
This paper is included in the Proceedings of the
2023 USENIX Annual Technical Conference.

July 10–12, 2023 • Boston, MA, USA
978-1-939133-35-9

Open access to the Proceedings of the
2023 USENIX Annual Technical Conference

is sponsored by

Adaptive Online Cache Capacity Optimization via
Lightweight Working Set Size Estimation at Scale

Rong Gu, Simian Li, Haipeng Dai, Hancheng Wang, and Yili Luo, State Key
Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023,

China; Bin Fan, Alluxio Inc; Ran Ben Basat, University College London; Ke Wang,
Meta Inc; Zhenyu Song, Princeton University; Shouwei Chen and Beinan Wang,

Alluxio Inc; Yihua Huang and Guihai Chen, State Key Laboratory for Novel Software
Technology, Nanjing University, Nanjing 210023, China

https://www.usenix.org/conference/atc23/presentation/gu

Adaptive Online Cache Capacity Optimization via Lightweight
Working Set Size Estimation at Scale

Rong Gu1 Simian Li1 Haipeng Dai1 Hancheng Wang1 Yili Luo1 Bin Fan2 Ran Ben Basat3

Ke Wang4 Zhenyu Song5 Shouwei Chen2 Beinan Wang2 Yihua Huang1 Guihai Chen1

State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China1

Alluxio Inc2 University College London3 Meta Inc4 Princeton University5

Abstract
Big data applications extensively use cache techniques to ac-
celerate data access. A key challenge for improving cache
utilization is provisioning a suitable cache size to fit the dy-
namic working set size (WSS) and understanding the related
item repetition ratio (IRR) of the trace. We propose Cuki, an
approximate data structure for efficiently estimating online
WSS and IRR for variable-size item access with proven ac-
curacy guarantee. Our solution is cache-friendly, thread-safe,
and light-weighted in design. Based on that, we design an
adaptive online cache capacity tuning mechanism. Moreover,
Cuki can also be adapted to accurately estimate the cache miss
ratio curve (MRC) online. We built Cuki as a lightweight plu-
gin of the widely-used distributed file caching system Alluxio.
Evaluation results show that Cuki has higher accuracy than
four state-of-the-art algorithms by over an order of magni-
tude and with better stability in performance. The end-to-end
data access experiments show that the adaptive cache tuning
framework using Cuki reduces the table querying latency by
79% and improves the file reading throughput by 29% on av-
erage. Compared with the cutting-edge MRC approach, Cuki
uses less memory and improves accuracy by around 73% on
average. Cuki is deployed on one of the world’s largest social
platforms to run the Presto query workloads.

1 Introduction

Nowadays, distributed data-intensive frameworks like
Flink [9], Spark [49], Presto [37], which frequently read data
from tables and files, commonly use a caching layer as one
key optimization to improve data accessing performance.
However, allocating the right amount of cache storage can be
non-trivial: excessive resource unnecessarily increases the
cost, while insufficient capacity degrades the performance.
Dynamic online workloads [24, 42] make this problem even
more challenging. Particularly, when operating the Presto
deployments, we introduced Alluxio [1, 25] as its caching
layer and observed a high cache hit ratio. It was important,
however, unclear to us based on existing cache metrics to tell

if we could reduce the cache capacity of Presto servers while
maintaining the high cache hit ratio.

Existing approaches about how to tune the cache capacity
can be mainly summarized into four categories: (1) Rule-
based approaches [21, 24, 34, 42] tune cache sizes based on
cache metric related rules. However, it always adjusts the
cache size to fit the working set size blindly and frequently.
(2) ML-based approaches [4, 28, 30, 33, 35] train machine
learning models with historical data offline and predict proper
cache sizes in the future. Nevertheless, the model might be
inaccurate under online dynamic workloads. (3) MRC-based
approaches [15,19,22,36,40,41,45,51,52] explore the optimal
cache size by exploring a miss ratio curve (MRC) as the
function of the cache size. However, MRC is generated by
assuming each item has the same size or cost, which is not
always true in practice. (4) Window-based approaches [5, 11,
20] determine the cache capacity by estimating the cardinality
of items in a sliding window. But, it can not estimate the
working set size of items in variable size or organized in
multiple scopes.

