
This paper is included in the Proceedings of the
2023 USENIX Annual Technical Conference.

July 10–12, 2023 • Boston, MA, USA
978-1-939133-35-9

Open access to the Proceedings of the
2023 USENIX Annual Technical Conference

is sponsored by

Zhuque: Failure is Not an Option, it’s an Exception
George Hodgkins, University of Colorado, Boulder; Yi Xu and Steven Swanson,

University of California, San Diego; Joseph Izraelevitz,
University of Colorado, Boulder

https://www.usenix.org/conference/atc23/presentation/hodgkins

Zhuque: Failure is Not an Option, it’s an Exception

George Hodgkins∗

University of Colorado, Boulder
Yi Xu∗

University of California, San Diego

Steven Swanson
University of California, San Diego

Joseph Izraelevitz
University of Colorado, Boulder

Abstract
Persistent memory (PMEM) allows direct access to fast

storage at byte granularity. Previously, processor caches
backed by persistent memory were not persistent, compli-
cating the design of persistent applications and reducing their
performance. A new generation of systems with flush-on-fail
semantics effectively offer persistent caches, offering the po-
tential for much simpler, faster PMEM programming models.

This work proposes Whole Process Persistence (WPP), a
new programming model for systems with persistent caches.
In the WPP model, all process state is made persistent. On
restart after power failure, this state is reloaded and execution
resumes in an application-defined interrupt handler.

We also describe the Zhuque runtime, which transparently
provides WPP by interposing on the C bindings for system
calls in userspace. It requires little or no programmer effort
to run applications on Zhuque.

Our measurements show that Zhuque outperforms state
of the art PMEM libraries, demonstrating mean speedups
across all benchmarks of 5.24× over PMDK, 3.01× over
Mnemosyne, 5.43× over Atlas, and 4.11× over Clobber-
NVM. More important, unlike existing systems, Zhuque
places no restrictions on how applications implement con-
currency, allowing us to run a newer version of Memcached
on Zhuque and gain more than 7.5× throughput over the
fastest existing persistent implementations.

1 Introduction

Persistent memory (PMEM) exposes fast storage devices as
byte-addressable main memory, allowing the processor to
access persistent data via load and store instructions. The
durability of PMEM enables an application’s in-memory data
to survive across system reboots and unexpected power fail-
ures. It promises to realize a vision of high performance, data
persistence, a simple programming interface, and low storage
overhead at the same time.
∗The first two authors contributed equally to this work

However, building a system that realizes the promise of
persistent programming is not simple. The contents of CPU
caches do not survive power loss, and, since caches may delay
evicting a modified cache line, writes may not reach PMEM
in program order. This makes reasoning about the state of
memory after a crash extremely challenging.

Programming systems (e.g., libraries, programming mod-
els, language support, and compilers) to help address the chal-
lenges of persistent memory programming have proliferated
over the last decade. Broadly, three families of systems have
emerged: each takes a different approach to consistency, and
each faces significant challenges which bar widespread adop-
tion.

The first and largest family [50, 63, 68, 71] requires pro-
grammers to access persistent state only through well-defined
atomic operations (often called transactions). This provides a
clean notion of consistency: after recovery from crash, each
atomic section has either executed entirely or not at all. How-
ever, like all transactional memory models, this approach suf-
fers from serious weaknesses: it is fundamentally incompat-
ible with non-transactional synchronization, and has never
gained significant traction in real systems.

The second family of systems [6, 26, 30, 42] uses FASEs,
regions of code protected by locks, as atomic regions for
PMEM updates. Legacy code can run with minimal changes,
but these systems suffer from fundamental weaknesses arising
from complex locking schemes and external IO. As we will
show, addressing these weaknesses either cripples the system
or essentially reduces it to a transaction-based system.

The final family of systems takes the more dramatic step of
making everything in the system persistent via whole-system
persistence (WSP) [47]. WSP provides the conceptually sim-
plest programming model: Nothing much changes and, from
the program’s perspective, crashes never occur. WSP faces
two major challenges: First, making all of memory persistent
has until recently been infeasible, because regularly flushing
volatile caches to PMEM creates enormous performance over-
heads. Second, making everything persistent would require
a far-reaching redesign of many system components, for an

USENIX Association 2023 USENIX Annual Technical Conference 833

unclear benefit.

We think that WSP-style persistence is due for a renais-
sance: The advent of PMEM devices and platforms supporting
flush-on-fail semantics (e.g. eADR for NVDIMMs or GPF for
CXL devices) allows developers to treat caches as effectively
persistent [14, 29], removing the main performance argument
against WSP. Further, we believe that limiting the scope of
persistence to a process – yielding Whole Process Persistence
(WPP) – and providing well-defined, application-level seman-
tics for system failures combine to produce a programming
model that is fast, flexible enough to support legacy programs
and complex locking schemes, and easy for programmers to
use and understand.

WPP provides a simple abstraction to the process: its entire
memory is persistent and will survive a power outage. If a
power outage occurs, the process receives an OS signal after
restart notifying it of the crash. The process can install a
normal error handler for this signal which cleans up and exits,
or performs more complex application-specific recovery; by
default, program execution simply continues at the point of
failure.

This work makes the following contributions:

• We identify a fundamental limitation of FASE-based
PMEM systems.

• We introduce the WPP programming model, which treats
power failure as a recoverable exception.

• We build the Zhuque runtime which provides WPP and
describe its design and implementation.

• We provide experiments demonstrating the viability of
the WPP system and its performance improvements over
existing alternatives.

Zhuque is faster than existing PMEM programming sys-
tems. It is between 4.7× and 10.14× faster than PMDK [50],
Mnemosyne [63], Atlas [6] and Clobber-NVM [68] on
STAMP applications. Zhuque is also more flexible than these
systems: Since Zhuque is agnostic about the application’s
locking scheme, it can run the most recent version of mem-
cached, while those systems cannot. As a result, our Zhuque-
based persistent memcached is more than 7.5× faster than
any similar system. We also demonstrate Zhuque’s flexibil-
ity by running unmodified Python benchmarks with minimal
performance loss.

The rest of this paper is organized as follows. Section 2 pro-
vides some background on PMEM and associated software
systems. Section 3 describes fundamental limitations of prior
art necessitating the WPP model. We discuss the WPP design
and musl-based system implementation in Section 4 and Sec-
tion 5, respectively. Section 6 showcases the performance of
WPP. We discuss related work in Section 7 and conclude the
paper in Section 8.

2 Background

PMEM has introduced new possibilities for designing stor-
age systems: programs can have byte-addressable access to
terabytes of persistent data at near-DRAM latencies. How-
ever, utilizing PMEM in a both performant and programmer-
friendly manner remains a challenging problem.

This section begins by describing our machine model, and
then reviews existing general-purpose persistent memory pro-
gramming models and their limitations to motivate WPP.

2.1 Machine Model
WPP is designed for a multi-core, cache-coherent machine
equipped with PMEM (e.g. Intel DC Persistent Memory [28]
or persistent CXL.mem devices [53]), and supporting flush-
on-fail semantics, meaning that they provide a hardware guar-
antee that all in-flight and cached writes will reach PMEM in
the event of an external power failure (as opposed to a fault in
the machine or its onboard power supply). Such guarantees
are provided by eADR-compliant platforms and NVDIMMs,
and CXL platforms and devices supporting Global Persistent
Flush (GPF). eADR and GPF are similar solutions targeting
different device interfaces: the primary hardware requirement
for both is that the platform must store sufficient energy to
allow caches and internal device buffers to be drained to per-
sistence after a power failure [1, 53].

On x86 systems, both eADR and GPF require system
firmware to initiate and oversee the drain to persistence in
response to a System Management Interrupt (SMI) [1, 13, 14].
Upon receiving this interrupt, the processor retires all in-flight
instructions, drains all stores to the cache, and saves architec-
tural state (register file etc.) to a designated per-core memory
region before beginning execution of the SMI handler [16]. In
both GPF and eADR, this handler first flushes the processor
caches (and, for CXL, the caches of any CXL.cache device),
and then proceeds to flush the buffers on the PMEM devices
(NVDIMMs for eADR, CXL.mem devices for GPF) [1, 14].

2.2 Persistent Programming Models
Most existing persistent programming libraries rely on mark-
ing regions as failure-atomic, that is, all of the code region’s
effects will survive a failure or none will. Models differ in
whether regions are explicitly marked (transactional) or in-
ferred from locks (FASE-based). In addition, one work has
proposed making the whole system persistent.

2.2.1 Transactional Libraries

Transactional PMEM libraries expect the programmer to ex-
plicitly mark failure atomic sections. For concurrency, these
libraries either rely on off-the-shelf transactional memory
systems or require the use of their own locks. For example,

834 2023 USENIX Annual Technical Conference USENIX Association

NV-Heaps [9], Mnemosyne [63], and DudeTM [41] are built
on existing transactional memory (TM) systems, and imple-
ment their failure-atomicity techniques (e.g. redo or undo
logging) on top of those systems.

Meanwhile, transactional libraries that rely on locks gen-
erally expect transactions to acquire and release locks in a
conservative, strong strict two-phase locking pattern [51, 64],
that is: transactions acquire all locks at transaction begin,
transactions release all locks at transaction commit, and locks
are released in the order they are acquired. For example,
PMDK [50], Pangolin [71] and Clobber-NVM [68] require
applications to follow this lock pattern.

