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Abstract
Shared libraries indisputably facilitate software development
but also significantly increase the attack surface, and when
using multiple libraries, frequent patches for vulnerabilities
are to be expected. However, such a bugfix commonly requires
restarting all services depending on the compromised library,
which causes downtimes and unavailability of services. This
can be prevented by dynamic software updating, but existing
approaches are often costly and incur additional maintenance
due to necessary source or infrastructure modifications.

With LUCI, we present a lightweight linker/loader tech-
nique to unobtrusively and automatically update shared li-
braries during runtime by exploiting the indirection mecha-
nisms of position-independent code, hence avoiding severe
runtime overhead. LUCI further adds no additional require-
ments, such as adjusting the source or interfering with the
build chain, as it fully adapts to today’s build and package-
update mechanisms of common Linux distributions. We
demonstrate our approach on popular libraries (like Expat
and libxcrypt) using off-the-shelf (i.e., unmodified) binaries
from Debian and Ubuntu packages, being able to update the
majority of releases without the necessity of a process restart.

1 Introduction

Third-party libraries are, without doubt, an important part of
software development, allowing a programmer to use func-
tionality beyond their domain (or at least to save some time).
To prevent outdated source-code copies [49], it is common
to dynamically link against libraries distributed in binary for-
mat [50] – on system-level so-called shared objects, enabling
independent updates. A popular example is OpenSSL, provid-
ing cryptographic capabilities to numerous projects. However,
its infamous Heartbleed-vulnerability demonstrated the down-
side: All of a sudden, millions of systems (yet alone 24 – 55%
of all HTTPS-enabled servers [13]) ran the risk of leaking
highly sensitive information when the buffer over-read bug
was discovered. Even though distributors quickly published

fixed versions of the library, all applications directly or indi-
rectly depending on this library had to be restarted, not only
requiring immediate manual action but also causing costly
downtimes of services [12, 22].

Generally, having a new library version to be responsible
for the need for a service restart is all but seldom: Default
server software in many popular Linux distributions like De-
bian is dynamically linked and depends on several shared
libraries, which are usually the main reason for a service
being exposed to known vulnerabilities:

For example, the currently most widely used web
server [23], nginx, had 11 (out of 34 CVEs1) vulnerabilities
with high severity2 since 2010, while its basic (static) depen-
dencies glibc, OpenSSL, PCRE, libxcrypt, and zlib had at the
same time 70 such critical vulnerabilities (of 335 CVEs total).

It is worth noting that these numbers do not take any mod-
ules into account: the default configuration of nginx includes
six core modules, which depend on a total of over 30 external
shared libraries themselves – and have at least 98 additional
critical vulnerabilities (of 474 CVEs) in the observed period.

A similar picture emerges for the second place: 14 critical
vulnerabilities were found in Apache HTTP Server including
its core modules. In contrast, its required shared libraries in
basic configuration (without modules) had 81 such issues due
to an additional dependency on Expat compared to nginx.

Especially for stateful software systems (e.g., database
management systems) or systems with active client connec-
tions, restarting the service in case of a vulnerability is unde-
sired [36,37]. To address the challenges of avoiding unwanted
downtimes and expensive startup costs, dynamic software up-
date (DSU) mechanisms have been developed over the last
decades [8, 11, 15, 28, 29, 42].

Although many interesting DSU techniques are available,
and even Linux introduced kernel live-patching in version 4.0
more than seven years ago [20], the requirement for restarting
services utilizing updated libraries has not changed since

1Common Vulnerabilities and Exposures: www.cve.org.
2CVSS (Common Vulnerability Scoring System) score with 7.0 or higher.
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then. Unfortunately, common user-space live-patching has
not become a reality yet.

This raises the question regarding the reasons for this short-
coming. Most approaches for DSU require modifications in
the source [15, 17, 28, 29] or build system [11, 18, 42, 47],
programmer-guided patch creation [34, 43, 45], and/or a vir-
tual machine [5, 7, 35] for execution. While the modification
of a single project can be rather easy, it would have to be
applied to almost every software package in a system for prac-
tical usage of dynamic updates – and yet the vast amount of
different software prevents any broad application.

That is why we believe that system-wide automatic live
updates in user space will only succeed if the requirements are
limited to the bare minimum: We argue that unmodified (i.e.,
off-the-shelf) binary files already built and deployed by distrib-
utors have to be sufficient input for base and updated versions.

In addition, imposed runtime overhead and stability con-
cerns due to the complexity of existing approaches further
hinder any attempts to establish general live-patching in user
space. Nevertheless, these penalties are inevitable fallout of
the effort to provide a general approach allowing to transform
almost any program state – which is usually not required for
security fixes: Since the vast majority of system-level soft-
ware is still written in programming languages not ensuring
memory safety (like C and C++) [6], patches for critical vul-
nerabilities commonly introduce small local code changes
like bounds checking (e.g., the fix for the mentioned Heart-
bleed bug). Such patches usually do not alter any function
output for valid inputs [24].

The situation for logic errors is similar: Most common bug-
fix patterns affect only the function scope [32] without side
effects beyond its borders. Especially system-level shared ob-
jects have to maintain the application binary interface (ABI)
to which other software binaries are dynamically linked, mak-
ing structural changes rather seldom. New feature improve-
ments altering the library’s application programming inter-
face (API) can usually only be used in depending software af-
ter modifying its source code as well. Since adjusting projects
to the libraries’ updated semantics may take time [21], dis-
tributors tend to backport bugfix patches while retaining API
& ABI compatibility [39].

These insights help us to define the necessary scope re-
quired for dynamic software updates based on binary files
under practical conditions: First, we focus on supporting the
mentioned changes required for error correction instead of
enabling updates to introduce arbitrary modifications. Second,
we argue that a practical DSU solution has to update off-the-
shelf binaries without requiring access to or modifications of
the source code or build process.

With LUCI, we present a DSU approach for unmodified
shared libraries utilizing features already enabled by default
in today’s build chains without inducing runtime overhead. In
this sense, the paper makes the following contributions:

• A lightweight loader-based DSU mechanism targeting
security fixes that is based on relinking dynamic ELF
binaries by leveraging its metadata

• Design and implementation of an open-source, dynamic
linker/loader with glibc compatibility for the x86_64 ar-
chitecture supporting automatic and transparent updates
of off-the-shelf shared libraries

• Evaluation of popular, binary-distributed shared libraries
of recent Debian and Ubuntu releases to assess the live-
patching approach’s practicality

The remainder of the paper is organized as follows: After
giving an overview of DSU techniques in Section 2, Section 3
describes the details of ELF binaries that we utilize for our
approach in Section 4. To verify the results, we back-test LUCI
with popular shared libraries in Section 5 while classifying
the results in Section 6. Section 7 concludes the paper.