Understanding the online accurate working set size (WSS)
and item repetition ratio (IRR) is important for tuning appro-
priate cache capacity [35, 51].

Accurate WSS estimation supports better cache capacity
planning, leading to higher cache hit rate and significant end-
to-end performance improvement. In the cluster, WSS and
IRRs insight need to be captured in real-time since the data
access load may vary dynamically. In addition, it is imperative
to use low CPU and memory resource, as it is long-running
and may scale to dozens and hundreds of nodes. What’s more,
to monitor WSS and IRR of various applications, it needs to
track the online items that have different sizes and structure
levels. To sum up, ideally, to effectively tune the cache size
online, an accurate, time-efficient, dynamic, light-weighted
approach for tracking the working set size (WSS) and variable-
size item repetition ratio (IRR) in a sliding window is needed.

We propose Cuki, an approximate data structure for esti-
mating the online WSS and IRR for variable-size item access
with proven accuracy guarantee and little overhead in the slid-

USENIX Association 2023 USENIX Annual Technical Conference 467

ing window. Generally, we face three challenges in the design
and usage of Cuki.

The first challenge is how to estimate the WSS and IRR
online with little resource and proven accuracy. The item
size can span over 8 ∼ 9 orders of magnitude [24, 42] in the
production environment. Therefore, inaccurate tracking items
such as sampling may lose critical items, which may cause a
huge drop in WSS estimation. The amount of data accessed
in a time window can be quite large. It would be very time-
inefficient and space-costly to store and calculate the item
information online. To address this challenge, we carefully
design a compact data structure with the approximate and
item-wise tracking mechanisms.

The second challenge is how to achieve good scalability in
high concurrency scenarios like multi-threading. It is common
for real-world applications to access data concurrently. As the
number of threads increases, the consistency and efficiency
of concurrent access issues become obvious. To address this
challenge, we adopt and propose a series of fine-grained con-
currency control methods (§ 4), such as opportunistic aging.

The third challenge is how to judge the cache status under
various scenarios with Cuki. It is non-trivial to tell whether
the cache is overloaded or underused at a moment due to the
variety of WSS and the cache-friendliness of the applications
online. To address this challenge, we get the cache status in-
sights by comparing the real cache size and the cache hit ratio
with the WSS and IRR estimated by Cuki online, respectively.

By working with both Presto and Alluxio open source com-
munities, our contributions can be summarized as follows:

• Lightweight and Accurate WSS/IRR Estimation: We
design an approximate data structure, called Cuki, to estimate
WSS and IRR online over a sliding window with little re-
source overhead and proven accuracy. Cuki uses an item-wise
fine-grained tracking mechanism to reduce WSS error caused
by missing critical items (e.g., large ones). In our experiment,
with a 96KB memory space size, Cuki can provide 99.07%
accuracy for a 511MB working set size over the MSR data
trace (§ 6.3). In addition, Cuki supports multi-scope WSS
estimation with an easy feature extension.
• Fine-grained Concurrency Control Methods: To im-
prove the efficiency of the concurrent access in Cuki, we pro-
pose opportunistic aging which decreases the lock contention
risk in high concurrency scenarios. In addition, we adopt the
segmented lock and two-phase based insertion mechanisms
to guarantee data consistency in concurrent access.
• Adaptive Online Cache Capacity Tuning Framework
Using Cuki: Finally, we propose an adaptive online cache
capacity tuning mechanism based on Cuki. It judges whether
the current workload, such as table querying and file reading,
is cache-friendly or not, and further tells whether the cache
system is overloaded or underused. Accordingly, the proposed
cache capacity tuning mechanism can adjust the cache storage
size online to fit current workloads.