2.2.2 FASE-based libraries

Atlas [6] proposed the concept of failure-atomic sections
(FASEs) as an alternative to transactions. A FASE is a failure-
atomic operation which begins when a thread acquires its first
lock and ends when it holds none — importantly, the final
lock held may be different from the first lock. Because this
locking scheme allows updates to be visible to other FASEs
before a FASE commits, FASE-based libraries are required to
track dependencies between threads, and roll back dependent
FASEs in case of failure. Because FASEs are dynamically
formed at runtime, user annotation is not required for exist-
ing lock-based code. NVThreads [26], JUSTDO [30], and
iDO [42] follow this model.

2.2.3 Whole System Persistence

Instead of basing persistence on bounded sections of code,
whole-system persistence (WSP) [47] focuses on the persis-
tence of the entire system. WSP describes a system substan-
tially similar to eADR and GPF, where an interrupt at power
failure triggers the draining of volatile caches/buffers to per-
sistence. This model requires no annotation and avoids the
extra work done by transactional or FASE-based systems, but
requires that large amounts of state be made persistent at
the instant of failure, which until the advent of flush-on-fail
systems was not possible.

3 Limitations of Prior Art

In this section, we argue that the existing programming mod-
els for persistent memory, namely transactional or FASE-
based, necessitate an alternative path, especially when work-
ing with legacy code.

Fortunately, the emergence of persistent caches has enabled
our efforts to develop a revitalize a model that does not fit
either of these directions, namely, whole process persistence,
in which all process state is preserved at a power failure.

3.1 Limitations of Transactions

The fact that many failure atomicity libraries leverage transac-
tional memory is not surprising — transactions are commonly
leveraged for durability within databases and file systems.
When applied to (volatile) multi-threaded code, the transac-
tional memory programming model simplifies concurrency
by exporting to the programmer “single global lock” seman-
tics, that is, the programmer should simply protect groups of
accesses to shared data as “transactions,” each of which are
mutually exclusive. The transactional programming model
is in theory appealing as programmers need not worry about
data races on shared data, multiple locks, or parallel perfor-
mance. To this transactional programming model, many fail-
ure atomicity libraries add persistence: transactions become
both visible to other threads, and persistent, upon transaction
completion.

In practice, however, despite decades of research and dedi-
cated hardware support, (volatile) transactional memory has
failed to become a common programming paradigm for gen-
eral purpose multi-threaded code. Transactions generally mix
poorly with both other synchronization methods (locks, bar-
riers, condition variables, etc.) [4, 70] and IO [45, 52], tend
to incur significant performance overhead when compared
to fine grained locking [4, 19], and are incompatible with
legacy multi-threaded code [52], whose locking discipline
is rarely compatible without significant rewriting. Support
for transactional memory in C++, for example, remains ex-
perimental [45]. There is no indication that persistent trans-
actional memory systems will solve these problems, indeed,
they appear to perpetuate them.

Generally, the transactional programming model is ex-
ported to the programmer using a scoped transaction, (e.g.
transaction{}) and the library guarantees transactions will
execute mutually exclusively (e.g. PMDK’s C++ interface).
However, for PMEM, transactional libraries may syntactically
decouple mutual exclusion from failure atomicity due to lan-
guage limitations (e.g. PMDK’s C interface). In such an API,
the library expects the programmer to first explicitly acquire
the necessary locks to gain mutual exclusion before, subse-
quently, executing the transaction’s failure atomic contents.

Despite this apparent separation, a transactional PMEM
library’s programming model imposes hard limits on the lock-
ing discipline - it expects that all transactional updates are
mutually exclusive and isolated by the locking discipline.
This restriction effectively forces the application to use a
limited locking scheme such as single-global-lock or strong
strict conservative two phase locking to protect any failure-
atomic update. The programming model explicitly disallows
releasing or acquiring a lock while executing a failure-atomic
update.

For more complex locking schemes in which failure-atomic
writes are visible to other threads before they are committed,
the use of a FASE-based programming model is required,

USENIX Association 2023 USENIX Annual Technical Conference 835

and is often necessary for legacy programs as, in general,
their existing synchronization fails to follow the restrictive
transactional requirements.

3.2 Limitations of FASEs

Despite being, at first appearances, more compatible with
legacy code, we argue the FASE-based model is also funda-
mentally flawed, or, at the very least, excessively permissive.
The FASE model defines a failure-atomic code region as a
“contiguous critical section,” that is, it defines a failure-atomic
code region as stretching from a thread’s first lock acquire
until the point where it holds no locks. While flexible with re-
spect to locking scheme, this model requires tracking runtime
dependencies between concurrently running failure-atomic
code regions, which may not be isolated from each other.
This permissiveness results in complicated and degenerate
scenarios for recovery.

As a contribution of this work, we demonstrate that, for
certain adversarial application patterns, any FASE-based sys-
tem will either fail to recover or collapse into a degenerate
case in which literally all program state must be logged for
recovery, including volatile data never accessed within failure
atomic regions — effectively, the FASE programming model
requires whole process persistence for correctness.

Theorem 3.1 (FASE Limitation) There exist applications
for which, in order to consistently recover from a crash, a
reasonably permissive FASE-based failure atomicity system
requires all volatile program state be available at recovery.

We prove this theorem by counterexample. This counterex-
ample (Figure 1) can emerge naturally where two threads com-
municate via shared variables and one executes IO, a common
pattern in event-based servers. In these servers, some threads
handle the IO socket (thread 2 in example), some threads are
application workers (thread 1), and they communicate via
shared flags to manage outstanding requests. Detecting this
pattern requires detailed reasoning about synchronization, and
therefore prevents the blind use of FASEs on applications.

In the remainder of this section, we describe the counterex-
ample and a brief sketch of our proof’s reasoning. A full proof
by contradiction, formal definitions, and additional discussion
incorporating related work can be found in Appendix A.

Figure 1 gives our adversarial application that breaks FASE-
based systems. In this example, two threads compute a fixed
series of four values for nonvolatile variable x. Thread 1 com-
putes the first value, Thread 2 the second and third, and Thread
1 the final, fourth value.

The two “tricks” of the code are that (1) the long FASE
executed by thread 1 (lines 6 through 22) spans the entire
example and (2) the third value of x, computed, but not as-
signed, outside of a FASE (line 39), is dependent on an access
to a large volatile array Q.

1 lock_t lock0, lock1, lock2;
2 bool cond1 = false, cond2 = false;
3 int Q[] = rand(); // large random volatile array
4 nvm<int> x = 0; // x resides in nvm

5 void thread1{
6 lock0.lock();
7 x = (int s1=f1(x));
8

9 lock1.lock();
10 cond1 = true;
11 lock1.unlock();
12

13 bool w = true;
14 while(w){
15 lock2.lock();
16 if(cond2)
17 {w = false;}
18 lock2.unlock();
19 }
20

21 x = (int s4=f4(x));
22 lock0.unlock();
23 }

24 void thread2{
25 bool w = true;
26 while(w){
27 lock1.lock();
28 if(cond1){
29 w = false;
30 x =(int s2=f2(x));

31 }
32 lock1.unlock();
33 }
34

35 int in;
36 printf("x=%d", s2);
37 scanf("%d",&in);
38 /∗∗∗∗∗/
39 int s3 = f3(s2,in,Q);
40

41 lock2.lock();
42 x = s3;
43 cond2 = true;
44 lock2.unlock();
45 }

Figure 1: FASE counterexample

Recovery of this example presents an unsolvable prob-
lem. First, we note that Thread 1’s long FASE, due to failure-
atomicity semantics, forces recovery to recover either to the
very beginning of the program or the very end. However, both
options are impossible for a crash at line 38, just before x’s
third value is computed. At this point, thread 2 has already
issued IO, so rolling back program state at recovery is in-
consistent with the external world. However, rolling forward
from this point requires the computation of the third value of
x, which is dependent on an arbitrarily sized volatile array (Q).
Since Q can be of any size, it can be replaced, without loss
of generality, with any or all of the program’s volatile state,
effectively requiring whole process persistence.

Our proof requires failure atomicity systems to be “reason-
ably permissive,” by which we mean that this counter example
can be expressed as valid input for the system. Systems that
restrict locking to two-phase-locking (e.g. [50,68]) or a single,
semantic, global lock (i.e. transactional memory [63]) avoid
this counterexample by prohibiting the locking pattern. Of
course, by the same token, this restriction hampers their utility
for legacy code, which rarely follows such a strict locking
discipline.

The FASE programming model may be fixable by prohibit-
ing situations like the counter-example. Simple (but undesir-
able) solutions include prohibiting all volatile accesses or all
IO in the program. Alternatively, we could try to prohibit the
precise counter-example problem by targeting the interplay

836 2023 USENIX Annual Technical Conference USENIX Association

Figure 2: Virtual memory in Zhuque. The runtime modifies
the backing store based on the mapping type, but the interface
presented to the userspace application does not change.

between FASE dependencies, volatile accesses, and IO. One
potential approach to achieve this involves a specification that
disallows volatile accesses concurrently with a FASE execu-
tion. However, formally defining this specification is tricky,
and formally verifying the proper use of FASEs is almost
certainly undecidable through the halting problem. Notably,
the requirement of a transactional locking scheme (e.g. strict,
strong conservative 2PL) would also prevent the counterex-
ample by explicitly disallowing its locking discipline.