2 Related Work

Research of dynamic software updates in user-space dates
back four decades, with DYMOS [11] presenting the first no-
table approach beyond manually live-patching machine code.
The approach allows updates of programs written in a Modula
dialect while using a custom compiler and runtime system.
Thereby, this approach involves restrictions with respect to
the source-code development and its build system, which
correspond to A and C in Figure 1. Many sophisticated
approaches that evolved since then share these restrictions:

Ginseng [28, 29] allows changes in function prototypes
and data representation but is limited to source code writ-
ten in C while also requiring code adjustments A . Patches
are generated by comparing the source files B in conjunc-
tion with analysis information emitted by a custom compiler
C and loaded with a custom runtime system. The approach

involves significant performance overhead of up to 30% in
updated functions. Although being a powerful approach, Gin-
seng illustrates the massive adjustments required to support
generic dynamic updates. LUCI avoids these requirements as
it hot-swaps code while not supporting data modification.

With Kitsune [15] (successor of Ekiden [17]), developers
have to manually specify update points, add control-flow and
data-migration code to their C source A , and use a custom
compiler C . After waiting for all threads to reach the update
point, it replaces the whole program and performs all migra-
tions. The approach causes a service disruption on update
time but reduces overhead costs during normal execution.

POLUS [8] constructs a patch for a successive version us-
ing a source-to-source compiler B . This patch can be applied
at any time by employing ptrace, with old and new versions
residing in memory. POLUS places redirection instructions
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bar.c
#define SZ 128
char buf[SZ];

int bar(char* tmp) {
int n = 0;
while (*tmp != 0) {
buf[n++] = *tmp++;

}
return n;

}

bar.o
7f454c460201010000000000
0000000001003e0001000000
000000000000000000000000
00000000d002000000000000
000000004000000000004000
0d000c00f30f1efa554889e5
48897de8c745fc00000000eb
25488b45e8488d5001488955
e88b55fc8d4a01894dfc0fb6
084863c2488d150000000088
0c10488b45e80fb60084c075
d08b45fc5dc3004743433a20
285562756e747520392e342e

x.elf
v1.0.2

bar.c
#define SZ 128
char buf[SZ];

int bar(char* tmp){
int n = 0;
if (tmp != 0x0)
while (*tmp != 0) {
buf[n++] = *tmp++;
if (n >= SZ)
break;

}
return n;

}

bar.o
7f454c460201010000000000
0000000001003e0001000000
000000000000000000000000
00000000e002000000000000
000000004000000000004000
0d000c00f30f1efa554889e5
48897de8c745fc0000000048
837de800743beb2b488b45e8
488d5001488955e88b55fc8d
4a01894dfc0fb6084863c248
8d1500000000880c10837dfc
7f7f0d488b45e80fb60084c0
75caeb01908b45fc5dc30047

x.elf
v1.0.3

x.po
v1.0.2 : v1.0.3
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Figure 1: Common DSU approaches require either certain (higher-level) programming languages [11], modification of the
code [29], or the changes in the build toolchain [42] (unless the patch is handcrafted from the resulting binaries [5]), as highlighted
by the gray area on the left side. Due to the sheer amount of different software projects, it is not feasible to adjust each of them –
hence preventing live-patching in user-space for today’s real-world software. A generic automatic update mechanism must not
interfere with these steps but merely use the resulting binaries, usually built by distributors.

into the old functions and keeps track of global-state modifi-
cations. LUCI adapts the idea of having multiple versions of
a binary in the virtual memory and extends it by shared data.

In contrast to previous approaches, Katana [42] is language-
agnostic and works on object-file level D . While improving
applicability, it still requires interfering with the build chain.

For LUCI, the feature of coping with off-the-shelf shared
libraries is essential – a feature also provided by a few other
approaches: Using dynamic binary translation, DynSec [34]
can patch code of unmodified binaries while having a signif-
icant runtime overhead (11% in benchmarks) and requiring
programmer-guided patch generation E . Piston [43] is trying
to exploit vulnerabilities in order to fix them. It works on a
binary level and can automatically generate repair routines for
stack-based buffer overflows, but such routines must be man-
ually provided E for other vulnerabilities. With the process
virtual machine DynamoRIO [5], binary-level code modifica-
tion E is possible at the cost of runtime overhead. Based on
this tool, ClearView [35] is able to learn normal application
behavior and automatically generate patches for certain types
of bugs, however, causing massive overheads (depending on
the configuration 47% – 303% baseline overhead, and up to
30 000% while learning).

Different methods to update active functions have been
proposed: UpStare [26] C and StrongUpdate [51] B using
stack reconstruction and ISLUS [9] B with checkpoint-based
rollback, all require C source A . For LUCI, this is not needed
since we expect shared library functions to return eventually.

While live updates for Linux [7, 27] and other operat-
ing systems [1, 3] were already an important research topic,
kSplice [2], kPatch [38], and kGraft [33] C D initiated kernel
live-patching in Linux [20]. The latter two can only perform
changes on functions, not on data, similar to LUCI. In contrast,
kSplice is not only able to support data changes but can also be
used for certain specially prepared user-space libraries [31].

A few other approaches focus on live-patching of shared
libraries as well: LibCare [47] generates patches from assem-

bly emitted by a compiler wrapper script C and applies them
using ptrace: After acquiring storage for changed code (and
new data, if required), relocations in the existing code are up-
dated while using stack unwinding to prevent modifications
of currently executed functions.

A rather less-intrusive approach is used by libpulp [45],
requiring specially prepared/compiled libraries with an addi-
tional nop-prologue at each function C to be able to dynami-
cally insert trampoline code. A manually created description
file E guides the updater (using ptrace in conjunction with
a preloaded library) through the symbols to be replaced.

The libDSU [30] concept also targets unmodified shared
libraries. However, libDSU would require an actual imple-
mentation of the approach to find and update all locations
of pointers in the process’ memory – including heap chunks,
which is quite complex and error-prone to identify. LUCI
avoids this requirement by keeping memory locations valid.

All existing approaches either require modifications during
building, for both base and updated version, or programmer-
guided patch generation. To the best of our knowledge, no
approach yet exists that can provide an update on shared
libraries without interfering in the build process (gray area in
Figure 1). With LUCI, we close this gap.

3 Background

On Unix-based systems, a machine-code–generating compiler
produces relocatable objects from the source code, nowadays
in the executable and linkable format (ELF). With ELF being
the fulcrum for executables, LUCI exploits this format.

The ELF meta information lists available and required sym-
bols (e.g., functions and static variables) accompanied by
relocation information, enabling the linker to fix destination-
address parameters of memory-access and branching instruc-
tions in the machine code. For static (position-dependent)
executables, the target addresses of all symbols can and must
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Figure 2: Shared library loaded and relocated in process’
virtual memory by the dynamic linker/loader (ld.so).

be resolved during static linking, hence, the executable ELF
contains a complete image of the process’s virtual memory.
However, for shared objects and dynamic executables, some
symbols may remain undefined in the resulting dynamic ELF
binary. Therefore, the dynamic section references their meta
information, so symbols can be resolved during execution by
the dynamic linker/loader (also referred to as runtime link-
editor, RTLD) – allowing the use of other shared libraries.