• Extensive Evaluation and Application Practice: Exper-
imental results on extensive benchmarks show that Cuki
achieves over 10× higher accuracy with more stable perfor-
mance compared with state-of-the-art methods. The cache
tuning mechanism using Cuki can reduce the table reading
latency by 79% on average, and improve the file reading
throughput by 29% on average, respectively. Compared with
the cutting-edge MRC approach, Cuki uses less memory and
improves the accuracy by 73% on average. In addition, end-
to-end real-world query workload experiments show that the
proposed approach is effective for large-scale cache systems.

2 Background

Cuckoo Filter: A Cuckoo filter [17] is a well-known approx-
imate data structure for deciding whether a given item is in a
set or not. It consists of several buckets, and each bucket has
four slots by default. Each item has two candidate buckets
in a Cuckoo filter. To save space, a Cuckoo filter stores the
fingerprint of an item rather than the item itself.

To insert item x, the Cuckoo filter first gets the fingerprint of
x as f . Then, the Cuckoo filter hashes the x to get the first can-
didate bucket position b1. The other candidate bucket position
can be obtained by computing b2 = b1 ⊕ hash(f). The item
x will be inserted into an empty slot of these two candidate
buckets. If both candidate buckets are full, the Cuckoo filter
relocates other items iteratively until it finds an empty slot. To
check whether item x is already in the set, the Cuckoo filter
first computes the two candidate buckets of x as described
above. Then, it checks the items’ fingerprints in these two
buckets. If the Cuckoo filter finds one’s fingerprint is the same
as x’s fingerprint, it returns true. Otherwise, it returns false.
Miss Ratio Curve: A key challenge of cache resource allo-
cation is understanding the relationship between the cache
hit ratio and the cache size. The miss ratio curve (MRC) is a
common approach to figure out this relationship. The basic
idea of MRC is to generate a miss ratio curve as a function
of the cache size. With the generated miss ratio curves, users
can allocate the cache size properly by observing the trend of
the cache miss ratio with the cache size.

A traditional way [29] to generate a miss ratio curve of
the specific trace is to compute the reuse distance of each
item. The reuse distance of a specific item x represents how
many items have been cached since the last access of the x.
Since the reuse distance of each item has been recorded, this
approach will give an ideal miss ratio curve. However, the
online overhead of this approach is non-negligible.

To reduce the overhead of generating MRCs, recent re-
search work use sampling techniques. Counter Stack [45]
uses down-sampled and pruned probabilistic counters.
SHARDS [41] samples the input trace. AET [22] uses av-
erage eviction time to construct MRC. Mini-sim [40] extends
SHARDS by using miniature simulation.

468 2023 USENIX Annual Technical Conference USENIX Association

However, these methods [22, 40, 41, 45] have three limita-
tions. First, they need to store or process a separate I/O trace.
Second, they use sampling techniques, which are likely to
miss heavy hitters (large-sized items) and incur inaccuracy.
Third, they focus on processing fixed-size item accesses and
need some redesign to handle variable-size objects. RAR-
CM [51] uses the hashmap to store the item access informa-
tion and estimate the item repetition ratio (IRR) for generating
an approximate MRC. However, RAR-CM is still primarily
designed for fixed-size item access and needs 128 bits to store
each item. Our Cuki only needs 52 bits for each item to sup-
port variable-size item access MRC generation and is around
73% more accurate than RAR-CM (§ 6.7).