To our knowledge, all existing FASE-based systems (e.g. [6,
26,30,42]) are “reasonably permissive” and would both accept
this code as valid input and fail to recover correctly on it.

4 Design

Whole process persistence (WPP) is our answer to the limita-
tions of transaction- and FASE-based programming models.
In WPP, the in-memory state of an individual process is made
persistent with, in simple cases, no modification to the ap-
plication, primarily by interposing on the creation of virtual
memory mappings (see Figure 2). WPP is designed for sys-
tems with flush-on-fail support, so we expect the contents of
the process’s PMEM-backed cache lines to survive a power
failure. When the process is restarted after a power failure,
it receives an OS signal, which it can ignore or handle with
a signal handler. If no signal handler is installed, or if the
installed signal handler does not exit the program, each thread
continues execution at the point where it was interrupted by
the failure.

There are several benefits to this model over transactions
and FASEs. First and most importantly, WPP solves the prob-
lem described in Section 3 by discarding the concept of a
failure-atomic section. The visible effects of an instruction
on process state (that is, not including effects on OS state or
peripherals) are guaranteed to survive a failure at least from
the point at which they are visible to other threads. Second,
restarting at the point of failure removes the need to "redo"
or "undo" any writes at recovery, and with it the need to keep
a persistent log and incur the cost of extra writes to PMEM.

Third, no longer needing to define failure-atomic sections
either reduces the programmer’s burden directly, compared to
manually-annotated failure-atomicity systems, or allows them
to design concurrency schemes orthogonal to persistency with-
out incurring overhead, unlike FASE-based systems.

There are two requirements that must be satisfied in order
for an application to use WPP. The first is that its thread-
ing and virtual memory must be managed using a well-
defined API for those purposes (i.e., on POSIX: mmap(),
pthread_create(), etc). Any modern application targeting
a POSIX system would have to go out of its way in order to
violate this requirement.

The second is that applications must check error returns
from system calls and other mechanisms that access non-
process-private state, to detect failure-related errors beyond
the process boundary, such as an application using a file on a
filesystem that was not remounted after system restart. This
requirement is more onerous than the first, but in our experi-
ence a wide range of applications can be correctly restarted
without modification or special handling.

The principal challenge in implementing WPP is preserving
process state across a power failure. Continuing execution
after failure requires that the process’s virtual address space,
volatile architectural state, and relevant kernel-resident state
(e.g., the file descriptor table) are a) persistent or b) can be
resurrected along with the application.

The remainder of this section introduces Zhuque, our run-
time implementing WPP, and describes how it makes process
state persistent and restores that state after failure.

4.1 Overview

Zhuque provides WPP functionality by interposing on sys-
tem calls which allocate resources (memory, file descriptors,
threads), and by modifying the application startup process. In
order to do this, we modified libc, which provides C bind-
ings for system calls and implements the application startup
process. Zhuque also requires small changes to the kernel to
protect userspace context when failures occur in kernel mode
(see Section 5.3 for details).

Interposing on system calls allows Zhuque to ensure that all
application state which is normally volatile is instead stored in
PMEM, as shown in Figure 2. It also allows Zhuque to track
memory mappings and system calls so it can reconstruct the
program’s address space and re-create its kernel-resident state
after a failure. Remaining volatile architectural state (e.g., the
register file) is preserved by writing it to PMEM at failure.

When the application is resurrected after failure, Zhuque
restores the application’s address space, respawns its threads,
and each thread reloads its architectural state. Execution re-
sumes by calling the program’s power failure signal handler,
if it exists, and then resuming execution of each thread at the
point interrupted by power failure.

USENIX Association 2023 USENIX Annual Technical Conference 837

4.2 Ensuring State Persistence

The first requirement that Zhuque must fulfill is ensuring
that all state required for continuing correct execution of a
program is preserved across power failures. This state can
be divided into three categories based on its storage location:
architectural state, memory state, and file state.

If a system supports flush-on-fail, it would be possible to
modify its firmware to write per-thread architectural state
(register file, floating-point configuration, etc.) to PMEM in
response to power failure. However, we do not have the ability
to modify that firmware, so we emulate it using userspace
signals (see heading Power Failure in Section 5.1). We also
save architectural state to PMEM on every kernel entry, in
case a failure occurs in kernel mode (see Section 5.3).

File state is either inherently persistent, if the file was
opened read-only or if changes have been written to disk,
or is buffered awaiting being written to disk, in which case it
is actually memory state and is handled as described below.

Automatically ensuring memory state is persistent is more
complex, and is one of the main innovations of this design.
Memory state itself can be divided into dynamic and static
memory.

Dynamic memory Programs conjure dynamically allo-
cated (heap) memory and thread stacks by calling anonymous
mmap() (often via malloc()). Zhuque interposes on mmap()
so that requests for anonymous memory return DAX-mapped
persistent memory backed by a runtime-managed PMEM file,
making heap and stack memory persistent.

Static memory Before an application binary is executed,
the loader uses mmap() to create memory regions to hold
code and static data (globals) from the application binary and
linked dynamic libraries. Zhuque treats these regions differ-
ently based on whether they are un/zero-initialized, or initial-
ized to non-zero values. The loader creates un/zero-initialized
regions with anonymous mmap(), so they are treated as dy-
namic memory.

Initialized static memory, however, actually takes up space
in the binary, and is loaded by mapping that region of the bi-
nary into memory as a private mapping. Thus, Zhuque trans-
forms any writable, private mapping backed by a file to a
writable, shared mapping that is backed by a PMEM file (see
Figure 2), which is populated with the initialization values
from the binary.

This mechanism also cleanly handles other outputs of dy-
namic loading, like relocations of position-independent code
and cross-binary symbol resolutions, since they also are stored
in writable, file-backed, private mappings.

4.3 Ensuring Correct Restoration

Having persisted the application’s state, we also have to en-
sure it can be restored correctly. Recovery must restore the

application address space, restore kernel-resident state, and
restore architectural state.
Application address space All of the PMEM-backed
memory mappings managed by Zhuque, as well as any other
mappings the application created with mmap(). Zhuque stores
the mapping table in a persistent memory file, and updates
it to match any changes to the address space as they occur,
so no action is required at failure to ensure this metadata is
persistent.

At recovery, restoring the virtual memory map to its previ-
ous state must be done first, because all other state to be
restored is stored in virtually mapped persistent memory.
Restoration consists of re-mapping each virtual memory re-
gion with the correct backing store and access permissions.
This restoration also replaces dynamic loading.
Kernel-resident state Any data required for continuing
execution that resides outside the address space (and architec-
tural state) of the process. The specific data varies depending
on operating system and implementation decisions: for in-
stance, Zhuque tracks the state of open Linux file descriptors
in PMEM and restores them at restart using system calls. We
discuss Zhuque’s handling of kernel-resident state in Sec-
tion 5.
Architectural state Any state stored in the processor itself
and directly accessible from software. This state is per-thread,
and since it includes the program counter and stack pointer
registers, restoring it is equivalent to restarting execution of
the thread (so it must be done last).

Zhuque manipulates the saved PC and stack so that the
thread resumes as if it had just called the application-defined
failure handler (if it exists), and then that handler returns to
the point interrupted by execution when it executes a RET
instruction. To avoid references to a thread which has not yet
been recreated, threads wait to restart execution after they are
created until all threads have been created.

5 Implementation

Zhuque is based on the musl implementation of the C standard
library runtime [46], plus a minor modification to the Linux
kernel (Section 5.3). Figure 3 depicts Zhuque’s place in the
runtime environment, and Figure 4 shows the changes to
control flow at initialization and termination. This section
describes the life cycle of a Zhuque process, describes how
Zhuque handles the userspace-kernel boundary, and finally
discusses some limitations of our prototype implementation.

5.1 Process Life Cycle
When Zhuque starts a process, it checks an environment vari-
able for a path to a directory which holds or will hold the
persistent state for that process. One file in the directory holds
the process’s global “process context”, a memory map of a C

838 2023 USENIX Annual Technical Conference USENIX Association

Figure 3: Zhuque architecture. User applications link to the
C APIs provided by musl libc, and we modify the implemen-
tation of the APIs and the arguments passed to the underlying
system calls. To protect against failures in kernel mode, we
save userspace context to PMEM on entry to the kernel.

structure. The directory also holds all other persistent memory
files allocated during the process’s life.

Zhuque takes control of the process after the dynamic
loader loads its own metadata using information provided
by the kernel (“loader bootstrapping”). If the context file is
present, then Zhuque takes steps to restart the process. If the
context file is missing, but the environment variable is set,
then it is a newly created Zhuque process (i.e., a clean start).
Clean start In the clean start case, Zhuque creates and ini-
tializes the process context file. Then, it records the locations
of the dynamic loader and the main binary in the mapping
table and remaps their static memory sections to memory
backed by a persistent file. This retroactive process is nec-
essary because our userspace runtime cannot interpose on
mappings created by the kernel.

Next, control returns to the loader and it loads the applica-
tion’s dynamically-linked dependencies. Our code intercepts
the loader’s calls to mmap() and mprotect() during this pro-
cess in order to record the mapping metadata and transform
any writable, private mappings into persistent memory re-
gions.

