, Sage [12] assumes synchronous RPCs. Tprof’s [14]
layer 4 grouping assumes non-combinatorial explosion when
grouping requests by visited services’ execution order. Both
assumptions are invalid at Meta.

Recent publications from other large cloud companies
provide quantitative data about their microservice archi-
tectures [20, 41]. But, they represent only partial views of
single design points. Additional quantitative studies—both
confirming existing findings and focusing on unexplored
dimensions— are needed to enrich the community’s under-
standing of large-scale microservices. We envision that these
studies will collectively inform robust assumptions for use
in microservice research and development.

We present a top-down analysis of Meta’s microservice
architecture, starting from its service-level topology and
descending into individual request workflows. (Request
workflows describe the order and timing of services visited by
requests when executing.) Our focus is on underreported char-
acteristics of microservice architectures important for develop-
ing microservice tools and artificially modeling microservice
topologies. Specifically, we describe growth and churn of the
microservice topology (to inform tools that learn models of
the topology [12, 25, 44]), whether elements of the topology
fit power-law distributions common to large graphs (to inform
potential artificial topology generators), and the predictability
of individual request workflows (to inform the vast number
of tools that work by aggregating trace data [14, 29, 45]). We
report on characteristics described in previous studies, such as
workflows’ sizes and shape, to enable qualitative comparisons.

We perform our study using production datasets1 describing
Meta’s microservice topology and request workflows within it.

1https://github.com/facebookresearch/distributed_traces
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Our datasets for topological analyses span a 22-month period
(the entire amount of time historical data about the topology
has been maintained). We focus on 1-day of distributed
traces [16] (totaling 6.5 million) for our analyses of request
workflows, which allows us to focus on predictability of
specific request behaviors.

We present our main findings below and conclude this
paper with their implications along with a discussion of future
research opportunities.

(1) Topological characteristics: The topology is very diverse
containing many types of software entities that are
deployed as services. The topology is constantly growing,
sees daily churn in deployed and deprecated services, and
(mostly) does not exhibit power-law relationships.

(2) Workflow characteristics: Traces of request workflows
vary in size depending on the high-level functionalities
they represent. Similar to previous studies [20, 41], we
find that traces are small in size and wide in number
of communication calls. Service and endpoint names
do not predict number of communication calls or their
concurrency. But, they reduce uncertainty in the set of
services they will call (callers and callees are specified as
services + ingress endpoint). Adding knowledge of the
children service set better predicts concurrency.

(3) Obfuscating factors preventing quantitative compar-
isons between architectures: Scale and complexity analy-
ses are hindered because the term “service” is ill-defined for
microservices and previous studies do not report their def-
initions. Different organizations use different tracing plat-
forms with unspecified assumptions about how workflows
are sampled and what sampling policies are used. We find
that these factors have non-negligible effects on our results.

2 Toward characterizing Meta’s microservices
Figure 1 illustrates Meta’s microservice architecture.
It is similar to other large-scale microservice architec-
tures [11, 20, 22, 31, 41], consisting of 1 (in Figure 1) a topol-
ogy of interconnected, replicated software services running
in dozens of datacenters; 2 load balancers for distributing re-
quests amongst service replicas; 3 an observability framework
for monitoring the topology and creating traces (graphs) of a
sampled set of request workflows; and 4 a globally-federated
scheduler for running services on host machines within
containers. A basic assumption of Meta’s architecture (which
may or may not be true for other organizations’ architectures)
is that business use case is a sufficient partitioning by which
to define services, scale functionality, and observe behaviors.

The rest of this section motivates the value of studying
the topology and request workflows, discusses limitations of
previous studies, and fills in important details about Meta’s ar-
chitecture relevant to our analyses. We conclude by discussing
the observability framework and the datasets generated from it
that we use in our analyses. Given the sparsity of information
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Figure 1: Meta’s microservice architecture and an example
request workflow. The architecture consists of many service
instances distributed across many datacenters.

available about Meta’s microservice architecture, we err on
the side of providing more information than strictly needed.

How do applications use Meta’s microservice ar-
chitecture? Customer applications, such as Instagram or
Facebook mobile, issue requests that are load balanced by
DNS to specific datacenters and processed by a subset of the
architecture’s software services. Example requests include
those to save photos or record reactions to posts. Applications
internal to Meta, such as dashboard or internal tools, use the
architecture similarly. But, their requests are load balanced
via internal mechanisms, not DNS.

2.1 Topology: services & communication
Why study microservice topologies? We need to understand
their complexity, factors that influence their complexity,
heterogeneity of constituent services, and the speed at which
the topology changes. These characteristics are important
to inform tools that visualize the topology, learn models
based on the topology, or make assumptions about services’
homogeneity [12, 14, 25, 44].

Limitations of existing studies: Only Wen et al. [41]
focuses on the microservice topology. The scale they report
for number of services is based on a sampled dataset of
request workflows, which may not reflect the true scale of
their architecture. No existing study defines what constitutes
a service or how their definition impacts analyses of the
topology (e.g., number of services and communication edges).
Existing studies do not report on how the topology evolves
or the velocity of change [20, 45].

Meta’s microservice topology: The topology is formed by
many replicated software services ( in Figure 1) deployed
across dozens of geographically-distributed datacenters along
with their communication to process application requests.
(Replicas are typically called instances). We note that within
the topology, the notion of an application is ill-defined. Individ-
ual service instances may process work on behalf of multiple
applications. They may also issue requests with batched data
from multiple applications to other service instances. The
topology evolves organically with no central coordination
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because development teams responsible for services have
complete control over how they are built and maintained.