To simplify the execution of such binaries, the com-
piler (e.g., with -fPIC for position-independent code) refer-
ences local symbols using relative addressing, while emitting
instructions and function stubs (like the procedure linkage
table, PLT) for indirect addressing to access external symbols.
The PLT itself is closely tied to a global offset table (GOT)
section introduced by the static linker, which stores the actual
target addresses during runtime. Therefore, the dynamic link-
er/loader is not required to modify the machine code in the
text section itself but only the GOT and, if required, data sec-
tions. This strategy improves load performance and security
since no executable pages are mapped with write permission
in the process’ virtual memory, while also maintaining a low
memory footprint. Additional techniques like relocation read-
only (data.rel.ro) further contribute to security by remov-
ing the write permission after the initial linking steps where
applicable (e.g., constants referencing external symbols).

The dynamic linker/loader is responsible for finding all
required shared libraries of an application on the file system.
The tool places libraries in the process’ virtual memory, re-

solves and fixes undefined symbols while retaining a defined
search order (to deterministically handle symbols having the
same name). Eventually, the dynamic linker/loader performs
initialization and passes control to the application’s entry
point. For lazy binding (i.e., resolving undefined function
symbols on the first call), the dynamic linker/loader has to
reside in memory during the entire lifetime of the process.
The same holds for the dynamic metadata of each shared li-
brary (for symbol lookup and relocation). Figure 2 visualizes
a mapping of an ELF file into the virtual memory of a process.

Since a POSIX-conform dynamic linker/loader also pro-
vides an interface allowing the process to load additional
shared objects at runtime, it is itself an executable, self-
contained shared object (ld.so) with a tight connection to
the C standard library (libc) used on the target system. In fact,
the dynamic linker/loader is usually an integral part of the
standard library (e.g., glibc, musl libc).

4 Approach

When a modification of a shared object used in a process is
detected, we first compare the old and new version. A crucial
requirement for our approach is having identical writeable
sections: The same symbols have to be stored at the same
position having the same size and the same initial content, for
both initialized and uninitialized data (data and bss section).
Only then the new version can safely be loaded and linked into
the process. We found in practical applications (see Section 5)
that this requirement is not a major restriction as modifications
on writable sections are rare, as detailed in the following.

While analyzing typical bugfixes for common weaknesses
in dominating system programming languages3, we noticed
that newly introduced static variables are rare. Further, mod-
ern compilers and linkers work in a deterministic manner (in-
cluding reordering of variable allocations in an optimization
step) and most distributors have optimized their build chains
for reproducible builds4. Therefore, the probability is high
that code changes do not affect the data section of the binary.
Consequently, our DSU mechanism checks for alterations
in sections containing writeable data, including the thread-
local storage (TLS), which would prevent an update. While
modifications of the writable sections are rare, changes to the
read-only data section are more likely, for example, due to
introduced strings for error messages. However, these rodata
updates do not hinder the update process but are inherently
supported by our approach, as well as newly introduced auto-
matic variables, which are stored in the stack memory.

3The common weakness enumeration (CWE) list at cwe.mitre.org main-
tains a good overview, including views explicitly focusing on C/C++.

4For reproducible builds any indeterminism in the build process is re-
moved, allowing to reproduce a binary-identical file on every build with same
source code revision as input. Further information at reproducible-builds.org.
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Figure 3: LUCI’s core principle is to map the updated shared
library to unused space of the processes’ virtual memory.
Thereby, it exploits memory aliasing in order to map the
newly introduced data section to the physical memory of
the previously active data section.

Segment Layout Requirements In both the old and new
version, our approach additionally requires the data section to
have identical page alignment. However, due to the page-level
granularity of permissions in memory-management units, it is
already standard in linker scripts to place the writable segment
at a page border. The GOT dedicated to the PLT for lazy
runtime linking is put at the beginning, followed by the data
section. The writeable segment is usually preceded by the
segment containing the relocation-read-only section, which
also includes the standard GOT (for external variables) and is
only writeable during the initial dynamic linking stage – but
neither its alignment nor its content affects the updateability.

After the updater has ensured the availability of all cur-
rently required symbols in the new shared object, it loads all
non-writeable data sections into the process’ virtual memory,
placing it at some previously unused address range. Instead of
loading the data section from the ELF file, a memory alias of
the old version’s data section is created (see Figure 3): Both
old and new versions’ data sections use the same page frames,
allowing changes to a variable in the old data section to be
immediately visible in the new one and vice versa. Since
Linux currently lacks a direct way to create such an alias,
we have to use an anonymous in-memory file created by the
memfd_create system call for the data.

Relinking using GOT Then, all executables and other
shared objects utilizing the changed library are updated: The
dynamic software updater relocates the affected entries in
every GOT to the corresponding symbols in the new library.
In addition, it is possible that data sections need relocation
as well, for example, when function pointers are used. In this
case, the LUCI updater must first ensure that the target mem-
ory still contains its original value and is compatible before
replacing it with the new value.

Since function calls are performed indirectly (using sin-
gle instruction reads of the GOT PLT) and both old and new
functions coexist in the process, there is no need to alter the
text section. Hence, the update can be initiated at any time
without requiring quiescence [8], reaching a certain update
point in code, or modifying the process stack. Furthermore,
there are no limitations regarding updates of multithreading
applications as there are basically no other runtime modifi-
cations than the default RTLD performs when lazy binding.
Having the code of an old library function be executed at the
time of update is not a problem; it continues accordingly until
completed (return instruction) with the old code, but future
calls will be redirected to the new library function, thus lead-
ing to a gradual update. Since shared libraries should provide
a collection of subroutines and, therefore, frequently return
to the caller, proper software engineering prohibits remaining
in an endless loop inside the old version.

In order to apply changes, the dynamic software updater
needs access to the process’ virtual memory. Since the dy-
namic linker/loader resides in the process, it is a comfortable
target to house the update mechanism, not only avoiding the
need for additional permissions but also providing easy access
to a list of all loaded objects and their relocation information.

RTLD with DSU Capabilities In order to assess the appli-
cability of the approach to real-world libraries, we have imple-
mented our own dynamic linker/loader LUCI for the x86_64
architecture with the ability to perform the described update
procedure while maintaining binary compatibility (to some ex-
tent) to the glibc equivalent ld-linux.so, allowing loading
and live-patching of unmodified binaries from a distributor:
LUCI can run common executables when passed as a param-
eter or transparently if LUCI is set as the interpreter in the
corresponding ELF section of the executable. This fully cir-
cumvents ld-linux.so but still supports most glibc libraries
(including libc.so and libpthread.so) while providing
compatible interfaces for RTLD-specific functionality (e.g.,
libdl.so and tunables).

If dynamic updates are enabled (e.g., by the corresponding
environment variable), LUCI creates an observer thread on
start and uses the inotify API to detect modifications of all
loaded shared objects (or their symbolic links, respectively).
In case of a fork, LUCI intercepts it in order to decouple
the data memory alias and create a new observer thread in
the child process. Besides the fork and thread creation, our
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live-updating mechanism introduces no runtime overhead.
On detected changes, the observer thread autonomously

compares the update compatibility of both versions and, on
success, initiates the update process. In addition, LUCI can
output status information, for example, notifying about re-
quired restarts due to incompatible changes.