After loading is complete, control returns to Zhuque just
before main() executes. Zhuque copies main()’s arguments
into PMEM and runs it in a new thread with a persistent stack.
Power failure To save volatile architectural state (e.g. the
register file) to PMEM at failure, we propose repurposing
existing functionality. NVDIMM eADR and CXL GPF both
rely on a System Management Interrupt (SMI) to implement
the flush-on-fail process on x86 systems (see Section 2.1).
SMI handling saves volatile architectural state to a desig-
nated per-core region (the SMRAM) before beginning exe-
cution of the handler, and x86 allows the SMRAM to be
PMEM-backed [16]. However, the location of the SMRAM
is controlled by system firmware. Unfortunately, updates to

firmware must be signed by the manufacturer — the firmware
uses encryption to prevent modification by the end user [15],
so we were unable to make this change for our prototype.

Instead, to test Zhuque’s application support, we emulate
the SMI’s state save using userspace signals. If SIGPWR is
delivered while the process is executing, the volatile thread
receives it and sends a second signal to each thread. When
the kernel interrupts a thread to run the signal handler, it first
pushes the register file and other state needed to resume ex-
ecution onto the persistent thread stack. The handler body
saves the current stack pointer and some context not saved
by handler entry in PMEM, and then exits the thread directly,
preserving the contents of the stack. Thus, at recovery, we
have access to a persistent memory region containing a snap-
shot of volatile architectural state at failure, as if it had been
saved by an SMI.
Restart after failure On restart, the runtime opens the
context file, re-creates PMEM mappings, re-opens file de-
scriptors, and finally re-maps file-backed memory. If a file
descriptor was closed after being used to create a mapping, it
is temporarily re-opened while the mapping is restored.

After the virtual memory map and file set are re-established,
Zhuque restarts the execution of each thread from the point of
failure. Zhuque does this by starting each thread with the same
start routine, and the same initial stack pointer, so that the
bottom frames of the stack are overwritten with new frames
of the same size, and the contents of application frames are
preserved. From this entry routine, we use assembly to restore
architectural state, including setting the stack pointer and PC
to the addresses saved at failure. Execution resumes within
the runtime’s failure handler, which calls the user-defined
failure handler if present. If there is no user-defined handler,
or the handler does not exit the program, execution continues
at the point interrupted by the signal at failure.

5.2 Kernel-resident State
In order to preserve correctness in a userspace-only implemen-
tation, our runtime tracks and restores two pieces of kernel
state tied to the process: the file descriptor set and the thread
set.

To track the thread set, our runtime interposes on calls to
pthread_create(), wrapping the passed thread entry point
and arguments in our own entry point function (which itself is
wrapped in the musl entry point function). It also saves both
the Linux and pthreads identifiers for the thread; the Linux
ID is used at failure to signal each thread individually with
tgkill(), while the pthreads ID is the address of the thread
metadata, and is used at restoration to continue execution
at the point of failure. The Linux ID of a thread changes
when the process is restarted, while the pthreads ID does
not, because we restart threads at recovery with a modified
version of pthread_create()which uses an existing thread
metadata object rather than creating a new one.

USENIX Association 2023 USENIX Annual Technical Conference 839

Figure 4: Zhuque runtime control flow. Zhuque modifies runtime startup and termination; application code is not modified.

To track the file descriptor set, Zhuque interposes on calls
which assign (e.g. open(), socket()), modify (e.g. fcntl(),
bind()), or release (i.e. close()) file descriptors and replays
them at restart, using dup() to patch any discrepancy in as-
signed descriptors. This approach is sufficient for sockets
with stateless protocols, epoll file descriptors, and simple
file accesses.

However, pipes and files require special handling: for reg-
ular files, we ensure that they will not be deleted between
failure and restoration by creating separate hardlinks to the
files and using those to reference the file, deleting them when
the program exits cleanly; we also open them without kernel
buffering (i.e. with O_SYNC) due to the limits of a userspace
implementation. And for pipes, we use the splice() fam-
ily of system calls to save and restore unconsumed contents
at failure/restoration. Support for restoring network sockets
is best-effort, and a more systematic approach to network
support under WPP is an interesting future extension of this
work.

5.3 Failures in kernel mode

When an application makes a system call, or is suspended
by an interrupt, the kernel will save the application’s volatile
architectural state on the suspended thread’s kernel stack and
restore it when application execution resumes. In our imple-
mentation the kernel stack is volatile, so we must save this
state in persistent memory to allow recovery if power failure
interrupts the kernel-mode operation.

To enable this, we added a prctl() operation to designate
a page as a redundant state save area. We added code on all
entries from user- to kernel-mode which checks whether such
a page has been provided, and if so saves the state there as
well as to the kernel stack. Accesses to the page must not fault:
since a page fault is itself an interrupt, a fault in interrupt entry
deadlocks the kernel. We found that there is no way (in our
test kernel version) to reliably prevent access to a filesystem
DAX page from faulting, so we use device DAX to provide
the save memory.

5.4 Limitations

There are two notable limitations of our implementation, nei-
ther of which is fundamental to the design.

Multi-process applications are not supported. Zhuque
currently has no support for persisting multiple processes in
the same process tree; if an application under our runtime
forks a new process while leaving the LD_RELOAD environ-
ment variable unchanged, the child process will crash when
it attempts to use the same context object as its parent. By
the same token, we make no attempt to preserve OS process
IDs across failures, so applications that save and retrieve their
PID after failure may find it invalid. Our runtime supports
unrestricted concurrency schemes, so we believe it would
be possible to extend it to support multi-process operation
by interposing on the creation and termination of processes,
similar to our approach to threads.

Some ASLR is not supported. Address space layout ran-
domization (ASLR) is a security technique which randomizes
the address of virtual memory mappings. Random addresses
returned by mmap()to userspace are not an obstacle, since
the randomization only occurs once under Zhuque. However,
Zhuque cannot prevent the kernel from mapping libc and
the application binary at a random location at restart, which
means that their static memory cannot be recreated at the
same locations when ASLR is enabled. It would be possible
to move those mappings after they are created, but since it
does not otherwise affect correctness or performance, and it
would add significant complexity to the startup process, we
chose not to implement this feature.

6 Evaluation

In this section, we evaluate Zhuque’s performance to provide
answers to the following questions:

• How much performance improvement does Zhuque pro-
vide for persistent applications compared to existing li-
braries?

• How much performance overhead does Zhuque incur
compared to native, volatile execution?

• What benefits does Zhuque provide by enabling zero-

840 2023 USENIX Annual Technical Conference USENIX Association

effort persistence?
Our experimental workloads include a set of micro-

benchmarks, a set of Python benchmarks, and three recover-
able applications.

6.1 Evaluation Setup
We compare against native application performance based on
musl and the performance of four popular PMEM libraries.

Musl [46] stands for the default (volatile) implementation
based on musl libc.

PMDK [50] is Intel’s failure atomicity library. It uses hy-
brid undo-redo log for both failure-atomicity [27] and mem-
ory allocation [55]. Atlas [6] also uses an undo logging-
based mechanism for failure-atomicity. It can automatically
infer failure-atomic region boundaries by analyzing lock be-
haviors in application code. Clobber-NVM [68] is a state-
of-the-art PMEM library. It records clobber_log and v_log
during runtime, and recovers an application by re-executing
any interrupted transactions. Mnemosyne [63] is a redo-log
based system. Instead of relying on locks in user applications,
Mnemosyne uses the C++ transactional memory model to
parallelize code.

To measure their performance with flush-on-fail semantics,
we removed the flushes and fences from all three comparison
libraries. These flush-on-fail (FoF) versions are used for all
experiments described below, unless otherwise noted.

We run the benchmarks on a platform with one 20-core
Intel Xeon Gold 6230 processor, running at 2.1 GHz. The plat-
form has a total of 96 GB of DRAM and 768 GB (6 ×128 GB)
of Intel Optane DC Persistent Memory directly attached to
the processor [28]. We configured our test machine such that
Optane DCPMM is in 100% App Direct mode [2]. In this
mode, software has direct, byte-granularity access to the Op-
tane DCPMM. Zhuque uses DAX-mapped [40] Ext4 files for
all PMEM allocations except the kernel state save area, which
uses device DAX for the reasons described in Section 5.3.
Unless otherwise noted, all Zhuque experiments are run on
the modified kernel with the state save area activated, while
all comparison software is run on an unmodified kernel of
the same version (Ubuntu kernel 4.15.0-169). Each data point
reported is the average over five runs.

We observed variations in memory usage across different
benchmarks, ranging from 20 MB to 1 GB. For all but two of
the Python benchmarks, the memory usage exceeds the Last
Level Cache (LLC) capacity of 30.25 MB.

As discussed in Section 5.1, we were unable to modify plat-
form firmware to direct the SMI state save to PMEM, because
firmware updates must be signed by the manufacturer [15].
However, since it only affects events at failure, we expect that
making this change would produce no measurable changes in
the steady-state performance results we report below.

We verified that, with Zhuque enabled, all benchmark ap-
plications restarted and ran to completion correctly after

createjoin_serial1

createjoin_serial2

create_serial1
uselesslock

createjoin_minimal1

createjoin_minimal2
0

2

4

6

8

10

No
rm

al
ize

d
Pe

rfo
rm

an
ce

Pthread Benchmarks

anon_slab
anon_chunks

file_slab
file_chunks

files_chunks
0

1

2

3

4

5

No
rm

al
ize

d
Pe

rfo
rm

an
ce

Mmap Benchmarks
Zhuque
Zhuque(original kernel)
Zhuque on DRAM
Musl(original kernel)

Figure 5: Measuring the overhead of Zhuque on ba-
sic operations. Performance values are normalized to the
Musl(original kernel) value.

randomly-timed simulated power failures.