Services: Services are defined as units of software with
well-defined API interfaces, called endpoints ( in Figure 1).
Each service satisfies a specific business use case (e.g., caching
a photo feed). There is significant room for interpretation
in defining the scope of a business use case. Additionally,
software that pre-dates the microservice architecture may
serve multiple business use cases, but be deployed as a single
service. Both services and endpoints are named by respective
services’ developers. (We use Service ID and service name
interchangeably in latter sections to refer to services’ names.)

Services can be stateful or stateless [11]. Stateful services,
such as databases, persist state for callers whereas stateless
ones, such as search frontends, call other services and integrate
their results. A variety of programming languages are used
to write services depending on fit for the business use case and
societal pressures within the organization.

Load-balancing & Communication: Requests to services
are load balanced across their instances. Initially, a datacenter
load balancer, itself a service, load balances incoming
application requests. Afterward, requests between service
instances are load balanced by a service-routing library [30]
either linked to applications or to outbound sidecar proxies.
(Only some services use sidecars, e.g., when their runtimes do
not support linking the routing library directly). The routing
library periodically communicates with a global service
registry to discover services and routes for their instances.
Requests can be load balanced to instances within the same
datacenter or to instances in different datacenters. Only the
datacenter load balancer is depicted in Figure 1.

Most services at Meta use two-way Thrift RPCs [35] for
communication, with payloads serialized in Thrift binary
format. Many frontend and some backend services also expose
numerous HTTP (REST and GraphQL) endpoints; however,
they do not have canonical names that we can use for our
analyses. For this reason, we limit the endpoint analysis only
to Thrift RPCs reported in the dataset from the routing library.

2.2 Individual request workflows
Why study request workflows: We need to understand the
dynamic nature of request workflows. Given a single request
execution, what will vary in subsequent executions versus
what will remain stable? How much of a statement can we
make about other request executions after seeing one or a
limited number of samples? Such information is important
to inform tools that predict performance, extract critical paths,
and present aggregate analyses of request workflows.

Limitations of existing studies: Luo et al. [20] present a
way to predict the total number of services that will be called
at any hierarchical level of a request workflow. But, they do
not discuss whether the number, set, or concurrency level of
services called by a specific parent can be predicted. Wen et
al. [41] present the amount of time children execute concur-

rently. Zhang, et al. [45] present distributions of the maximum
number of concurrent services observed in workflows. But,
neither discuss if information in request workflows can predict
concurrency or other workflow characteristics.

Request workflows at Meta: Requests from external
applications originate at a datacenter load balancer. This load
balancer sends requests to instances of frontend services,
which are entry points for executing request business logic.
There are several frontends at Meta serving different subsets
of applications and each has many instances. Frontends may
call many services, which in turn may call other services. The
resulting hierarchy can be described as forming parent/child
relationships. Request workflows for requests originating
from internal applications are similar, but originate at the first
service that executes business logic on behalf of them.

The set of services involved in a request workflow depends
on a number of factors including (but not limited to) the
business logic that must be executed on behalf of application
requests and whether any requested data is cached. On the
other hand, the specific set of instances involved in a request
workflow depends on the current load and the load-balancing
policy in use.

Concurrency & latent work: Within request workflows, par-
ent services may call all or a subset of children services sequen-
tially or concurrently. The former will be the case if parents are
blocking (e.g., single threaded so cannot do work while there
is an outstanding call). It may also be the case if there are data
dependencies between subsequent calls to children, such as
an authentication token that must be returned from one service
and passed as input to others. The critical path of concurrently-
called children services includes only the slowest one, whereas
that of sequentially-called ones includes all of them. Children
may perform additional, latent work after replying to the
parent (e.g., for garbage collection or data replication).

Sample request workflow: The arrows ( ) in Figure 1
show a request traversing a single datacenter. The request first
arrives to an instance of the datacenter load balancer, which
routes it to an instance of a frontend service, such as www. The
request then traverses deeper into the topology to backend
services.

2.3 Observability framework & datasets
Meta’s observability framework includes monitoring mecha-
nisms for recording metrics, logging mechanisms for recording
various events, and a distributed-tracing infrastructure, Canopy
[16], for recording graphs (called traces) of request workflows.
Data generated by the framework is retained for a limited time
period to reduce storage volume and due to policy. We describe
Canopy in more detail below due to its criticality to observ-
ability of microservices. We conclude with a description of the
log-based and trace-based datasets we use for our analyses.

Canopy for recording request workflows: Canopy works
similarly to most existing distributed-tracing infrastruc-
tures [27]. It provides APIs that developers use to define
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a request workflow and capture important information
about the workflow that should be recorded in traces. The
former involves modifying services’ code to propagate
per-request context—e.g., request IDs and happens-before
relationships—within and among the services involved in
request execution. The latter involves adding trace points,
similar to log messages, within source code. During runtime,
records of trace points executed by requests are annotated
with request context and timestamps. Off of the critical path of
request execution, records with identical trace IDs are ordered
by happens-before relationships to create traces.