Though the overhead for Cuki to generate MRC is low,
MRC generation brings additional overhead for Cuki after all.
Since WSS/IRR estimation is usually sufficient for cache size
tuning in our environment, we finally choose the WSS/IRR
estimation as the main approach.
Prior Cache Size Tuning Approaches: The critical difficulty
in improving cache utilization is tuning the proper cache size
online with limited resource. Prior approaches can be mainly
summarized into four categories:

• Rule-based: Rule-based approaches [21, 24, 34, 42] ob-
serve cache usage metrics. If the observed metrics exceed or
are less than the predefined threshold, it tunes the cache size.
For example, Pocket [24] increases the cache size when cache
usage exceeds 80%. However, due to lacking knowledge of
the working set sizes of online workloads, it does not know
what the best cache size should be tuned to each time.
• ML-based: ML-based approaches [4, 28, 30, 33, 35] train
machine learning models with historical data offline for fur-
ther predicting proper cache sizes according to the workloads
online. However, the pre-trained models based on historical
data can hardly be adapted to dynamic online workload sce-
narios which have quite different data access patterns.
• MRC-based: MRC-based methods [15,19,36,52] explore
the optimal cache size by generating a miss ratio curve (MRC)
as a function of the cache size. To reduce the overhead of
generating MRCs, several approaches [22, 40, 41, 45] use
sampling techniques. However, they are likely to miss heavy
hitters, which would incur inaccuracy. Moreover, most MRC-
based approaches are designed for fixed-size item access,
which might be inaccurate for variable-size item.
• Window-based: Window-based methods [5, 11, 20] esti-
mate the cardinality of items in a sliding window. However,
they can hardly compute the accurate total size due to being
unaware of each item’s size with limited memory space and
little time cost.

3 Design of Cuki

To efficiently estimate the real-time working set size (WSS)
and the item repetition ratio (IRR) of various-granularity data

bucket
(an array of entries)

fingerprint clock size payloadhash table
(an array of buckets)

entry (item)
(a set of fields)

counters
Working Set Size

Repeated Items Number

Total Items Number

Repeated Items Size

Total Items Size

Figure 1: Data structure of Cuki.

access over sliding time windows, we design a compact ap-
proximate data structure called Cuki. In addition, we have
theoretically proved that Cuki outperforms the state-of-the-art
comparing algorithms in space usage under the same false
positive rate. The proof details are moved in Appendix B due
to page limitation. In this section, we introduce the main data
structure and supported operations of Cuki.

3.1 Data Structure

Cuki is built on the Cuckoo filter [17]. The first reason we
choose the Cuckoo filter is that it supports deletion so that
we can remove stale items. Second, different from the Bloom
filter, one item occupies one slot in the Cuckoo filter, so it is
easy to extend cells for recording items’ size.

In general, Cuki is an approximate membership query data
structure with the following features: 1) similar to the Cuckoo
filter [17], Cuki stores the items’ fingerprints rather than the
original data, which is memory-efficient. Different from the
Cuckoo filter, Cuki has a more sophisticated design to sup-
port time window semantics, working set size estimation, and
payload field extension. 2) Cuki supports insertion, lookup,
deletion, and aging operations at the item level with efficient
concurrency access control mechanisms. 3) Cuki provides
built-in efficient and accurate working set size estimation
in multi-scopes over the sliding time window based on the
lightweight tracking of each item insertion and deletion.

Figure 1 shows the data structure of Cuki. It contains a hash
table with multiple fixed-length buckets, each of which has
several fixed-length entries to store items. Each entry has four
fields to track an item’s information: fingerprint, clock value,
encoded size, and payload. In addition, there are five kinds of
atomic counters, including working set size, repeated items
number, total items number, repeated items size, and total
items size, which are high-level global metrics. Particularly,
repeated items number records the number of items that are
repeatedly accessed in a sliding window, and the total items
number is the total accessed items number in a sliding window.
Cuki can calculate IRR by simply dividing repeated items
number by total items number. All these five metrics are
updated along with inserting or deleting items. Similar to the
IRR, the bytes repetition ratio can also be easily calculated
as repeated items size / total items size.