6.2 Microbenchmarks
In our first experiment, we compare Zhuque’s performance
with the default (volatile) musl libc on a set of microbench-
marks from the libc-bench [37] benchmark suite which tests
the operations modified by Zhuque: thread creation and virtual
memory mapping. We implemented the latter within the libc-
bench test harness. Descriptions of the pthread_create()
benchmarks can be found in the libc-bench documenta-
tion [37]. The mmap() benchmarks are described below.

anon_slab creates a 16 MB anonymous mapping, writes
to every page, and then removes the mapping. anon_chunks
creates, writes to every page, and then removes 128 128 kB
anonymous mappings. file_slab creates a 16 MB file-backed
mapping, writes to every page, and then removes the mapping.
file_chunks creates, writes to every page, and then removes
128 128 kB mappings backed by a 16 MB file.
files_chunks creates, writes to every page, and then removes
128 128 kB mappings each backed by a separate 128 kB file.

We ran these benchmarks on four implementations:
Zhuque is Zhuque using DAX-mapped PMEM as the back-
ing store, running on modified kernel. Zhuque(original ker-
nel) is Zhuque without kernel modification. Zhuque on
DRAM uses non-PMEM files (loads and stores access the
DRAM page cache) as a backing store, but also saves kernel

USENIX Association 2023 USENIX Annual Technical Conference 841

Deltablue
Genshi

Chameleon
Fannkuch Go

Django_template

Crypto_pyaes
Chaos

Float
0

10

20

Co
m

pl
et

io
n

Ti
m

e
(s

) Zhuque
Musl

Figure 6: Measuring the overhead of different Python
benchmarks: Zhuque matches native performance on some
benchmarks

95% Insert-5% Search 75% Insert-25% Search 25% Insert-75% Search 5% Insert-95% Search0

5

10

15

Th
ro

ug
hp

ut
 (M

/s
)

Zhuque
Mnemosyne-orig
Mnemosyne-FoF

PMDK-orig
PMDK-FoF

Clobber-NVM-orig
Clobber-NVM-FoF

Figure 7: Porting Existing PMEM Libraries to Flush-on-
Fail Machines Provides up to 1.76× Improvement

states. Musl(original kernel) is unmodified musl libc with
unmodified kernel. We report the results in Figure 5.

We observe that Zhuque introduces significant overheads to
modified operations, especially mmap() and munmap() – the
bottleneck for all of the poorly-performing microbenchmarks
is the allocation of new anonymous memory. The overhead is
per-operation, and does not depend on the size of the mapping.
This is not surprising: our modified versions still perform the
original operations, and are also required to modify userspace
data structures maintained by Zhuque in persistent memory,
often including a search whose time is linear in the number of
created mappings. As demonstrated by the results below, these
overheads do not translate to a significant slowdown on mac-
robenchmarks, because modifications of the virtual memory
map are rarely on an application’s critical path. In addition,
these overheads are a result of implementation choices, not
the fundamental design. We anticipate they would decrease
substantially in a kernel-based implementation of WPP.

6.3 Python Benchmarks
In this experiment, we ran nine Python benchmarks on the
musl and Zhuque configurations using the CPython inter-
preter. It demonstrates that Zhuque can run a wide range
of unmodified Python applications. We chose the first nine
benchmarks (out of 42), in alphabetical order, from version
1.0.0 of the Pyperformance benchmark [21] suite. Descrip-
tions of the benchmarks can be found in the Pyperformance

documentation [21]. We ran them in our own benchmark
framework, but did not modify the benchmarks themselves.
We also added dynamic thread stack support, not present in
vanilla musl, in order to support the large stack sizes required
by the interpreter. We report the results in Figure 6.

Most of the Python benchmarks perform competitively with
the musl versions. Those that perform worse generally incur
overhead from frequent random-access reads and writes to
data structures too large to fit in the cache, causing thrashing
and exposing the higher access latency of persistent memory
compared to DRAM.

6.4 Memcached
Memcached [44] is a widely-deployed key-value store. Early
versions (1.2.*) have been ported to Mnemosyne, PMDK,
and Clobber-NVM. We ran memcached-1.2.5 on Zhuque
unmodified.

We evaluate memcached performance with four types of
workloads: insertion-intensive (95% insertion / 5% search),
insertion-mostly (75% insertion / 25% search), search-mostly
(25% insertion / 75% search), and search-intensive (5% inser-
tion / 95% search). We use memslap [39] to generate a stream
of uniformly distributed memcached requests with 16-byte
keys and 64-byte values. As shown in Figure 7, Mnemosyne,
PMDK and Clobber-NVM can perform up to 1.76× faster
with flushes and fences removed. This result indicates that the
flush-on-fail semantics can benefit existing PMEM libraries.

Figure 8 presents the results of these experiments, using
Musl-based memcached-1.2.5 performance on DRAM as
baseline. We find Zhuque can always provide nearly 80%
of musl memcached performance. Across different thread
configurations, Zhuque provides up to 3.58×Mnemnosyne’s
throughput, 1.81× of PMDK’s throughput and 1.71× of
Clobber-NVM’s throughput.

Poor scalability is a well-known problem with early ver-
sions of memcached [20, 42]. Memcached went through a
rewrite of the synchronization framework to use fine-grained
locking across seven years of development and over thirty ver-
sions [31]. Many current (transactional) PMEM libraries have
strict requirements for applications’ concurrency schemes.
These requirements make converting recent versions of mem-
cached to run on PMEM a complicated and difficult process.
Zhuque places no restrictions on the locking scheme, so the
newest version (1.6.17) can run unmodified on Zhuque. By
simply running the newest version on Zhuque, we can provide
more than 7.5× performance of the best performant older ver-
sion of persistent memcached on the same workload, with the
same thread count.

6.5 Vacation and Yada
Furthermore, we evaluated the performance of the Vacation
and Yada applications from the STAMP benchmark suite [8],

842 2023 USENIX Annual Technical Conference USENIX Association

1 2 4 8 16 24
Thread Count

0

5

10

15

20
Th

ro
ug

hp
ut

 (M
/s

)
75% Insert, 25% Search-Global lock

Baseline Native Zhuque Mnemosyne PMDK Clobber-NVM

1 2 4 8 16 24
Thread Count

0

5

10

15

20

Th
ro

ug
hp

ut
 (M

/s
)

25% Insert, 75% Search-Global Lock

1 2 4 8 16 24
Thread Count

0

50

100

Th
ro

ug
hp

ut
 (M

/s
)

75% Insert, 25% Search-Fine-grained lock

1 2 4 8 16 24
Thread Count

0

50

100

Th
ro

ug
hp

ut
 (M

/s
)

25% Insert, 75% Search-Fine-grained Lock

Figure 8: Zhuque Enables Newest Version of Memcached to Run on PMEM, Provides Significantly Better Performance

each targeting common PMEM applications such as, respec-
tively, KV-stores and graph workloads. Prior works [25,63,68]
provide readily available implementations of these applica-
tions built on top of existing PMEM libraries, with the excep-
tion of Yada - Mnemosyne.

We compare Zhuque with Musl, Mnemosyne, PMDK, At-
las and Clobber-NVM Vacation performance. Vacation is a
travel reservation system, consisting of tables updated concur-
rently using transactions that span multiple tables.

Prior implementations [25, 63, 68] persist the tables in
PMEM, and leave the client side in volatile memory. Zhuque
persists the entire vacation application, including both the
server tables and the client threads.

Figure 9 shows that Zhuque performs 10.8×, 4.8×, 3.7×
and 3.6× faster on Vacation than Mnemosyne, PMDK, At-
las and Clobber-NVM, respectively. The performance gain
comes from fewer logging writes and more efficient memory
management: Zhuque uses vanilla malloc(), while the other
libraries use either PMDK’s transactional allocator (PMDK,
Clobber-NVM) or a hand-written allocator (Mnemosyne, At-
las). The memory management efficiency problem is more
prominent on Yada, which implements Ruppert’s algorithm
for Delaunay mesh refinement [54].

7 Related Work

PMEM Software & Hardware. In the past decade, re-
searchers have designed many highly-optimized PMEM data
structures [7, 10, 22, 48, 62, 69]. They are designed to re-
duce the cost of persistent updates while ensuring failure-
atomicity. Because they are carefully designed by experts to

cope with PMEM characteristics, they usually provide good
performance. However, using and developing these data struc-
tures takes significant programming effort.

Because PMEM’s bandwidth is significantly higher than
traditional secondary storage, PMEM file systems [11, 33,
65, 67] aim to expose raw PMEM performance as much as
possible. It is easy for existing applications to use files on
these PMEM file systems, but they are not designed to solve
the same problem that Zhuque targets (failure-resilience of
the application’s in-memory data).

The architecture community has also sought better hard-
ware support for PMEM, often by allowing more permis-
sive (and thus performant) store ordering at the memory con-
troller [3,18,24,32,34–36,59]. Many of these systems demon-
strate dramatic performance gains in simulation, but none that
we are aware of are available in production.