Under the hood, Canopy’s implementation is similar to
event-based tracing infrastructures [10, 26, 29]. However, the
way developers instrument services and use the resulting traces
is similar to span-based tracing infrastructures [4, 32, 34]. Im-
plementation: (1) Trace points are single events. Higher-level
blocks demarcating various intervals (e.g., service executions,
queuing time, or function executions) are constructed via anno-
tations added to them. (2) context is propagated on both request
(forward) and response (reverse) paths, allowing points to be
ordered globally within and across services. Usage: (1) devel-
opers (typically) only add blocks denoting service executions;
(2) happens-before relationships are only established in the
forward direction of context propagation, meaning they iden-
tify parent/child relationships between blocks and not ordering
between siblings; (3) causality between sibling blocks is not
explicitly captured via alternate mechanisms. It is impossible
to tell whether siblings that execute sequentially as per times-
tamps in one trace must execute sequentially in other traces.

We describe aspects of Canopy relevant to our workflow
analyses. A key observation is that traces created with Canopy
may—by design—not capture all of a request’s workflow.

Effective trace model: Traces are graphs. Nodes are blocks
(spans) indicating service execution and hierarchical levels
indicate parent/child relationships. Blocks include trace points
indicating message send and receives. They may contain addi-
tional points indicating other events of interest. Edges between
points represent network communication. Latent work started
on behalf of a request after the response is returned to the
client, such as data replication or asynchronous notifications,
may be recorded as additional points on the service block,
or as a separate trace with a link back to the originating
request’s trace (similar to OpenTelemetry’s span links [5]).
Service blocks automatically record Service IDs and endpoint
names for communication using Thrift RPCs [35]. Developers
must manually provide names for services that use custom
communication methods. Figure 2 shows an example Canopy
trace originating at the www service. It has two children
services. One of the children (Service B) also has a child (DB).

Streaming model for trace creation with timeout: A
stream-processing framework [21] is used to construct traces
from trace-point records for subsequent post-processing, such
as computing critical path or generating end-to-end latency
metrics. The framework accumulates trace events using a

Figure 2: Canopy’s tracing model.

session window with a fixed gap of inactivity [6]. Traces whose
events have a gap in the arrival time larger than the session
window would be accumulated in more than one session, but
only the first one would be used to trigger post-processing,
which may result in processing of partial traces.

Per-service sampling profiles (policies) with rate limiting:
Sampling profiles are unique to Canopy. They can be attached
to any service and indicate sampling policies to apply based
on specific attributes of incoming requests. Traces reflect the
union of all sampling profiles that their corresponding requests
encounter while executing. This means that a request’s trace
may start at a service deep in the topology, not recording prior
services executed by the request. Trace branches may end
prematurely at services whose profiles chose to stop recording
the rest of the request’s workflow.

A policy specifies: (1) a set of conditions for when it is
applicable, such as group of endpoints, (2) a sampling method,
(3) a maximum rate of trace data, measured over a sliding time
window, beyond which additional traces will not be captured,
and (4) a verbosity level to decide which instrumentation
to execute for requests. Sampling methods may be random
head-based sampling [34], in which requests are traced with
a random probability, or adaptive sampling [33], in which
the sampling probability is periodically changed to achieve
a target rate of trace throughput.

Inferred service blocks: These blocks represent services
that prematurely ended trace branches, either because of
rate limiting or because they lacked tracing instrumentation.
Inferred blocks are created during trace construction using
information in parent services’ message-send points. Inferred
blocks may be named or unnamed. The former will be the case
when parent points contain the necessary naming information.

Datasets used for this paper: Table 1 shows the datasets
we use. For our topological analyses, we use logs describing
service activity: history of deployments and deprecation,
endpoints exposed by deployed services, and calls made
from/to deployed services. For the workflow analyses, we use
distributed traces collected by Canopy. The log data describes
every deployed service, whereas traces are sampled using
methods unique to Canopy, described above.

3 Topological Characteristics
We characterize Meta’s current microservice topology as well
as how it has evolved. Our analyses of the current topology
uses the last (most recent) day of the Service History and
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Dataset Description Format Retention Size Period Used

Service History Service deployment, lifetimes &
interservice communication

Service IDs deployed each day 22 months 17 MB All

Service Endpoints Endpoints exposed by services Service ID endpoints accessed each day 30 days 18.8 MB 1 day
Traces Distributed traces Canopy Trace Objects 30 days 13.1 PB 1 day (4.6 TB)

Table 1: Datasets used for analyses.

Endpoints datasets (2022/12/21). Our historical analyses
use all 22-months of data available to us (2021/03/01 to
2022/12/21). We also use various dashboards w/statistics
about services. The main findings are summarized below.

Finding F1 (All subsections): Meta’s microservice
topology contains three types of software entities that
communicate within and amongst one another: (1) Those
that represent a single, well-scoped business use case. (2)
Those that serve many different business cases, but which
are deployed as a single service (often from a single binary);
(3) Those that are ill-suited to the microservice architecture’s
expectations that business use case is a sufficient partitioning
on which to base scheduling, scaling, and routing decisions
and to provide observability. These latter entities use Service
IDs in custom ways, obfuscating their true complexity.

Finding F2 (§3.2): The topology is very complex in its
current state, containing over 12 million service instances
and over 180,000 communication edges between services.
Individual services are mostly simple, exposing just a few
endpoints, but some are very complex, exposing 1000s or
more endpoints. The overall topology of connected services
does not exhibit a power-law relationship typical of many
large-scale networks. However, the number of endpoints
services expose does show a power-law relationship.

Finding F3 (§3.3): The topology has scaled rapidly,
doubling in number of instances over the past 22 months. The
rate of increase is driven by an increase in number of services
(i.e., new functionality) rather than increased replication of
existing ones (i.e., additional instances). The topology sees
daily fluctuations due to service creations and deprecations.