A successful update currently does not necessarily prevent
the execution of old versions: If the library dynamically stores
a pointer to local functions during runtime (e.g., in heap-
allocated memory), these could result in reusing old code after
an update. LUCI cannot statically identify (and fix) them since
there is no relocation information. Nevertheless, it provides
an optional method to detect such access at runtime: After a
user-defined time following an update, LUCI hides all pages
containing executable sections in old libraries and installs a
user-space page-fault handler (using userfaultfd). If the
non-present page is accessed, LUCI makes it available again
while using the status output to inform about the failed update
and the requirement for a manual restart.

The virtual memory layout of the updated shared object
is as intended by the linker and described inside the ELF
file, hence not limiting debugging capabilities with standard
tools like GDB. Furthermore, C++ exception handling (and
unwinding in general) works as expected, even in updated
libraries, since LUCI provides a version-agnostic interface
for dynamic linker introspection: Therefore, requests from
exception/unwinding routines will be passed to the exception
handling frame (eh_frame) of the corresponding library.

Checking Basic Compatibility To safely create a memory
alias of the old writeable data section in an updated shared
library, the section must match in alignment, layout, and con-
tent. The meta information of the ELF file (data section
address and size, its initial values plus the dynamic symbol
table) can be sufficient – unless the writeable data has local
relocations: For each static variable pointing to a local symbol,
LUCI ensures the target’s equivalency in the old and new ver-
sion. Otherwise, an update could lead to undesirable behavior,
for example, because of changed variable semantics.

The dynamic update is straightforward as long as the target
is located in the data section, because LUCI simply compares
the contents and follows the relocations. However, when con-
sidering the executable section, we cannot just compare the
machine code since changed offsets (e.g., due to added code)
likely result in a different byte stream. With the help of the
capstone engine [41], LUCI disassembles the code and (using
relocation information, instruction-pointer–relative address-
ing, and branch instructions) creates a dependency graph. This
graph is similar to a call graph but also contains references in
the data section. To enable fast comparisons, LUCI calculates
a fingerprint for each function: Similar to techniques used
in malware analysis [10], LUCI creates a hash based on the
machine instructions while excluding relocated immediate
operands and %rip-displacements – they are replaced instead

with corresponding symbolic equivalents. This allows LUCI
to find identical functions independently from their location.

For dynamic updates, LUCI considers a target symbol to be
compatible if the fingerprint (for symbols in the executable
section) or contents (for data) in old and new versions match,
as do the targets of all references.

After ensuring the update compatibility in principle, LUCI
further checks if the process has not altered the memory tar-
geted by the relocation entry. Consequently, LUCI keeps track
of previous values used for fixing relocations and aborts the
update process on detected changes while notifying the user
about the requirement for a manual restart.

Improving Compatibility Detection So far, stripped bina-
ries – containing only essential parts – are sufficient. However,
access to binaries’ full symbol table and debug information
can contribute to detecting whether an updated version can
be applied: While its full symbol table contains storage in-
formation for local variables, the DWARF debug sections
allow an even deeper inspection. Not only type information
for all variables can be gathered here, but also the fields of
records (struct) and enumerated values can be compared.

For debug purposes, many distributors like Debian and
Ubuntu offer additional debug information for the binaries,
due to size considerations usually distributed in separate pack-
ages. With libdebuginfod, there is even a web service for
easy retrieval of debug symbols, using the unique BuildID of
the binary located in the note section.

Although modification of records (e.g., unions) and addi-
tional enum values do usually not interfere with a successful
update, they are still quite rare in non-feature-updates. Thus,
we prefer a pessimistic approach for the sake of stability: If
either variable location or type, any internal record field, or
enumerated value has changed, the update is not applied. This
limitation has the ability to simplify the version comparison
drastically: By suitably hashing the information about the
internal structure, the hash value is sufficient to determine
compatibility. We have implemented a service (similar to
libdebuginfod) that LUCI queries. An alternative to LUCI’s
approach is to include the value directly in the ELF file, for
example, in an additional note section inserted by the post-
processing steps of the packaging toolchain.

Dynamically Loaded Libraries The POSIX function
dlopen enables one to load libraries during runtime. By de-
fault, both functions and global symbols are retrieved as point-
ers using dlsym. To effectively support dynamic updates for
such runtime-loaded files, LUCI creates an indirection for
function types: Similar to the PLT, the address of a helper
function is returned, which redirects the call to the latest ver-
sion of the symbol – introducing the overhead of an additional
jmp instruction. Using this trampoline technique, LUCI can
even update dynamically loaded libraries.
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5 Evaluation

We successfully validate the previously described functional-
ity of our implementation with a custom test suite written in
C/C++ consisting of small examples (targeting especially the
corner cases) using different compilers and versions (GCC v6
– v12, LLVM/Clang v11 – v15) on several distributions (in-
cluding RHEL/AlmaLinux, Fedora, and openSUSE Leap).
Other tests demonstrate the ability to update code changes
in libraries written in Ada (GNAT), Fortran (GNU Fortran),
Go (c-shared using the GNU Go Compiler), Rust (Rust com-
piler with prefer-dynamic flag), and, with some limitations,
Pascal (Free Pascal Compiler).

However, to demonstrate the practicability of our approach,
as well as its limitations, this evaluation focuses on popular
shared libraries without any custom modifications. To provide
a realistic scenario [44], we do not perform updates of indi-
vidual patches/commits but on the level of full official release
versions, which usually contain multiple changes.

For each library, we independently build (without using
any artifacts of a previous compilation) each version of a
reasonable range having a compatible API. As far as possible,
we use the suggested toolchains and default configuration for
each library according to the corresponding documentation.
Neither changes to the source nor custom tools are used during
the build process. In order to evaluate their impact on LUCI’s
compatibility detection, we manually enable debug symbols.

Then, a program – preferably a test suite with high code
coverage – linked against this library interface is executed,
while a supervisor script subsequently, with a certain delay,
exchanges the library version on the file system in the back-
ground. Moreover, this supervisor listens to the status inter-
face of LUCI in order to be notified about incompatible or
failed updates (the communication is strictly uni-directional)
– which will cause a restart of the test program, enabling it to
use the latest library version in the traditional way.

In addition to self-compiled vanilla versions, we also test
the corresponding binary releases in popular distributions the
same way. We choose Debian and Ubuntu as they are consid-
ered to be the most widely used Linux distributions (at least
for web servers [48]). Additionally, we are able to retrieve
outdated packages from previous releases5. We focus on their
two most recent versions: Focal Fossa (20.04) and Jammy
Jellyfish (22.04) in the case of Ubuntu (LTS) and Buster (10)
and Bullseye (11) for Debian. However, as debug symbols for
some versions are missing in the archives, LUCI solely relies
on the (stripped) ELF files when evaluating external builds.

It is worth noting that Debian carefully tries to prevent any
breaking changes in their stable package releases, often back-
porting security fixes to the library version used initially in a
particular Debian version. Therefore, its library versions may
differ from custom builds having the same version number.