General-purpose PMEM libraries. General-purpose
PMEM libraries aim to ensure failure-atomicity for appli-
cations which directly access PMEM, with low overhead and
minimal code changes.

Traditional undo-log systems [6, 9, 50] and redo-log sys-
tems [23, 63] write to a log alongside every visible update,
at least doubling each write. On non-flush-on-fail PMEM
machines, undo-logging usually requires expensive memory
fences at the end of each log write, while redo-logging needs
to redirect loads even if the machine supports flush-on-fail.

To avoid expensive synchronization between threads, some
undo/redo systems buffer writes in "shadow" copies of PMEM
data [5,17,41,43,66], at least doubling the amount of PMEM
required by the application. These systems still incur the write
amplification and read redirection costs of conventional log-

USENIX Association 2023 USENIX Annual Technical Conference 843

1 2 4 8 16
Thread Count

0

2

4

Co
m

pl
et

io
n

Ti
m

e
(s

) Vacation

Zhuque Musl PMDK Clobber-NVM Atlas Mnemosyne

15 20 25 30
Angle Constraint

0

5

10
Yada

Figure 9: Vacation and Yada performance on different PMEM libraries and Zhuque

ging, and with flush-on-fail semantics the synchronization
they are designed to reduce is no longer required at all. Com-
pared to these systems, Zhuque does not amplify or redirect
memory accesses, nor increase the size of the working set.

All these systems rely on either lock-inferred failure atomic
sections (FASEs) [6, 26, 30, 42, 66], classical transactions [5,
41, 43, 63], or programmer delineated transaction boundaries
with a restricted lock scheme [23, 50, 68] to identify failure-
atomic operations. In contrast, Zhuque is not concerned with
synchronization: it uses the same concurrency model as the
original application.

JUSTDO [30], iDO [42], and Clobber-NVM [68] recover
by resuming execution of the interrupted failure-atomic sec-
tion or re-executing interrupted transactions. These systems
are similar to Zhuque in that they also resume execution at the
point of failure, but they all restrict concurrency and require
manual annotation of atomic sections.
Single Level Stores. WPP transparently makes processes
persistent by providing continuous checkpointing, durability
guarantees for external observers of application IO (known
as external synchrony [49]), and POSIX compatibility. Single
level stores (SLS) [12, 38, 56–58, 60, 61] also provide persis-
tent address spaces to applications, but they suffer from high
overhead, rarely support external synchrony, and are often
hard to use due to custom APIs [57, 60].

The high overhead arises from checkpointing and, for some
systems, the enforcement of external synchrony. Checkpoint-
ing overhead is high because traditional storage devices are
far slower than DRAM, and SLSes usually amplify writes by
tracking memory modification at page granularity. To achieve
external synchrony, SLS systems must delay IO until data is
safely persisted. If checkpoints are too frequent, the commu-
nication delay can cause high overheads.

Because of the performance penalty of providing external
synchrony, most SLSes choose not to enforce it. The state-
of-the-art SLS system Aurora [61] points out the value of
external synchrony, but does not support it. Zhuque shows
that flush-on-fail semantics allow continuous checkpointing,

making external synchrony feasible and performant.

8 Conclusion

This paper has described Whole Process Persistence (WPP), a
programming model that treats power failure as a recoverable
exception. Zhuque, implementing WPP, transparently makes
applications failure-resilient by interposing on the POSIX-
specified APIs. Zhuque ensures process state survives power
failures, and allows for resumption of execution.

Compared with existing solutions, Zhuque greatly sim-
plifies the programming model. Our evaluation shows that
Zhuque significantly improves performance compared to
state-of-the-art, and tends to match original volatile appli-
cation performance on certain workloads.

Acknowledgments

This work was supported in part by the NSF/Intel Foundations
of Microarchitecture Program awards 2011213 and 2011212.
We would like to thank our shepherd Gaël Thomas and the
anonymous reviewers for their insightful feedback.

References

[1] eadr characteristics at failure. https://groups.google.
com/g/pmem/c/K35X70fzAMw/m/5qEhhzb8AAAJ,
2021.

[2] Alper Ilkbahar. Intel Optane DC Persistent Memory
Operating Modes Explained, 2018.

[3] Miao Cai, Chance C Coats, and Jian Huang. Hoop:
Efficient hardware-assisted out-of-place update for non-
volatile memory. In 2020 ACM/IEEE 47th Annual Inter-
national Symposium on Computer Architecture (ISCA),
pages 584–596. IEEE, 2020.

[4] Calin Cascaval, Colin Blundell, Maged Michael,
Harold W. Cain, Peng Wu, Stefanie Chiras, and Sid-

844 2023 USENIX Annual Technical Conference USENIX Association

https://groups.google.com/g/pmem/c/K35X70fzAMw/m/5qEhhzb8AAAJ
https://groups.google.com/g/pmem/c/K35X70fzAMw/m/5qEhhzb8AAAJ

dhartha Chatterjee. Software transactional memory:
Why is it only a research toy? Commun. ACM,
51(11):40–46, November 2008.

[5] Daniel Castro, Paolo Romano, and João Barreto. Hard-
ware transactional memory meets memory persistency.
In 2018 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), pages 368–377, 2018.

[6] Dhruva R. Chakrabarti, Hans-J. Boehm, and Kumud
Bhandari. Atlas: Leveraging locks for non-volatile
memory consistency. In Proceedings of the 2014 ACM
International Conference on Object Oriented Program-
ming Systems Languages & Applications, OOPSLA ’14,
pages 433–452. ACM, 2014.

[7] Shimin Chen and Qin Jin. Persistent b+-trees in non-
volatile main memory. Proc. VLDB Endow., 8(7):786–
797, February 2015.

[8] Chi Cao Minh, JaeWoong Chung, C. Kozyrakis, and
K. Olukotun. Stamp: Stanford transactional applica-
tions for multi-processing. In 2008 IEEE International
Symposium on Workload Characterization, pages 35–46,
2008.

[9] Joel Coburn, Adrian M. Caulfield, Ameen Akel,
Laura M. Grupp, Rajesh K. Gupta, Ranjit Jhala, and
Steven Swanson. NV-Heaps: Making persistent objects
fast and safe with next-generation, non-volatile mem-
ories. In Proceedings of the Sixteenth International
Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’11, pages
105–118, New York, NY, USA, 2011. ACM.

[10] Nachshon Cohen, David T. Aksun, Hillel Avni, and
James R. Larus. Fine-grain checkpointing with in-cache-
line logging. In Proceedings of the Twenty-Fourth Inter-
national Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, ASPLOS
’19, pages 441–454. Association for Computing Machin-
ery, 2019.

[11] Jeremy Condit, Edmund B. Nightingale, Christopher
Frost, Engin Ipek, Benjamin Lee, Doug Burger, and Der-
rick Coetzee. Better I/O through byte-addressable, per-
sistent memory. In Proceedings of the ACM SIGOPS
22nd Symposium on Operating Systems Principles,
SOSP ’09, pages 133–146, New York, NY, USA, 2009.
ACM.

[12] George Copeland, Michael Franklin, and Gerhard
Weikum. Uniform object management. In Interna-
tional Conference on Extending Database Technology,
pages 253–268. Springer, 1990.

[13] Intel Corporation. Asynchronous event handling. In
CXL Type 3 Memory Device Software Guide, page 65.
June 2021. Revision 1.0.

[14] Intel Corporation. Gpf sequence. In CXL Type 3 Mem-
ory Device Software Guide, page 121. June 2021. Revi-
sion 1.0.

[15] Intel Corporation. Microcode update facilities: Update

signature and verification. In Intel 64 and IA-32 Ar-
chitectures Software Developer’s Manual, volume 3,
chapter 10.11, pages 10–36–10–37. March 2023. Order
No. 325462-079US.

[16] Intel Corporation. System management mode: Smram.
In Intel 64 and IA-32 Architectures Software Devel-
oper’s Manual, volume 3, chapter 32.4, pages 32–4–32–
9. March 2023. Order No. 325462-079US.

[17] Andreia Correia, Pascal Felber, and Pedro Ramalhete.
Romulus: Efficient algorithms for persistent transac-
tional memory. In Proceedings of the 30th ACM Sym-
posium on Parallelism in Algorithms and Architectures,
SPAA ’18, pages 271–282. Association for Computing
Machinery, 2018.

[18] Mahesh Dananjaya, Vasilis Gavrielatos, Arpit Joshi, and
Vijay Nagarajan. Lazy release persistency. In Proceed-
ings of the Twenty-Fifth International Conference on
Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’20, pages 1173–1186. As-
sociation for Computing Machinery, 2020.

[19] Dave Dice, Alex Kogan, Yossi Lev, Timothy Merrifield,
and Mark Moir. Adaptive integration of hardware and
software lock elision techniques. In Proceedings of the
26th ACM Symposium on Parallelism in Algorithms and
Architectures, SPAA ’14, pages 188–197. Association
for Computing Machinery, 2014.

[20] David Dice, Virendra J. Marathe, and Nir Shavit. Lock
cohorting: A general technique for designing numa
locks. ACM Trans. Parallel Comput., 1(2), February
2015.

[21] Python Software Foundation. The python performacne
benchmark suite, 2021.

[22] Michal Friedman, Maurice Herlihy, Virendra Marathe,
and Erez Petrank. A persistent lock-free queue for non-
volatile memory. In Proceedings of the 23rd ACM SIG-
PLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP ’18, pages 28–40. Association for
Computing Machinery, 2018.