3.1 Existence of ill-fitting software entities
We discovered several anomalous patterns in the
structure of service IDs within both datasets. For ex-
ample, we found that on average, 60% of services
observed on any single day of the 22-month period
have Service IDs of the form inference_platform/
model_type_{random_number}. We found that these
services all expose a small number of endpoints with identical
names. Meta’s engineers informed us that these Service IDs are
generated by a general-purpose platform for hosting per-tenant
machine-learning models (called the Inference Platform). The
platform serves a single business use case—i.e., serving ML
models—but many per-tenant use cases. Platform engineers
chose to deploy each tenant’s model under a separate Service
ID so that each can be deployed and scaled independently per
the tenant’s requirements by the scheduler.

Following our discovery of the Inference Platform, we
investigated the most frequent Service IDs and those with
the greatest number of service instances. We found two
types of software entities that use Service IDs in custom
ways: (1) platforms, such as the Inference Platform, for
which multi-tenancy is an additional dimension that must be
considered for scheduling, scaling, routing, or observability;
(2) storage systems, which must take into account data
placement in addition to their business use case(s).

We found that some entities, such as the Inference Platform,
appear as many services where each service is a combination
of the business use case and the additional dimension(s) of par-
titioning required. Other entities, such as databases and other
platforms, appear as a single service and provide their own
scheduling and observability mechanisms. Both types of enti-
ties’ unique use of Service IDs masks their true complexity and
skews service- and endpoint-based analyses of microservice
topologies (ours and likely previous studies [20, 41]).

There is no systematic way to identify these ill-fitting soft-
ware entities at Meta. To illustrate how they may affect Service
ID-based analyses,we call out contributions by two entities that
affect our results significantly. The first is the Inference Plat-
form, which inflates the number of services observed. The sec-
ond is the ML Scheduler, a scheduling platform for ML training
jobs which chooses to appear as a single service and so inflates
instance counts. We collectively refer to them and their services
as Ill-fitting services and all other services as Regular services.

3.2 Analysis of the current topology
Scale is measured in millions of instances: On 2022/12/21,
the microservice topology contained 18,500 active services
and over 12 million service instances. Excluding the ill-fitting
services, there are 7,400 services and 11.2 million instances.

The instance count is due to a few highly-replicated ser-
vices: Figure 3 shows that the ill-fitting services greatly skew
instance counts. Notably, the ML scheduler is replicated over
270,000 times, 2.2% of all instances. When these services
are excluded, the median service’s replication factor is only
eight and the 99th percentile is 31,306. Frontend service www
is the most replicated service (557,000 instances, 4.6% of all
instances) as it handles most incoming requests.

Services are sparsely interconnected: We construct the
service dependency diagram by connecting services that
communicate with each other at least once with an edge.
(Our dependency diagram is similar to that constructed by
OpenTelemetry or Jaeger, except that it is constructed from
a portion of the Service History dataset that captures commu-
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Figure 3: Service ID replication factors. The histogram is
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Figure 4: Service fan-in and fan-out.

nication between services, not raw traces.) There are 393,622
edges that connect services, which is much smaller than a fully
connected topology (18,5002 or 342 million edges).

Services are called by services more than they call
other services: Continuing with the dependency diagram,
Figure 4 shows CDFs and statistics about services fan-in (#
of services that call them) and fan-out (# of services that they
call) degrees. The median fan-in and fan-out are the same, but
average and maximum fan-in is larger than fan-outs (14 vs
12 and 14,084 vs 5,865). Excluding the ill-fitting services, by
removing all edges connected to ill-fitting services, decreases
the median fan-in but increases the median fan-out. Excluding
the ill-fitting services also increases the 99.9 percentile and
decreases the maximum fan-in and fan-out values.

We investigated the services that have the highest fan-in and
fan-out degrees. The former is a vault server storing credentials
for use by other services. The latter is a service for querying
hosts for arbitrary statistics. Both are used heavily by ill-fitting
services, constituting 78% and 91% of the vault service’s
callers and the services called by the stats service respectively.
When ill-fitting services are excluded, two other services
rise to the highest fan-in and fan-out degrees respectively:
a generic counting service used for various rate limiting
mechanisms and a frontend service for internal applications.

Most services are simple, exposing only a few endpoints:
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Figure 5: Number of endpoints exposed by services.

Figure 5 shows a CDF and statistics of services’ endpoints.
Most services do not expose many endpoints (median: 1, P99:
26) and excluding ill-fitting services does not shift the statistics
much. The service that exposes 11,359 endpoints is www, a
frontend service which is used for many business use cases.
It is deployed as a single binary from a large, well-engineered
codebase that predates the microservice architecture.

Service complexity follows a power-law distribution:
Service complexity, measured by number of unique endpoints
in a service, follows a power law distribution (α = 2.23,
R2=0.99), indicating that most services are simple with a long
tail of more complex services. The power law does not hold for
other measures of complexity. Despite there being a long tail
of more complex services, the service dependency diagram
does not follow a power law distribution (R2 = 0.62). This
means the services with more endpoints are not proportionally
more connected to the topology than services with fewer
endpoints. While there are some highly replicated services,
the overall trend of instance counts does not follow a power
law distribution either (R2=0.25).

Sixteen different languages used to write services:
Services can be written in many programming languages.
There are currently 16 different programming languages in use
at Meta, with the most popular being Hack (a version of PHP),
measured by lines of code. Other popular languages include:
C++, Python, and Java, with the rest forming a long tail.