Suitable libraries must meet the following criteria:

5Using launchpad.net for Ubuntu and snapshot.debian.org for Debian.

• Enough recent development to compare different ver-
sion releases – especially different binary releases in the
mentioned distribution versions.

• Independent libraries providing distinct functionality
rather than just an interface to a service. To simplify
testing, it should not be tightly entangled with system
components.

• Availability of a test tool or suite with reasonable cover-
age of the library interface and its code. It must not use
internals beyond the public/official interface since this
might prevent it from running with other releases. To
demonstrate the dynamic update, we further need a long-
running process (ideally executing the tests in an endless
loop) – scripts executing individual tests in subprocesses
are unsuitable.

• High popularity in both local installations and software
depending on it. The Debian popularity contest [40]
tracks the installations of their users and can act as an
indicator.

Taking those requirements into account, we have selected
the libraries Expat, libxcrypt, OpenSSL, and zlib for evalua-
tion, all of them within the top 150 packages (out of 70 000)
in the Debian popularity contest. This also covers main de-
pendencies of the nginx and Apache HTTP server.

Environment
We perform all tasks in container environments with a min-
imal base system installed, running on an x86_64 architec-
ture (Intel Core i5-8400 with four cores and 16 GiB of RAM).

For all tests, LUCI is configured to automatically detect
changes in library files or their symbolic links on the file sys-
tem, check compatibility, and, if applicable, update libraries
during runtime. A few seconds after applying an update, the
executable section of older library versions is unmapped. Any
subsequent access to the old library would trigger the user-
space page-fault handler, which marks the update as failed
and results in a restart by the supervisor script several seconds
later. The delay before a restart allows us to ensure that the
program correctly continues even after a failed update, not
producing unexpected results or aborting. Incorrect results
or abnormal program terminations, regardless of whether the
library release or the update causes them, are explicitly noted.

5.1 Expat
Since the Expat XML parser is used in numerous applica-
tions [46] and hence part of all popular Linux distributions,
its dozen critical vulnerabilities discovered within the last
decade make it a good target and test candidate for LUCI. We
focus on major version 2, having 27 version releases since
2006 – with 29 CVEs (including 11 critical vulnerabilities).
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code – ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
rodata – ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
relro – ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
data – ● ● ● ● ❍ ● ●
bss – ● ● ● ● ●
symbol tables – ● ● ● ● ● ● ●

D
W

A
R

F writeable vars – ● ● ● ● ●
internal types – ● ● ● ● ● ● ●
external API – ● ● ● ● ● ● ●

dynamic update – ✖ ✖ ✔ ✖ ✖ ✔ ✖ ✔ ✖ ✔ ✖ ✔ ✔ ✔ ✖ ✖ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

restart

L
U

C
I

re
su

lts start 1 2 3 4 5 6 7 8 9 10
# test cases 326 326 329 333 333 340 340 341 341 341 341 341 341 341 341 341 342 342 342 342 342 342 342 342 342 342 343
# failed (max) 14 14 14 13 13 13 13 13 13 12 11 11 8 8 8 7 7 7 7 7 6 5 4 3 3 2 0
time (ms) 390 338 371 532 498 578 577 576 577 532 518 535 532 533 532 530 531 530 531 578 578 521 522 660 659 542 522
time SD (ms) 7 6 6 3 3 4 3 0 3 4 3 4 3 5 3 9 3 1 4 3 9 3 17 3 10 3 4

start 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
# test cases 326 326 329 333 333 340 340 341 341 341 341 341 341 341 341 341 342 342 342 342 342 342 342 342 342 342 343
# failed (max) 14 14 14 13 13 13 13 13 13 12 11 11 8 8 8 7 7 7 7 7 6 5 4 3 3 2 0
time (ms) 382 331 362 523 489 569 572 566 568 523 507 528 526 523 525 519 523 521 522 568 568 513 510 648 648 534 513ba

se
lin

e

time SD (ms) 5 4 1 6 6 14 1 5 13 4 2 17 3 6 13 5 7 6 13 6 6 7 2 7 7 15 6

Table 1: Successively (every 25s) replacing the Expat library on the filesystem with all vanilla version 2 releases in chronological
order while running the test suite (in an endless loop). The upper part of the table shows LUCI’s internal analysis of each
changed library binary compared to the previously loaded version. ● denotes detected changes of symbols in the corresponding
segment, while ❍ marks identical segments having symbols with modifications in their dependencies (at other segments). When
non-updatable changes (highlighted with red color) are detected, the library version is incompatible (✖) and the test suite gets
restarted (marked by a vertical bar: | ). Compared to the baseline (using the default RTLD, shown on the bottom), LUCI can
prevent two thirds of restarts while providing the same results (as shown in the middle row).

The developers maintain a good and regularly updated test
suite in a single program, which we have to slightly modify:
Tests causing segmentation faults and double-frees in older
releases are dynamically omitted in those vulnerable versions.
Further, due to a slight API change (new symbols in 2.1.0 and
2.4.0), the corresponding tests are only enabled if those sym-
bols are available in the currently active library release (using
weak linkage). The LUCI-loaded program now executes all
eligible tests sequentially in an endless loop while measuring
the duration and the number of executed and failed tests6.

Vanilla The results in Table 1 show that LUCI is able to
perform 17 dynamic updates (67%) during runtime – with 11
subsequent updates (starting with version 2.4.0) without re-
quiring any restart. During those patches, we observe a steady
decrease in failed test cases due to the bugs fixed in newer
releases, identically to manually executing the test suite with
the corresponding library version using the default RTLD.

6A use-after-free bug (CVE-2022-40674) causes jitter in the results for
versions prior to 2.4.9, as the corresponding test only sometimes fails.

The average duration of a test iteration in LUCI is slightly
worse (about 2%), but this is caused by our RTLD implemen-
tation itself since it is not as optimized as the glibc counterpart
and needs to use some workarounds/indirections for compati-
bility with standard libc.so.6: The timings with LUCI are
consistent regardless of whether the DSU functionality is en-
abled or disabled. Furthermore, the raw data does not show
any notable increase while updating a library to a new version.

Most failed updates have obvious reasons, like changes in
the writeable data section, which LUCI automatically detects
in both binary and DWARF debug information. However,
LUCI rejects the updates to 2.0.1 and 2.3.0 only due to debug
information. A detailed look reveals that in both cases only a
single enumeration value was added. This causes a different
hash of the datatype (and, in the latter case, the API as well)
even though an update would be possible – which we validate
in additional tests. However, the currently strict setting safely
allows certain update directions: It is not only possible to skip
several releases (e.g., 2.4.4 → 2.4.9), but rolling back to an
earlier release is also possible – as long as the hashes are
identical and the requirements of the binary are met.
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init – ● ● ❍

code – ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
rodata – ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
relro – ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
data – ● ● ●
bss – ● ●
dynsym – ● ●

updatable – ✖ ✔ ✔ ✔ – ✖ ✖ ✖ ✔ – ✖ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✖ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

L
U

C
I # tests 333 340 340 340 340 340 341 341 341 341 341 341 341 341 341 341 341 341 341 341 341 341 341 341 341 341 341 341 341

# failed 13 13 13 13 13 13 13 13 12 12 12 11 11 11 10 9 7 6 5 11 10 8 8 8 7 5 4 3 3

Table 2: Expat test suite running with binaries retrieved from the official Debian repository – including development builds.