[23] Ellis R Giles, Kshitij Doshi, and Peter Varman. Soft-
wrap: A lightweight framework for transactional support
of storage class memory. In 2015 31st Symposium on
Mass Storage Systems and Technologies (MSST), pages
1–14. IEEE, 2015.

[24] Vaibhav Gogte, William Wang, Stephan Diestelhorst,
Peter M Chen, Satish Narayanasamy, and Thomas F
Wenisch. Relaxed persist ordering using strand persis-
tency. In 2020 ACM/IEEE 47th Annual International
Symposium on Computer Architecture (ISCA), pages
652–665. IEEE, 2020.

[25] Swapnil Haria, Mark D. Hill, and Michael M. Swift.
Mod: Minimally ordered durable datastructures for per-
sistent memory. In Proceedings of the Twenty-Fifth
International Conference on Architectural Support for
Programming Languages and Operating Systems, AS-

USENIX Association 2023 USENIX Annual Technical Conference 845

PLOS ’20, pages 775–788. Association for Computing
Machinery, 2020.

[26] Terry Ching-Hsiang Hsu, Helge Brügner, Indrajit Roy,
Kimberly Keeton, and Patrick Eugster. Nvthreads: Prac-
tical persistence for multi-threaded applications. In Pro-
ceedings of the Twelfth European Conference on Com-
puter Systems, EuroSys ’17, pages 468–482. Association
for Computing Machinery, 2017.

[27] Intel Corporation. Pmdk issues: introduce hybrid trans-
actions, 2017.

[28] Intel Corporation. Intel Optane DC Persistent Memory,
2019.

[29] Intel Corporation. eADR: New Opportunities for Per-
sistent Memory Applications, 2021.

[30] Joseph Izraelevitz, Terence Kelly, and Aasheesh
Kolli. Failure-Atomic Persistent Memory Updates via
JUSTDO Logging. In Proceedings of the Twenty-First
International Conference on Architectural Support
for Programming Languages and Operating Systems,
ASPLOS ’16, pages 427–442, New York, NY, USA,
2016. ACM.

[31] Joseph Izraelevitz, Lingxiang Xiang, and Michael L
Scott. Performance improvement via always-abort htm.
In 2017 26th International Conference on Parallel Ar-
chitectures and Compilation Techniques (PACT), pages
79–90. IEEE, 2017.

[32] Jungi Jeong and Changhee Jung. Pmem-spec: persis-
tent memory speculation (strict persistency can trump
relaxed persistency). In Proceedings of the 26th ACM
International Conference on Architectural Support for
Programming Languages and Operating Systems, pages
517–529, 2021.

[33] Rohan Kadekodi, Se Kwon Lee, Sanidhya Kashyap,
Taesoo Kim, Aasheesh Kolli, and Vijay Chidambaram.
Splitfs: Reducing software overhead in file systems for
persistent memory. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles, pages 494–
508, 2019.

[34] Aasheesh Kolli, Steven Pelley, Ali Saidi, Peter M. Chen,
and Thomas F. Wenisch. High-performance transac-
tions for persistent memories. In Proceedings of the
Twenty-First International Conference on Architectural
Support for Programming Languages and Operating
Systems, ASPLOS ’16, pages 399–411. Association for
Computing Machinery, 2016.

[35] Aasheesh Kolli, Jeff Rosen, Stephan Diestelhorst, Ali
Saidi, Steven Pelley, Sihang Liu, Peter M. Chen, and
Thomas F. Wenisch. Delegated persist ordering. In The
49th Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO-49. IEEE Press, 2016.

[36] Kunal Korgaonkar, Joseph Izraelevitz, Jishen Zhao, and
Steven Swanson. Vorpal: Vector clock ordering for
large persistent memory systems. In Proceedings of
the 2019 ACM Symposium on Principles of Distributed

Computing, PODC ’19, page 435–444. Association for
Computing Machinery, 2019.

[37] Eta Labs. libc-bench, 2021.
[38] Charles R Landau. The checkpoint mechanism in

keykos. In [1992] Proceedings of the Second Inter-
national Workshop on Object Orientation in Operating
Systems, pages 86–91. IEEE, 1992.

[39] libMemcached.org. libMemcached, 2011.
[40] Linux Kernel Organization. Direct Access for Files,

2020.
[41] Mengxing Liu, Mingxing Zhang, Kang Chen, Xuehai

Qian, Yongwei Wu, Weimin Zheng, and Jinglei Ren.
Dudetm: Building durable transactions with decoupling
for persistent memory. In Proceedings of the Twenty-
Second International Conference on Architectural Sup-
port for Programming Languages and Operating Sys-
tems, ASPLOS ’17, pages 329–343. Association for
Computing Machinery, 2017.

[42] Qingrui Liu, Joseph Izraelevitz, Se Kwon Lee,
Michael L Scott, Sam H Noh, and Changhee Jung.
ido: Compiler-directed failure atomicity for nonvolatile
memory. In 2018 51st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages 258–
270. IEEE, 2018.

[43] Amirsaman Memaripour, Anirudh Badam, Amar Phan-
ishayee, Yanqi Zhou, Ramnatthan Alagappan, Karin
Strauss, and Steven Swanson. Atomic in-place updates
for non-volatile main memories with kamino-tx. In
Proceedings of the Twelfth European Conference on
Computer Systems, EuroSys ’17, pages 499–512. Asso-
ciation for Computing Machinery, 2017.

[44] Memcached. http://memcached.org/.
[45] Transactional memory study group (SG5). Technical

specification for c++ extensions for transactional mem-
ory iso/iec ts 19841:2015, 2015.

[46] musl libc, 2021. https://musl.libc.org/.
[47] Dushyanth Narayanan and Orion Hodson. Whole-

system persistence with non-volatile memories. In Sev-
enteenth International Conference on Architectural Sup-
port for Programming Languages and Operating Sys-
tems (ASPLOS 2012). ACM, March 2012.

[48] Faisal Nawab, Joseph Izraelevitz, Terence Kelly,
Charles B Morrey III, Dhruva R Chakrabarti, and
Michael L Scott. Dalí: A periodically persistent hash
map. In 31st International Symposium on Distributed
Computing (DISC 2017). Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2017.

[49] Edmund B Nightingale, Kaushik Veeraraghavan, Pe-
ter M Chen, and Jason Flinn. Rethink the sync. ACM
Transactions on Computer Systems (TOCS), 26(3):1–26,
2008.

[50] pmem.io. Persistent Memory Development Kit, 2017.
http://pmem.io/pmdk.

[51] Yoav Raz. The principle of commitment ordering, or

846 2023 USENIX Annual Technical Conference USENIX Association

https://musl.libc.org/
http://pmem.io/pmdk

guaranteeing serializability in a heterogeneous environ-
ment of multiple autonomous resource mangers using
atomic commitment. In Proceedings of the 18th Inter-
national Conference on Very Large Data Bases, VLDB
’92, pages 292–312. Morgan Kaufmann Publishers Inc.,
1992.

[52] Wenjia Ruan, Trilok Vyas, Yujie Liu, and Michael Spear.
Transactionalizing legacy code: An experience report
using gcc and memcached. In Proceedings of the 19th
International Conference on Architectural Support for
Programming Languages and Operating Systems, AS-
PLOS ’14, pages 399–412. Association for Computing
Machinery, 2014.

[53] Andy Rudoff, Chet Douglas, and Tiffany Kasanicky. Per-
sistent memory in cxl. In Proceedings of the 2021 SNIA
Persistent Memory + Computational Storage Summit,
April 2021.

[54] J. Ruppert. A delaunay refinement algorithm for quality
2-dimensional mesh generation. Journal of Algorithms,
1995.

[55] Steve Scargall. PMDK Internals: Important Algorithms
and Data Structures, pages 313–331. Apress, 2020.

[56] Jonathan S Shapiro and Jonathan Adams. Design evo-
lution of the eros single-level store. In USENIX An-
nual Technical Conference, General Track, pages 59–72,
2002.

[57] Jonathan S Shapiro, Jonathan M Smith, and David J
Farber. Eros: a fast capability system. In Proceedings of
the seventeenth ACM symposium on Operating systems
principles, pages 170–185, 1999.

[58] Eugene Shekita and Michael Zwilling. Cricket: A
mapped, persistent object store. Technical report, Uni-
versity of Wisconsin-Madison Department of Computer
Sciences, 1990.

[59] Seunghee Shin, James Tuck, and Yan Solihin. Hiding
the long latency of persist barriers using speculative exe-
cution. In Proceedings of the 44th Annual International
Symposium on Computer Architecture, ISCA ’17, pages
175–186. Association for Computing Machinery, 2017.

[60] Frank G Soltis. Fortress Rochester: The Inside Story of
the IBM iSeries. System iNetwork, 2001.

[61] Emil Tsalapatis, Ryan Hancock, Tavian Barnes, and
Ali José Mashtizadeh. The aurora operating system:
revisiting the single level store. In Proceedings of the
Workshop on Hot Topics in Operating Systems, pages
136–143, 2021.

[62] Shivaram Venkataraman, Niraj Tolia, Parthasarathy Ran-
ganathan, and Roy H. Campbell. Consistent and durable
data structures for non-volatile byte-addressable mem-
ory. In Proceedings of the 9th USENIX Conference
on File and Stroage Technologies, FAST’11, page 5.
USENIX Association, 2011.