3.3 Past growth & dynamism
The number of deployed service instances has almost
doubled over the past 22 months: Figure 6 shows the
percentage of deployed service instances each day as a
percentage of the maximum value observed on 2022/12/21.
We show different series for when all services are included,
just the ill-fitting services, and only regular services. The slope
when all services are considered is s=0.052% per day (linear
regression R2=0.95). The slope when ill-fitting services are
excluded is s=0.046% per day (R2=0.95).

The steady increase in instance counts reflects either an in-
crease in hardware capacity over the time period or an increase
in utilization of existing hardware. It cannot be explained by
changes in instance sizes as they have remained mostly static.

Instances’ rate of increase is due to new business use
cases rather than increased scale: Figure 7 shows unique
services deployed each day as a fraction of the maximum value
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Figure 6: Total service instances over time.
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Figure 7: Service IDs over time.

observed on 2022/11/03. Note that the day with the maximum
number of Service IDs is different from the day with the most
instances. Almost all variability is explained by the ill-fitting
services, specifically the Inference Platform, which launches
and terminates services as per tenants’ demands. The daily
increase in services when ill-fitting services are excluded
(slope of Regular Services series) is s= 0.043% (R2 = 0.98).
It is almost identical to the daily increase in instance counts
when ill-fitting services are excluded, which was s=0.046%
(slope of the Regular Services series in Figure 6).

Lots of churn in services, with both long-lived and
ephemeral ones: Over the 22-month time period, 180,000 new
Service IDs were deployed, 89.7% of which were deprecated
at some point. Figure 8 shows the number of services created
and deprecated each day. Newly-created services are ones
whose Service IDs were not observed previously during the
22-month period, whereas deprecated ones are services whose
Service IDs are never observed again. For regular services,
creation rates are slightly higher than deprecation rates. As
expected, ill-fitting services have high churn.

We also computed the percentage of services observed over
the entire period that were deprecated in less than one week
(54% of ill-fitting Services, 7.7% of regular services) and the
percentage that existed throughout the 22-month period (0%
of ill-fitting services, 40% of regular services).

4 Request-workflow characteristics
We now analyze service-level properties of individual request
workflows using traces collected by different profiles. We first
discuss traces’ general characteristics, such as size and width
(§4.2). We then analyze whether specific elements of a single
trace predict properties of other traces representing the same
high-level behavior(s) (§4.3-§4.4). As with any large-scale
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Figure 8: Service ID creation & deprecation.

tracing infrastructure, traces’ visibility into request workflows
may be limited due to dropped records, rate limiting, and non-
instrumented services. We quantify the extent to which visibil-
ity into traces is obscured as a result of these factors in §4.5.

Methodology: For all experiments, we use traces collected
on 2022/12/21 from three profiles monitoring important
high-level business functionalities. Using a few profiles and
a single day avoids factors that would otherwise obscure the
interpretability of our results: the effects of analyzing traces
using many sampling policies and code updates that change
service behaviors. Focusing on important profiles increases the
likelihood that traces are representative of their workflows: the
services they access are likely to propagate context accurately
and use descriptive Service IDs and endpoint names. Overall,
we analyze 6.5 million traces representing 0.5% of traces
collected on 2022/12/21 by all Canopy profiles. Though we
do not report them, we observed similar trends to our results
on different neighboring days to 2022/12/21 while refining
our experiments.

For our predictability experiments, we conduct an ex-post-
facto analysis of whether Ingress IDs, defined as a combination
of Service ID and ingress endpoint name, predict properties
of their children across many traces. We choose to use Ingress
IDs because they are readily available in traces, are usually
the primary means of understanding trace behaviors, and are
location-independent so do not require alignment of traces
starting at different (unknown) depths in the topology. We do
not consider global characteristics of traces, such as size or
width, for prediction experiments as they are not guaranteed
to be comparable due to rate limiting or dropped trace records.
In our predictability sections, we mean Ingress IDs when we
refer to parents and children, as in "unique children."

We omit inferred calls (§2.3) from experiments that
consider service names since names of inferred services are
often unknown. Also, we omit Ingress IDs found fewer than
30 times within a profile to allow meaningful statistics to be
calculated for the rest of the endpoints.

Our main findings are summarized below; we introduce the
profiles afterward. Figure 9 describes the trace properties we
analyze and predict.

Finding F4 (§4.2): We measure traces with regard to the
number of service blocks they contain (recall from § 2.3 that
a service block represents the time interval a service was
executed; repeated invocations of the same service appear
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Figure 9: Trace Characteristics. Generic example trace show-
ing attributes for a parent Ingress ID. Root service is either
www or RaaS. Inferred services are represented as blocks of a
fixed length since they do not contain notions of time or return
edges. They are omitted from concurrency calculations.

as multiple service blocks.) Trace sizes vary depending
on workflows’ high-level behaviors, but most are small
(containing only a few service blocks). Traces are generally
wide (services call many other services), and shallow in depth
(length of caller/callee branches).

Finding F5 (§4.3-§4.4): Root Ingress IDs do not predict
trace properties. At the level of parent/child relationships,
parents’ Ingress IDs are predictive of the set of children
Ingress IDs the parent will call in at least 50% of executions.
But, it is not very predictive of parents’ total number of RPC
calls or concurrency among RPC calls. Adding children sets’
Ingress IDs to parent Ingress IDs more accurately predicts
concurrency of RPC calls.

Finding F6 (§4.5): We observe that many call paths in the
traces are prematurely terminated due to rate limiting, dropped
records, or non-instrumented services. Few of these call paths
can be reconstructed (those known to terminate at databases)
while the majority are unrecoverable. Deeper call paths are
disproportionately terminated.