Backtesting Additionally, we back-test the approach using
prebuilt packages from distributors. For Debian, we can re-
trieve the binaries from the snapshot archive, which is not
limited to updates for stable releases but includes all devel-
opment builds as well. The implications become apparent
when considering the Debian workflow: Whereas during the
development phase latest library versions are maintained –
having the same update incompatibilities as our vanilla builds
above – the versions are frozen after the Debian release gets
stable. However, that does not mean a standstill at all: The
Debian team puts effort into backporting fixes for issues, like
the decreasing number of failed test cases in Table 2 shows:
While Debian Buster uses Expat 2.2.6 in its stable release
2019, their latest package 2.2.6-2+deb10u6 fixes several
vulnerabilities found in 2022. Since they usually do not in-
clude feature changes but only minor changes in the code
section, the stable phase is an ideal situation for LUCI: all
package releases are eligible for dynamic updates. When also
considering development builds, LUCI can prevent 72% of
restarts in Buster and 90% in Bullseye.

Although the stable phase used in productive environments
is our main focus for LUCI, the development builds offer
interesting insights about the applicability of our approach:
Several different versions of the build utils were used during
that time; however, this does not necessarily cause incompati-
bilities. For example, package 2.2.9-1 was built with GCC 9.2,
while 2.2.10-1 used GCC 10.2, but a dynamic update is still
possible. It can also happen that a newer release build results
in identical code and data segments, which may or may not
produce a different BuildID stored in the note section. For
example, the unequal BuildID between 2.2.5-1 and 2.2.5-2
requires LUCI to analyze the file, while the subsequent update
to 2.2.5-3 is binary identical, allowing LUCI to safely skip
any further processing quite early.

Ubuntu is similar regarding the version freeze after stable
release, as shown in Table 3: Even with development libraries,
83% of restarts can be omitted with LUCI in Jammy. Library
updates published for the stable release can all be dynamically
applied; the same is true for all library releases in Focal. In
both versions, there is only one update each, simply differing
in the BuildID compared to its predecessor; all other updates
have actual code changes.

These results highlight the effectiveness of LUCI in a real-
world scenario, as it can update the majority of all Expat
versions, even off-the-shelf libraries built with different com-
pilers and without access to debug information.

Build Expat updatable

custom (vanilla) 2.0.0 – 2.5.0 17 / 26 (65%)

Debian
Buster

all 2.2.0 – 2.2.6 13 / 18 (72%)
stable 2.2.6 6 / 6 (100%)

Debian
Bullseye

all 2.2.7 – 2.2.10 9 / 10 (90%)
stable 2.2.10 5 / 5 (100%)

Ubuntu
Focal

all 2.2.7 – 2.2.9 6 / 6 (100%)
stable 2.2.9 4 / 4 (100%)

Ubuntu
Jammy

all 2.4.1 – 2.4.7 10 / 12 (83%)
stable 2.4.7 2 / 2 (100%)

Table 3: Summary of LUCI executing the Expat test suite us-
ing different library builds (including off-the-shelf binaries).

5.2 libxcrypt

The extended crypt library [14] is a modern replacement for
glibc libcrypt.so.1, providing various one-way hashing
methods that are frequently used for user authentication. Sev-
eral test cases are included in the source. Most of them solely
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Build libxcrypt updatable

custom
(vanilla) 4.0.0 – 4.4.33

all 35 / 47 (74%)
unqiue 19 / 31 (61%)

Debian
Bullseye 4.4.10 – 4.4.18

all 7 / 7 (100%)
unqiue 3 / 3 (100%)

Ubuntu
Focal 4.4.10

all 8 / 8 (100%)
unqiue 0 –

Ubuntu
Jammy 4.4.18 – 4.4.27

all 4 / 4 (100%)
unqiue 4 / 4 (100%)

Table 4: Program running all libxcrypt tests in parallel (using
multithreading) on LUCI while exchanging library builds.

use the shared library interface without any knowledge about
the internal structure and are therefore suited for our evalua-
tion. However, we have to exclude three test cases because of
severe memory leaks and division-by-zero bugs in conjunc-
tion with older releases. Our test program endlessly repeats
each eligible test case in a distinct thread without any syn-
chronization whatsoever, requiring LUCI to apply updates to
a process with several active threads.

When building and testing all 48 releases of version 4,
LUCI is able to dynamically update 74% of them. However,
11 builds are binary identical to the previous one (e.g., 4.4.28),
and 5 builds only differed in their BuildID – still enabling
LUCI to update 19 out of 32 unique builds with actual code
changes during runtime.

During updates, we also observe a steady decrease in failing
tests: While 9 (out of 25) test cases report errors when running
with the first release of the library (version 4.0.0), there are
no more unsuccessful tests after the latest update.

While Debian Buster still retains the glibc crypt library,
Bullseye moved to this replacement library (package name
libcrypt1), which can be fully dynamically updated as
stated in Table 4. In Ubuntu Focal, one can find 9 different
packages, but their code and data are all identical (having 5
different BuildIDs). In contrast, Jammy has 5 actual different
builds that are all compatible. Due to the fact that Bullseye
and Jammy only have a single stable release, we consider all
releases, including development.

The approach of LUCI does not restrict the update of a
library concurrently employed by several dozen active threads
in a multithreaded application, as these results show.

5.3 OpenSSL
Because of its broad application – and several severe vul-
nerabilities in recent years – the secure communication li-
brary OpenSSL has achieved a certain degree of brand aware-
ness. We focus on its two main libraries libssl.so and
libcrypto.so and set up a client-server environment using
the openssl utility for testing.

Of 20 releases in OpenSSL 1.1.1, only 6 versions
of libssl.so seem to be updatable and none of

libcrypto.so. Further investigation showed that the
ssl3_undef_enc_method-structure could be blamed: Its
members point to functions that can reach ERR_raise us-
ing an array containing error messages, which are frequently
edited in the source. This would not be a problem if the struc-
ture in question, which is – to the best of our knowledge –
never modified, were marked as constant. However, since it
is currently writeable and hence placed in the .data section,
LUCI requires all of its references recursively to be identi-
cal to the previously loaded library for updates. Although
LUCI’s decision to reject such changes works just as intended,
when temporarily relaxing this constraint, 9 releases in both
libraries meet the requirements for an update.

However, after every update during testing, LUCI detects
code usage in superseded libraries and hence reports it as
failed. Again, the reasons for this shortcoming are function
pointers in writable data: Instead of statically initializing a
variable, OpenSSL does this during runtime7 – taking over
the work originally intended for the RTLD and hence leaving
LUCI with no clue about those relocations, unable to correct
them to the updated version.