The fingerprint field is a succinct representation of an
item. Usually, the fingerprint has few bits and is much
smaller than the original item size. Moreover, similar to
the Cuckoo filter, the fingerprint length of Cuki also of-
fers a trade-off between accuracy and space, i.e., Cuki can

USENIX Association 2023 USENIX Annual Technical Conference 469

achieve more accurate estimation with longer fingerprints.
The clock value represents the freshness of an item. The

higher, the fresher. Cuki sets the clock value of an item to a
predefined value of MAX_AGE when the item is accessed
(insertion or lookup) and periodically decreases it over time by
the aging operation. Using s bits for each clock, MAX_AGE
is set to 2s − 1, where s is an accuracy-to-space trade-off
parameter. Suppose the sliding window size is T , the aging
operation will be executed every T

2s−1 . The aging operation
ensures that the stale items are cleared timely. Moreover,
since the aging operation is executed more frequently using a
longer clock bits length, there will be fewer errors in sliding
windows. Aging operations can work in the background. In
addition, we can further amortize the computation overhead
by the opportunistic aging strategy in § 4.2.

The size field stores the encoded size of each item. There
exist some naive several size encoding techniques, such as
Full-size Encoding which directly stores each item’s exact
accurate size and Truncation Encoding that only stores the
higher bits of the item size, since they are more important than
the lower bits. To make a better tradeoff between accuracy
and space overhead, we propose the Grouped Size Encoding
technique. It saves the lower bits of each item into size groups.
Every prefix has a corresponding size group to record the
size of items with the same prefix. Each size group has two
counters: counts (total number of items) and total_bytes (total
item size). For insertion, Cuki increases counts by 1 and
total_bytes by the item’s size. When an item is removed, Cuki
decreases total_bytes by the average size total_bytes/counts,
and counts by 1. For a prefix length of γ · len bits, there are
2γ·len size groups in total. The space overhead of grouped size
encoding is γ ·N · len+2γ·len ·C, where C is the bits length of
the above two counters for each size group.

Apart from the above size encoding methods, more sophis-
ticated size encoding strategies [6, 7, 14] are also compatible
with Cuki. However, these methods require additional compu-
tation. Thus, we choose not to use them as the main strategies.

The payload field stores auxiliary information of an item.
Although the former three fields are enough for the work-
ing set size estimation problem, we leave the payload as an
auxiliary field for customized needs. In § 3.2, we introduce
an example extension usage of the payload field, namely the
multi-scope working set size estimation.

3.2 Operations in Cuki

Item Insertion: First, Cuki computes the fingerprint and two
bucket indices b1 and b2 of a given item x by Equations (1)
~ (3), respectively.

f = fingerprint(x), (1)
b1 = hash(x), (2)
b2 = b1⊕hash(f). (3)

Through Equations (1) ~ (3), Cuki can compute two candi-

𝒚𝒚,3,7An empty entry An occupied entry that stores 𝒚𝒚’s fingerprint value
(e.g., 𝒚𝒚), clock value (e.g., 3) and size value (e.g., 7)Cuckoo path

Insert 𝒙𝒙 along the
cuckoo path.

𝒚𝒚,3,7

𝒛𝒛,1,4

Compute the indices of
𝒙𝒙 ’s two candidate buckets.

①

Store 𝒙𝒙’s fingerprint, clock and size by kicking out 𝒚𝒚’s entry.②

Move 𝒚𝒚’s entry to its alternative
candidate bucket by kicking out 𝒛𝒛’s entry.

③

Move 𝒛𝒛’s entry to the empty entry of
its alternative candidate bucket.

④

0
1
2
3
4
5
6

hash table

(a) Item insertion operation.

before aging after aging

aging
scan

𝒙𝒙,3,5

𝒚𝒚,1,7

𝒛𝒛,0,4

𝒙𝒙,2,5

𝒚𝒚,0,7

Aging scan on hash table

decreases each entry's clock value

by 1 (e.g., decreases 𝒙𝒙's 3 to 2),

and removes entries whose clock

value are zero (e.g., removes 𝒛𝒛).

hash table hash table

(b) Aging operation.
Figure 2: Illustration of insertion/aging operations in Cuki.