4.1 Profile details
Ads: This profile represents a traditional CRUD web
application focusing on managing customers’ advertisements,
such as getting all advertisements belonging to a customer
or updating ad campaign parameters. The profile captures
traces from 56-related endpoints exposed by the www frontend
service. There are 3.2 million traces over the single-day period.
This profile’s sampling policy is random at 0.01% capped at
65 traces per second or 160 MB of trace data per minute.

Fetch: This profile represents deferred (asynchronous)
work triggered by opening the notifications tab in Meta’s
client applications. Examples of work include updating the
total tab badge count or retrieving the set of notifications
shown on the first page of the tab. It captures traces from
91-related endpoints exposed by the www frontend service.
There are 87,000 traces over the one-day period. This profile
uses adaptive sampling with a target rate of 1 trace per second,
capped at 20 MB of data per minute.

RaaS (Ranking-as-a-Service): This profile represents rank-
ing of items, such as posts in a user’s feed. The RaaS sampling
policy is applied to the RaaS service, a non-frontend service
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Figure 10: Trace Size. Service block counts per trace.
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Figure 11: Call Depth. Max depth of service blocks per trace.

that is called by other services. As a result, traces from this pro-
file always represent only portions of request workflows. Of the
workflows we analyze, only those captured by Fetch call RaaS.
Occasionally, a RaaS trace will be a portion of a Fetch trace,
but such occurrences are rare because both Fetch and RaaS
profiles use low sampling probabilities that are independent
of each other. There are 3.3 million traces over the single-day
period, from 4 different endpoints in RaaS. This profile uses
adaptive sampling with a target rate of 25 traces per second.

4.2 General trace characteristics
There is significant diversity in trace sizes: Figure 10 shows
CDFs and statistics of the number of service blocks in our
traces. Traces collected by the Fetch profile are significantly
larger than Ads and RaaS except at the tail, where Ads traces
are largest.

Traces are shallow and wide: Figure 11 shows the
maximum call depth in service blocks of our traces starting
from trace roots (root is call depth 1). Figure 12 shows
maximum trace width, which is the maximum number of calls
made by all services at any depth level. (For example, 3 service
blocks at one depth making 3 calls each results in a width of
9). We see that across all profiles, traces are much wider than
deep: in Fetch profile the median depth is 4 vs. median width
of 472, and P99 depth is 6 vs. P99 width of 7,400. We conclude
that large traces are a result of the number of calls made by
services, not depth of calls. This can be partially explained
by the widespread use of data sharding where retrieving a
collection of items requires fanning out requests across many
storage service instances.

Service reuse within traces is high and occurs at many dif-
ferent call depths: Figure 13 shows CDFs and statistics of the
number of services visited within individual traces. Comparing
with trace sizes (Figure 10), traces generally contain more ser-
vice blocks than unique services. At the median, traces visit be-
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Type Ads Fetch RaaS

All 421 127 72
Leaf 168 (39.9%) 63 (49.6%) 35 (48.6%)
Single relay 58 (13.8%) 21 (16.5%) 17 (23.6%)
Variable relay 195 (46.3%) 43 (33.9%) 20 (27.8%)

Table 2: Parent types. The distribution of parents of each type
within each profile.

tween 1x (2/2), 38x (498/13), and 2x (4/2) more service blocks
than unique services across Ads, Fetch, and RaaS respectively;
at P99 these ratios are 71x, 21x, and 810x respectively.

Most services are observed at more than one call depth in our
profiles. We measured the number of call depths at which each
service was observed. The services in Ads traces have high
rates of appearing at multiple depths (median: 6, average: 7.3).
Approximately 60% of Fetch and RaaS services are observed
at multiple levels (median: 2, average: 2.6 for both profiles).

4.3 Predicting parent/child relationships
Parent Ingress IDs strongly predict whether services will
have no children or only one child: Table 2 shows that such
services, defined as leaves and single relays, make up from
53 to 73 percent of service executions in our profiles. We find
that they are always databases or calls to databases.

Ingress IDs do not predict number of downstream calls:
Parents that make one or more downstream calls to children are
called variable relays in Table 2, making up from 27 to 47 per-
cent of Ingress IDs in our profiles. Figure 14 shows that variable
relays exhibit a wide distribution in the number of children calls
they make. Some Ingress IDs exhibit high variance in the num-
ber of children they call across different executions whereas
others have very little variance (but it is always non-zero).

Variability in number of children calls is due to database
calls for Fetch and RaaS: We find that at least 61.1% and

(a) Ads

(b) Fetch

(c) RaaS
Figure 14: Calls per parent. Boxplots are shown for every
Fetch and RaaS variable relay. Due to limited space, only the
50 variable relays with the greatest number of invocations are
shown for Ads. Parent Ingress IDs are sorted in descending or-
der by total number of invocations. Boxplot boundaries indicate
P25-P75 and the horizontal line within boxes indicate medians.
Lower and upper whiskers indicate the smallest/largest data val-
ues within 1.5 IQR below/above P25/P75 and dots are outliers.

72.1% of these variable relays’ children calls are database
accesses in Fetch and RaaS traces respectively. For Ads traces,
only 35.7% of children calls are database accesses.