Using uprobes, we can verify that only old code referring
to unchanged functions was executed and the updates are
effectively applied. However, LUCI is currently not meant to
handle such code as further discussed in Section 6.

5.4 zlib

The library zlib is used in many software dealing with data
compression and was not exempted from serious vulnerabili-
ties. We are testing version 1.2 – since the version numbering
switches between three and four places, there are 49 releases
from 1.2.0 to 1.2.13 (the latest at the time of writing). Since
the full code coverage test of the inflate algorithm cannot be
used due to its interference with internal structures, we run
the various de- and inflation tests of the zlib example file in
an endless loop while updating the libraries.

Of all releases in the past two decades, only half are suited
for dynamic updates, as the results in Table 5 show. The main
reasons preventing an update are the 19 interface extensions
during that time, which are often accompanied by additional
data structures – both creating different debug hashes. The
binary builds show an ambivalent picture as well: due to the
interface changes and the fix for CVE-2018-25032 modifying
internal structures, none of Debian Buster’s builds can be up-
dated. The same CVE applies to Debian Bullseye and Ubuntu
Focal, which have around half their packages eligible for dy-
namic updates. Only for Ubuntu Jammy (whose development
began after discovering this CVE), all releases can be applied
dynamically.

7For example, names_lh in crypto/objects/o_names.c is initialized
with NULL and assigned once with a fixed value in a custom RUN_ONCE
function during start.
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Build zlib updatable

custom
(vanilla) 1.2.0 – 1.2.13

all 24 / 48 (50%)
unqiue 24 / 48 (50%)

Debian
Buster 1.2.8 – 1.2.11

all 1 / 3 (33%)
unqiue 1 / 3 (33%)

Debian
Bullseye 1.2.11

all 4 / 5 80%)
unqiue 3 / 4 (75%)

Ubuntu
Focal 1.2.11

all 5 / 7 (71%)
unqiue 2 / 4 (50%)

Ubuntu
Jammy 1.2.11

all 4 / 4 (100%)
unqiue 2 / 2 (100%)

Table 5: zlib de- and inflations tests using LUCI while ex-
changing library builds.

6 Discussion

Unlike several other DSU approaches, LUCI does not aim
for general updateability and deliberately sacrifices some fea-
tures: Most notably, the requirement for identical writeable
data segments, which allows multiple library versions to co-
exist concurrently in memory, prevents changes of static vari-
ables. In case the library maintains some sort of state, it must
not differ between the old and new versions for the same
reason. Hence, changes to the initialization functions are pro-
hibited. Consequently, record types have to be equal as well
since they might be used in a shared state during the update
transition (e.g., structs in heap or stack memory). If the life-
time of a pointer to an internal function outlasts the execution
time of the function in which it was assigned, old code may
be executed after an update. Furthermore, a related case can
occur when a library function resides for a long time on the
call stack, possibly because of an endless loop.

Accordingly, LUCI statically verifies the compatibility of
data and interface before starting the update, while afterward
dynamically detecting the execution of old code: To prevent
abnormal terminations, LUCI takes a strict course, favoring
false positives over false negatives. If a new version of a
library does not meet all requirements and therefore is not
eligible for dynamic updates, the process remains running in a
valid state while LUCI notifies users about the non-updatable
version, so they can manually restart the service. However,
in case any subsequent update is again compatible with the
currently active library, the update will be applied.

For many libraries, this pessimistic approach is sufficient
to update most library versions, especially when it comes
to minor (patch-level) changes like stable release branches
of distributions: The approach’s restrictions rarely apply to
bugfixes, which most frequently require a timely deployment.
The decreasing number of failures in the Expat test suite
in Section 5.1 demonstrates the immediate effect of bugfix
updates. However, extensive bugfixes and feature changes
with cross-cutting changes cannot be applied, as seen in major
version updates (e.g., Expat 2.3.0 → 2.4.0).

A notable exemption is OpenSSL: Although it is an interest-
ing target for DSU due to its wide distribution, it is notorious
for its code quality [4, 19], and hence the failing results are
not surprising. While a first examination suggests that a few
changes in its code (which we rather categorize as coding-
standard fixes) would considerably improve its updateability,
there are possibilities for LUCI to handle such libraries: By us-
ing a fine-grained code-access–detection method like uprobe
and ptrace, further conclusions about the actually executed
symbols in old libraries can be drawn. Accordingly, LUCI
can ignore accessed symbols that are identical to their corre-
sponding newer version. However, in contrast to the currently
employed coarse-grained user-space page-fault mechanism,
this would require additional permissions and induces over-
head. Nevertheless, if a function pointer actually refers to a
symbol that has been modified in the updated library, coun-
termeasures are possible: LUCI could alter the old library’s
code in such a way that it redirects the control flow to the
corresponding new version of the symbol (e.g., by using a nop
slide) – but at the same time losing the advantage of simplicity
and safety while not having to modify the text section.

It is worth mentioning that function pointers to symbols in
other shared libraries do not point directly to the target but to
the corresponding PLT entry – which LUCI fixes on update.
Moreover, the use of virtual inheritance in C++ is not affected
as well: Such objects are internally extended by an additional
vpointer attribute, which references the vtable stored in
the (relocation-)read-only section and is updatable.

A crucial limitation that LUCI shares with other automatic
DSU approaches is the application of structural changes,
which can become arbitrarily complex due to the semantic
gap between (the intentions at) the source code level and the
information available at the binary level after compilation.
They are generally unrecognizable on a binary level without
further context.

Listing 1 shows a contrived example of a change in a spin-
lock implementation: The semantic change of the value sig-
naling the holding of a lock from 1 to 0 is only reflected in

1 typedef int lock_t ;
2

3 void lock( volatile lock_t * var) {
4 - while (! CAS(var , 0, 1)) {}
5 + while (! CAS(var , 1, 0)) {}
6 }
7

8 void unlock ( volatile lock_t * var) {
9 - *var = 0;

10 + *var = 1;
11 }

Listing 1: A contrived example of a code modification that
LUCI cannot automatically reject, due to changes at a higher
semantic level.
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the functions’ machine code. It is indistinguishable from a
valid (i.e., bugfix) code change, and it does not change the in-
terface. Consequently, LUCI cannot automatically detect this
as an incompatible update. Even restrictions such as active-
ness safety [16], which prevents active functions (on the call
stack) from updating, would allow an update point inside the
critical section: For example, if one thread can hold the lock
and the incorrect update is applied, then another thread can
incorrectly acquire the lock a second time. However, proper
software-engineering techniques requiring lock_t to be an
enum with constants LOCKED and UNLOCKED would enable
LUCI to detect the incompatibility using DWARF information
and reject the update.

Data structures can pose similar issues regarding the de-
tection of incompatible changes: While changes in structs
are reflected in the debug information, a semantic modifica-
tion of the access using only pointer arithmetic and casting
is not detectable by LUCI. This lack of further information
about the data layout is especially true for dynamically allo-
cated memory. Further problems may arise if the modification
of function parameters can have an impact on the process
environment (e.g., adding a write-protection flag in mmap).