date buckets by fingerprint without original item information.
Next, it searches for an empty entry in the two candidate
buckets. If successful, Cuki stores the item’s fingerprint and
encoded size in that entry and initializes the entry’s clock
value to MAX_AGE. Otherwise, it relocates other entries it-
eratively until it finds an empty entry. Specifically, Cuki finds
a cuckoo path in the hash table [18]. The cuckoo path starts
with a candidate bucket and ends with an empty entry. Cuki
performs the insertion by moving items along this cuckoo
path. For example, the red color line in Figure 2(a) is a cuckoo
path, which starts with the bucket 1 and ends with the bucket
5. For inserting x into bucket 1, the entry y in bucket 1 will
be kicked out to bucket 3. This leads the entry z in bucket 3
will be kicked out to bucket 5. The Cuckoo path length will
grow as item insertion, which might lead to long tail latency.
We will discuss how to mitigate this in § 4.1.
Item Lookup: Cuki’s item lookup first computes the finger-
print and two bucket indices of a given item x by Equations
(1) ~ (3). Then, it checks if there exists an entry that matches
the fingerprint within the two candidate buckets. If yes, it
resets this entry’s clock value to MAX_AGE and returns true.
Otherwise, it returns false.
Item Deletion and Aging: Cuki supports removing an en-
try (item) by the item deletion operation or the item aging
operation (§ 4.2) at an item’s maximum age. Cuki’s deletion
method first looks up the candidate buckets which are de-
scribed above. Then, it removes the entry which matches the
fingerprint.
Item updating: If an item’s attribute (e.g., size) changes,
Cuki needs only one-single table access to swiftly alter the
hash table entry’s fields without searching the cuckoo path. If
an item’s ID changes, Cuki considers it a new insertion. The
old item can be deleted ad-hoc or via aging with performance-
accuracy tradeoff. In addition, data updates are non-common
in big data OLAP applications.

It is not trivial to automatically remove stale items from
the sliding window. A straightforward accurate solution is to

470 2023 USENIX Annual Technical Conference USENIX Association

record all item IDs and timestamps (64 bits). This method
requires too much memory because of the large number of
timestamps. In recent years, some methods [3,5,20] try remov-
ing stale items without timestamps. However, as we analyze
in § 6.3, these methods are either poorly memory utilized
or inaccurate. Different from these methods, the clock algo-
rithm [13] can remove stale items in time with little memory
overhead (8~16 bits, as shown in § 6.2).

Therefore, we introduce clock into our data structure. Every
entry in Cuki is associated with a clock value. Once an entry’s
clock value reaches zero, it should be removed because of the
staleness. This can be done by periodical aging operations
in the background. Specifically, suppose the length of the
sliding window is T , the bits length of the clock field is s,
then the aging period of Cuki is T

2s−1 . The length of window
T can be either time-based or count-based [11, 20]. The time-
based sliding window contains items that arrive in the last T
time units. The count-based sliding window contains the last
T items. In each aging operation, it iterates the whole hash
table in order and decreases each entry’s clock value by 1. If
an entry’s clock value is already down to zero before aging,
Cuki deletes this entry. Figure 2(b) shows an aging example.
For items x and y, the aging operation decreases their clock
values by 1; while for item z, whose clock value was zero, it
is removed. Though using clock to remove stale items can
save much memory, it brings errors in results. We have put the
theoretical analysis of the above statement in Appendix B.1
due to space limitation.
Entire Working Set Size Enquiry: Besides the above item-
level operations, Cuki also natively supports working size-
level operations, such as the entire working set size enquiry.