There is a dominant set of unique children per par-
ent: When we ignore number of calls, we find that most
single and variable relay parents call only a few children
sets, where each set is defined as a combination of unique
children Ingress IDs within a given invocation of the parent
Ingress ID. For example, one children set may contain
memcache+read and database+write, whereas another
may contain key_service+retrieve and database+write.
The average number of children sets called by a relay parent
is 28 for Fetch & Ads and 12 for RaaS parents. Most parents
have a dominant children set that they call in more than 50%
of executions. Specifically, 71.9%, 80.2%, and 81.6% of Fetch,
Ads, and RaaS relays have dominant children sets.

Non-dominant children sets contain mainly one off children
Ingress IDs and are not a superset of the parent’s dominant chil-
dren set. On average, only 27% of children Ingress IDs called
by a parent are in most (>50%) of the parent’s children sets.
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(a) Ads

(b) Fetch

(c) RaaS
Figure 15: Parent concurrency. Concurrency distribution
for all invocations of a parent Ingress ID. Shows all variable
relays for Fetch & RaaS, and the top 50 in Ads by invocation
count. Boxplots are interpreted identically to figure 14.

4.4 Predicting children’s concurrency
We define maximum concurrency as the maximum number of
children calls executing concurrently by a parent at any point
in time in its execution. More formally, a set of concurrent
calls St at time t is all children calls with tstart ≤ t< tend , where
all timestamps are measured at the parent, and the maximum
concurrency C is computed as:

C=max(|St |),∀t : t parent
start ≤ t< t parent

end (1)

We use a normalized measure of maximum concurrency,
the concurrency rate, calculated as C/num_children, to
allow comparisons across different executions of the same
parent (different numbers of children may be called in each
execution) and to allow comparisons between different parents.
num_children refers to children that have return edges and
well-defined durations. We only consider variable relays since
concurrency is ill-defined for leaves and single relays.

Parent Ingress ID does not predict whether children
will execute concurrently or sequentially: Figure 15 shows
boxplots of concurrency rates across executions for each parent
Ingress ID observed in our traces. We see that there is a mix of
high and low variation in concurrency rate across Ingress IDs.

The combination of parent Ingress ID and children set
more accurately predicts concurrency rate: Figure 16 shows
a CDF of the standard deviation in concurrency rate across all
executions of parent Ingress IDs. To understand if children set
adds predictability value, we calculate the standard deviation
for each parent’s children set and average them to obtain a

(a) Ads (b) Fetch (c) RaaS
Figure 16: Standard deviation in concurrency rate. Parent
shows a CDF the standard deviation in concurrency rates for
all executions of a parent. Per-parent avg. children set shows
the average standard deviation per children set for each parent.

per-parent average. We plot this CDF of per-parent average. In-
tuitively, if children sets provide value, the per-parent average
should decrease whereas if they do not, the data points will be
randomly distributed and standard deviation will not decrease.
Overall, we find that including children sets shifts the distribu-
tions to the left. The shift is most pronounced at the median for
Ads and Fetch: 0.13, 0.09 vs. 0.04 and 0.02. Adding children
set does not provide value in the tail for Fetch and RaaS.

We speculate the reduction in standard deviation is because
children belonging to the same children set likely have
well-defined control or data dependencies between each other.
Reduction in variation due to control dependencies may be a re-
sult of custom threading models for different code logic blocks
in parents (each responsible for a different behavior and thus
children set). For data dependencies, consider the following
examples. Children sets containing different cache services
may have no dependencies and thus may be able to execute
concurrently. In contrast, children sets comprised of a key
server and a database service may have to execute sequentially:
credentials may be required to access the database.

Ingress ID + children set calls display a range of
dependency relationships: We now quantify the strength
of dependencies within Ingress ID + children set’s calls. We
use the maximum concurrency rate observed across Ingress
ID + children set executions as a indicator of dependency.
A maximum concurrency rate of 1 implies that there are no
dependencies among children calls. A maximum observed con-
currency rate of 0 builds confidence that the children calls are
dependent and must execute sequentially. Figure 17 shows the
results. Overall, we find that most Ingress ID + children set ex-
ecutions display weak dependencies (some concurrency) and
there are a few strongly dependent (sequential) children sets.

4.5 Quantifying traces’ observability loss
Most prematurely terminated call paths are unrecoverable:
We plot the percent of branches that terminate prematurely
(at an inferred service) at each call depth in our traces
(Figure 18). Some branches terminate prematurely due to
internal rate-limiting at databases, which are usually leaves
in the traces. The shaded area in Figure 18 is the portion of
inferred services that represent known databases. The distance
between the curves are unknown inferred services, which
make up the majority of inferred services. Using trace data
alone, we cannot know what the unknown inferred services are

428    2023 USENIX Annual Technical Conference USENIX Association



(a) Ads

(b) Fetch

(c) RaaS
Figure 17: Parent Ingress ID + children set max concur-
rency rate.

2.5 5.0 7.5 10.0 12.5 15.0 17.5
Call Depth

0

20

40

60

80

%
 in

fe
rre

d

Ads
Fetch
RaaS

Figure 18: Inferred Services. Percent of service calls that are
inferred at each call depth. The shaded region is the percent
of inferred services that are known to be database calls.

(some may still be other databases we were not able to identify
reliably) or the shape of the workflow from that point on.

Non-uniform probability a branch is terminated: Deep
branches are disproportionately prematurely terminated.
For RaaS traces, 80% of call paths that reach depth 3 are
terminated with inferred nodes, none of which were identified
as databases. However, as the average trace depth for RaaS
is only 2.3 (Figure 11), the majority of RaaS traces are not
affected by premature branch terminations. Similarly, Fetch
and Ads traces are shallow and prematurely terminated
branches mainly occur beyond the average trace depth.