[63] Haris Volos, Andres Jaan Tack, and Michael M. Swift.
Mnemosyne: Lightweight persistent memory. In ASP-

LOS ’11: Proceeding of the 16th International Confer-
ence on Architectural Support for Programming Lan-
guages and Operating Systems, New York, NY, USA,
2011. ACM.

[64] Gerhard Weikum and Gottfried Vossen. Transactional
Information Systems: Theory, Algorithms, and the Prac-
tice of Concurrency Control and Recovery. Morgan
Kaufmann Publishers Inc., 2001.

[65] Xiaojian Wu and A. L. Narasimha Reddy. SCMFS: A
file system for storage class memory. In Proceedings of
2011 International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’11,
pages 39:1–39:11, New York, NY, USA, 2011. ACM.

[66] Zhenwei Wu, Kai Lu, Andrew Nisbet, Wenzhe Zhang,
and Mikel Luján. Pmthreads: Persistent memory threads
harnessing versioned shadow copies. In Proceedings
of the 41st ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI 2020,
pages 623–637. Association for Computing Machinery,
2020.

[67] Jian Xu and Steven Swanson. {NOVA}: A log-
structured file system for hybrid volatile/non-volatile
main memories. In 14th {USENIX} Conference on File
and Storage Technologies ({FAST} 16), pages 323–338,
2016.

[68] Yi Xu, Joseph Izraelevitz, and Steven Swanson. Clobber-
nvm: Log less, re-execute more. In To appear in the Pro-
ceedings of International Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS), 2021.

[69] Jun Yang, Qingsong Wei, Cheng Chen, Chundong Wang,
Khai Leong Yong, and Bingsheng He. Nv-tree: Reduc-
ing consistency cost for nvm-based single level systems.
In Proceedings of the 13th USENIX Conference on File
and Storage Technologies, FAST’15, pages 167–181.
USENIX Association, 2015.

[70] Richard M. Yoo, Yang Ni, Adam Welc, Bratin Saha,
Ali-Reza Adl-Tabatabai, and Hsien-Hsin S. Lee. Kick-
ing the tires of software transactional memory: Why
the going gets tough. In Proceedings of the Twentieth
Annual Symposium on Parallelism in Algorithms and
Architectures, SPAA ’08, pages 265–274. Association
for Computing Machinery, 2008.

[71] Lu Zhang and Steven Swanson. Pangolin: A
fault-tolerant persistent memory programming library.
In 2019 {USENIX} Annual Technical Conference
({USENIX}{ATC} 19), pages 897–912, 2019.

A Proof

In this appendix, we provide a proof of theorem 3.1:

Theorem 3.1 (FASE Limitation) There exist applications
for which, in order to consistently recover from a crash, a

USENIX Association 2023 USENIX Annual Technical Conference 847

reasonably permissive FASE-based failure atomicity system
requires all volatile program state be available at recovery.

A.1 Definitions
We begin by defining terms. By application we mean a multi-
threaded program, executed as a process. The process’s in-
ternal state consists of all its data, including heap, globals,
and stack. Some memory locations are designated nonvolatile,
their contents (the nonvolatile state) survive a power outage;
the remainder are volatile, and their contents (the volatile
state) are lost. The process may perform IO operations —
we term the set of IO operations performed by an executing
process its external state. The process, being multi-threaded,
contains code regions that execute while a lock is held, these
are termed critical sections.

If power is lost during process execution, its volatile state
is lost. The purpose of a failure atomicity system is to pro-
vide consistent recovery from a power outage. For consistent
recovery, the system selects a point in execution, termed the
recovery point. The recovery point is consistent with the ex-
ternal state; process execution from initialization through
the recovery point would generate the observed IO. For fail-
ure atomicity, the recovery point also lies outside all critical
sections. Consistent recovery of a process consists of select-
ing a valid recovery point and restoring the persistent state’s
contents to its values as of this point. If the power failure
interrupts a critical section, consistent recovery will involve,
for failure atomicity, chosing a recovery point outside the
critical section and undoing or redoing changes made within
the section.

We assume a powerful failure atomicity system which is
free, during pre-crash execution, to intercept the process at
any point and log data in nonvolatile memory. After a crash,
the system has access both to these logs and the process’s non-
volatile state — its task is to ensure that the nonvolatile state
is restored to a recovery point; consistent with IO operations
and outside any critical section. The failure atomicity system
must be reasonably permissive with respect to its program-
ming model — we require the system’s programming model
to support our adversarial example. To all our knowledge, all
existing FASE-based systems are “reasonably permissive”.

Figure 1 gives our counterexample. The “trick” is that
the long FASE executed by thread 1 (lines 6 through 22)
is dependent on non-FASE code executed by thread 2 that
contains both IO and accesses to large volatile data (lines 36
through 39).

A.2 Proof Sketch
We prove Theorem 3.1 by contradiction. We consider a pro-
cess executing the code sample in Figure 1 and suffering a
power failure on line 38. Suppose, for contradiction, there
exists a FASE system for which, given this situation, could

restore the program’s nonvolatile state to a recovery point
consistent with the external state and outside any critical sec-
tion. As thread 1, by construction, executes a critical section
(FASE) for its duration, our recovery point for thread 1 must
lie at line 6 or line 22 — all other points violate failure atom-
icity. We consider both options.

Suppose the recovery point lies at line 6 (i.e. recover x to
0), it is inconsistent with the external process state due to the
IO executed before the failure on lines 36 and lines 37, which
indicate that thread 2 (and therefore thread 1) have progressed
beyond this recovery point, leading to a contradiction.

Suppose the recovery point lies at line 22 (i.e. recover x
to s4). First we note that the value s4 has a true dependence
(read-after-write) on s3, and s3 has a true dependence on
both the inputed seed in and large volatile array Q. Since s3
cannot be computed before in is known, s3 must be computed
after the scanf on line 37 is executed. Since the failure can
interrupt the computation of s3 after the scanf, all inputs
to f3 must be preserved in nonvolatile storage for recovery.
However, since Q is an arbitrarily sized volatile array, Q can
be of any size and can be replaced, without loss of generality,
with any or all of the program’s volatile state, requiring the
failure atomicity system to preserve all volatile process state
and leading to a contradiction.

B Artifact Appendix

B.1 Abstract

This appendix describes the artifact submitted with this pa-
per. The artifact contains files to build a Docker image with
Zhuque installed as the system libc, and containing all bench-
marks and comparison PMEM systems evaluated in Section 6.
It also contains our patch against the Linux kernel necessary
for correct resumption, described in Section 5.3.

B.2 Scope

The artifact allows verification of the following claims:
• All performance results from Section 6, for both Zhuque

and comparison systems.
• Zhuque can successfully restart programs after an simu-

lated asynchronous failure, as described in Section 5.1.
• The kernel modification correctly saves userspace ar-

chitectural state to the redundant state save area, as de-
scribed in Section 5.3.

The artifact does not verify the following claims:
• The kernel modification is sufficient to protect against a

failure in kernel mode (we cannot simulate this type of
failure).

• The formal claims made in Section 3 about FASE-based
systems.

848 2023 USENIX Annual Technical Conference USENIX Association

B.3 Contents
The artifact is organized into these key directories (see
README for detailed listing):

• musl-src: Source code of Zhuque-musl.
• musl-src/src/psys: Zhuque core implementation.
• clobber-pmdk: Source code for comparison PMEM

systems and their versions of application benchmarks.
• apps: Zhuque/native implementations of application

benchmarks.
• pigframe: Materials to build and test our kernel modifi-

cation.

B.4 Hosting
This artifact is hosted in a Github repository at
https://github.com/georgehodgkins/Zhuque_artifact.
The commit ID for the current version is
ffc033972bb36adc23b7a4b8c8b2cc6d736bff53. See
README for build instructions.

B.5 Requirements
The only software required for the artifact is Docker on a
Linux kernel; the build process bootstraps all other dependen-
cies. Zhuque and most comparison applications can be run on
a system without PMEM, but only a system with PMEM can
fully reproduce the reported results. Zhuque was mostly de-
veloped against a rather old kernel version (4.15.18), and we
have sometimes observed unexpected behavior when running
on newer kernels.

We built and tested the artifact on the evaluation machine
described in Section 6. Our kernel modification targets the
Ubuntu kernel fork at version 4.15.0-169. The Docker image
is based on Alpine Linux 3.14.

USENIX Association 2023 USENIX Annual Technical Conference 849

https://github.com/georgehodgkins/Zhuque_artifact

	Introduction
	Background
	Machine Model
	Persistent Programming Models
	Transactional Libraries
	FASE-based libraries
	Whole System Persistence

	Limitations of Prior Art
	Limitations of Transactions
	Limitations of FASEs

	Design
	Overview
	Ensuring State Persistence
	Ensuring Correct Restoration

	Implementation
	Process Life Cycle
	Kernel-resident State
	Failures in kernel mode
	Limitations

	Evaluation
	Evaluation Setup
	Microbenchmarks
	Python Benchmarks
	Memcached
	Vacation and Yada

	Related Work
	Conclusion
	Proof
	Definitions
	Proof Sketch

	Artifact Appendix
	Abstract
	Scope
	Contents
	Hosting
	Requirements