The problems described can be tackled with carefully cho-
sen manual update points and hand-crafted (or test-cases–
assisted [25]) state transformations. However, this would in-
volve a significant amount of work for each library. For LUCI,
we instead propose a more pragmatic solution by analyzing
the change set at the source code level and explicitly marking
a binary as compatible or incompatible with the previous ver-
sion. Maintainers or distributors usually have the knowledge
to perform this compatibility review. The resulting informa-
tion can be included in the metadata of the binary (note
section) or the package. Alternatively, the compatibility check
can be carried out independently by third parties (e.g., by
providing the information along with the debug hash).

To facilitate the compatibility review, LUCI has tooling
support to automatically identify obviously incompatible ver-
sions (e.g., different writeable section). A further LUCI tool
for simplifying the review shows the associated source-code
lines that belong to the modified code in the resulting bi-
nary (using the DWARF symbols). With LUCI, we argue that
less knowledge is required to decide on the update compat-
ibility compared to manually writing update routines (e.g.,
introducing update points or writing state transformers).

In summary, Listing 1 illustrates that corner cases exist that
circumvent LUCI’s automatic compatibility check. Therefore,
as mentioned, LUCI’s tooling infrastructure assists the user
in performing manual compatibility checks. However, all the
libraries we have analyzed so far have well-structured code
that does not require manual intervention. From this practical
observation, we argue that LUCI’s approach solves numerous
real-world code-patching problems.

Regarding the aspect of LUCI’s memory demand, we ar-
gue that having multiple coexisting versions of the library in

memory is rather unproblematic: Non-writable segments are
file mappings and, therefore, do not permanently reside in
memory. The data segments exist only once due to LUCI’s
memory-aliasing technique.

7 Conclusion

Even though dynamic software updates are a well-received
research topic and the benefit due to security concerns is
undisputed, they barely made their way to user space on our
everyday systems due to the required effort for software de-
velopers. In this paper, we propose a concept addressing the
existing obstacles, hereby focusing on the most frequently
reused kind of software: shared libraries.

Analysis of common bugfix patterns, including their effect
on the resulting ELF files, allows the conclusion that the meta-
data is sufficient to enable a dynamic linker/loader to update
today’s binary-distributed shared libraries without requiring
any changes or inducing additional runtime overhead.

To validate this claim, we have implemented our own dy-
namic linker/loader LUCI, which acts as an evaluation plat-
form for live-patching common binaries: LUCI dynamically
updates many versions of popular shared libraries like Expat,
libxcrypt, and zlib. But even in the case of incompatibilities,
normal execution is maintained: In no case does an update,
neither successful nor failed, lead to an abnormal program
termination or incorrect behavior during our evaluation.

The presented results suggest that the proposed approach
is practicable and can play a part in paving the way for the
common use of live-patching of user-space applications.

Although binary-compatible and supporting several of its
interfaces, LUCI is not deemed a replacement for the existing
default dynamic linker/loader (e.g., from the glibc project)
but is intended to support further investigation and research
for loader-based dynamic software updates. We hope that
LUCI will help DSU become a reality in user space – and, for
example, be supported by the standard RTLD some day.
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A Artifact Appendix

Abstract
Our artifact includes the source of the dynamic linker/loader
LUCI itself, alongside with a script to evaluate its live-update
capabilities on the libraries Expat, libxcrypt, OpenSSL, and
zlib using suitable tests. For building and testing, container en-
vironments (based on Docker) are employed. The artifact con-
tains scripts to support automatically building these libraries
from their official source and tools to download the corre-
sponding Debian and Ubuntu packages. LUCI is intended for
a recent Linux environment on an x86_64 architecture.

Scope
We aim to achieve two main goals with the artifact: Firstly,
we want to encourage reproducing the results presented in
this paper, the artifact therefore supports

• building the dynamic linker/loader LUCI, which is im-
plemented according to Section 4,

• building several release versions of the libraries Expat,
libxcrypt, OpenSSL, and zlib using the source from offi-
cial repositories,

• validating the changes of the test suites, and

• running all experiments described in Section 5. This
enables one to reproduce the results referred to in text
and listed in further detail in Table 1, Table 2 and Table 3
for Expat, Table 4 for libxcrypt, and Table 5 for zlib.

Secondly, since we are aware that there is a lack of “hack-
able” dynamic linker/loaders (especially when it comes to
glibc-compatibility), we provide LUCI for academic purposes,
mainly but not limited to research on loader-based DSUs.

Contents
The dynamic linker/loader consists of the following internal
sub-projects (each distributed in a separate repository):

dlh provides basic functionality similar to libc/STL for cre-
ating static freestanding applications (without glibc).

elfo is a lightweight parser for the Executable and Linking
Format, supporting common GNU/Linux extensions.

bean binary explorer/analyzer to compare shared libraries
and detect changes, which uses the Capstone Engine.

luci dynamic linker/loader with DSU capabilities and glibc
compatibility (ld-linux-x86-64).

To build LUCI, it is sufficient to recursively clone the repos-
itory with its submodules and run make in the main folder.
Further details are provided in the README.md.

For each shared library used in Section 5, there is a
corresponding subfolder in the evaluation repository. With
gen-lib.sh, the desired version(s) are built, gen-test.sh
compiles the test program (located in src-test), and
run-test.sh runs the experiments with automatic library
exchanging in a containerized environment.

Hosting
Both LUCI’s source code and the evaluation environment are
available at github.com/luci-project/eval-atc23.

The utilities for building the shared libraries retrieve the
source code from the following official repositories:

• github.com/libexpat/libexpat
• github.com/besser82/libxcrypt
• git.openssl.org
• github.com/madler/zlib

To acquire the Debian and Ubuntu packages released for
each library, the utilities use the web services launchpad.net,
metasnap.debian.net, and snapshot.debian.org.

Requirements
We have written all parts of the dynamic linker/loader in
C/C++. A standard GCC (version 9 & 10) is sufficient to
compile the project. While LUCI has no further restrictions
on its build environment, its execution is currently limited
to distinct versions of certain distributions, since LUCI must
conform to the corresponding glibc interface (see Table 6).

To enable all features of LUCI, a Linux kernel 4.11 or newer
with a default configuration is required. We recommend a
Debian Bullseye installation using its standard kernel image.

We use Python 3, GNU make, and Bash for helper scripts.
The tests are executed in a Docker container using the official
Debian and Ubuntu images. The hardware platform should
be an x86_64 architecture with at least 16 GiB of RAM and
6 GiB of storage.

Distribution Release glibc

Debian
Stretch (9) 2.24
Buster (10) 2.31
Bullseye (11) 2.31
Bookworm (12) 2.36

Ubuntu
Focal Fossa (20.04) 2.31
Jammy Jellyfish (22.04) 2.35

AlmaLinux
9 2.28Oracle Linux

RedHat Enterprise Linux

Fedora
36 2.35
37 2.36

openSUSE Leap 15 2.31

Table 6: Distributions currently supported by LUCI.
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