5 Implications and opportunities
Implications for microservice testbeds: Existing testbeds [1,
13, 46] represent only single applications, whereas microser-
vices within Meta serve many applications (§2.1). Previous
studies state that existing open-source testbeds’ topologies are
lacking in scale compared to industrial microservices [20, 41].
Our results confirm these results (Finding F2) and add the fol-
lowing dimensions to consider in future testbeds: heterogeneity
of services, churn, and growth. Specifically, we find that Meta’s

microservice architecture contains a mix of software entities
that are deployed as services: complex ones that expose many
endpoints and are likely more monolithic in nature, simple
ones that expose just a few, and ill-fitting ones that require
support beyond which the microservice architecture provides
by default (Finding F1). We find that services are deployed and
deprecated (at least) daily and that the shape of the communica-
tion topology is constantly growing and changing (Finding F3).

Luo et al. [20] state that request workflows within existing
testbeds are too static. Many service-level workflow properties
can be predicted from root endpoint alone. Our analyses show
that future testbeds should include concurrency, number of
children, and set of children that are executed as dimensions
of variability in request workflows representing the same or
similar high-level behaviors (Finding F5).

Implications for microservice tooling: Tools that use
models of microservice topologies [12, 25, 44] should assume
that its constituent services are always changing and that
the topology itself is highly-dynamic (Finding F3). Periodic
retraining may be necessary; mechanisms are needed to
identify when predictions diverge from the ground truth due
to stale topological information.

Tools that aggregate request-workflow traces for
performance predictions, diagnosis, or capacity plan-
ning [7, 14, 28, 29, 45] must assume that there is significant
diversity in workflows originating from the same root end-
points or groups of related root endpoints (Finding F5). Our
studies show that many workflow properties can be predicted
when they are broken down into fundamental building blocks
(parent/child relationships) (Finding F5), perhaps a promising
starting point for aggregation-based tools. However, capturing
total orderings for entire traces [14] or even individual services
may not scale due to parent Ingress IDs initiating large number
of RPCs with high concurrency (§4.4).

Need for artificial microservice topology & workflow
generators: Such generators are a necessity given the
infeasibility of creating microservice deployments outside of
industrial settings. The sole existing workflow generator [20]
may be too specific to a single organizations’ microservice
design (that number of children depends on depth in trace) and
generates stochastic workflows that do not represent any single
request. Research is needed to identify: (1) which dimensions
of microservice architectures are best explored in testbeds
versus artificial topology or workflow generators; (2) how
to ensure these dimensions are representative of a variety of
large-scale organizations’ characteristics. Our analysis shows
that assuming topologies follow power-law relationships is in-
sufficient for modeling microservice topologies (Finding F2).

How to better incorporate ill-fitting software entities
into microservice architecture? Ill-fitting entities constitute
a significant portion of Meta’s microservice topology. Key
questions include: (1) Should infrastructure platforms provide
richer interfaces to allow scheduling, scaling, and observability
based on additional dimensions rather than only one? (2) In
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cases where ill-fitting-entities use custom techniques, what
mechanisms are necessary to allow mapping them to standard
service-level operations?

Naming & predicting missing elements of workflows:
Our predictability results (Finding F5) indicate that well-
defined service and endpoint names are important for
predicting local workflow properties. Almost all tools that
use distributed traces [7, 12, 14, 25, 28, 29, 42, 44, 45] assume
descriptive names. But, naming quality can vary considerably,
especially for services that satisfy many business use cases and
for microservice architectures in which all instrumentation
is done within proxies surrounding services [3]. Research into
naming schemas that allow different parts of service behaviors
to be differentiated based on parts of the name (or attached
attributes) is needed. Research is also needed into how to
automatically identify meaningful names and/or attributes that
differentiate important within-service behaviors, and whether
missing observability data (Finding F6) can be predicted
based on other data already available.

Need for standardized methods to contrast different
organizations’ microservice architectures: Our original
goal for this research was to compare characteristics of
Meta’s microservice architecture with previous studies of
industrial microservice architectures. At 30,000 ft, we find
that organizations’ architectures have similar architectural
diagrams (Figure 1) and use custom versions of the same
architectural components or open-source versions [4, 19, 35].
Furthermore, similar to Meta, the traces used in Luo et al. [20]
and Wen et al. [41] tend to be small. Large traces are wider
than deep, indicating common use of data sharding. We also
find some differences. Traces used in Zhang et al. [45] seem
to be much deeper than those used in our analyses, perhaps
due to their domain-oriented microservice strategy [15].

Unfortunately, we found more detailed quantitative
comparisons to be impossible due to divergent (or ill-specified)
definitions in previous studies and because different studies use
custom measurement techniques specific to their observability
frameworks. With regard to comparing scale and complexity,
previous studies do not define the term service, describe
individual service’s complexity, or describe number of
communication edges between services, or service instances.
For request-workflow-based analyses, these studies do not
identify tracing sampling rates and mechanisms, whether
traces capture all of request workflows or only parts or whether
dropped records or rate limiting impact their analyses. Similar
to rich research into Internet measurement [2], we need to
develop rich, well-accepted methodologies for collecting
data about microservice architectures to understand and
systematize similarities and differences across them.

6 Summary
The characteristics of large-scale microservice architectures
are largely invisible outside of industrial organizations. We

presented an analysis of Meta’s microservice architecture
to inform more robust assumptions for future microservices
research and development.
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