In fact, computing the entire WSS by online scanning the
entries in a full hash table and summing up their sizes is very
time-inefficient and resource-costly for each query request. In-
stead, we maintain a counter inside Cuki. The counter tracks
the WSS, updates it when inserting or deleting (e.g., by aging)
items, and can thus always answer entire WSS enquiry in con-
stant time. The counter is implemented with an atomic class.
Thus, it can be concurrently updated safely and efficiently.
Multi-scope Working Set Size Enquiry: In addition to en-
tire WSS enquiry, Cuki also supports WSS enquiry at the
scope level, which queries the sizes of specific scopes of the
entire working set. Different scopes can be regarded as differ-
ent parts of the entire working set (e.g., different tables of a
database, or different partitions of a table). The information of
each scope size is useful for resource scheduling methods [39]
and optimizing multi-tenant systems [23, 46]. For example,
in a large-scale query engine, we can use multi-scope WSS
estimation to find the table with the biggest WSS, which is us-
aully queried frequently. Replicating this table to more nodes
of the cache system may help increase the throughput of the
query engine.

To estimate multi-scope WSS, we can easily encode the
scope information (e.g., mapping scopes to an integer by

a hash table) into several bits and store them in the pay-
load field of Cuki. In addition, we need to maintain a set
of independent counters (e.g., WSS, repeated items size,
and total items size) for each scope in Cuki. For exam-
ple, when an item x belonging to scope Scopek is inserted,
Cuki will store the encoded scope Scopek along with the
entry of x, and increase the independent WSS counter of
Scopek. When the deletion or aging operation removes x,
Cuki can figure out the scope that x belongs to, by check-
ing the encoded scope information in its payload field,
and decreases the relevant WSS counter of that accordingly.

In practice, for existing methods, it is non-trivial to allocate
a suitable memory size for each scope without prior knowl-
edge of each scope’s cardinality. Instead, in Cuki, the items of
different scopes can share the same total hash table space, by
using the encoded scope information in their payload fields
to distinguish from each other. Thus, it is not necessary to
allocate static memory space for each scope in Cuki.

4 Concurrency Control in Cuki

4.1 Segmented Lock and Concurrent Insertion
We first introduce the basic concurrency control technique
called segmented lock adopted in Cuki. Then, we describe
how Cuki supports concurrent insertion.
Segmented Lock: Cuki divides the whole hash table into
several segments, and each segment is guarded by one single
lock. Users can configure the number of buckets per seg-
mented lock to tradeoff lock overhead and contention. On the
one hand, the item insertion, lookup, and deletion may access
different segments at the same time. To avoid deadlock in
operations, we always acquire and release the locks in order.
On the other hand, each segmented lock guards a group of
adjacent buckets. Therefore, for the aging operation, there is
no need to repeatedly acquire a lock for scanning items in
the same segment. Moreover, each lock manages a physically
continuous space. Benefiting from this cache-friendly design,
the aging operation can be executed faster. This is because
the aging operation accesses Cuki sequentially.
Concurrent Insertion: It is non-trivial to handle the con-
current insertion operations in Cuki. As analyzed in [18],
there will be a false negative error under concurrency when
moving items along the cuckoo path. To eliminate the false
negative error, similar to [18, 26], we separate the insertion
process into two phases: the path discovery and item move-
ment phases. In the path discovery phase, Cuki finds a cuckoo
path [18] that starts from two alternative buckets and ends
at an empty entry. Then, in the item movement phase, Cuki
moves items backward along the cuckoo path. Cuki always
acquires locks before each above phase, guaranteeing each
operation’s atomicity.

With more items inserted into Cuki, the Cuckoo path length
increases, which might lead to long tail latency. The item

USENIX Association 2023 USENIX Annual Technical Conference 471

movement may also fail as analyzed in [26]. The probabil-
ity of insertion failure is less than 1.75× 10−5 in their en-
vironment. In our experiment and production environment,
there is almost no insertion failure most of the time. Also,
we find that 97% of Cuckoo paths have lengths below 2, and
99.99% of Cuckoo paths have lengths below 4 in MSR trace
with 192KB memory. To totally avoid insertion failure and
long tail latency, one can allocate appropriate memory size
for Cuki by using space resizing techniques [10, 27, 43, 50].
Specifically, when the load of Cuki reaches the high water-
mark, according to the solution proposed in [50], we can
resize the Cuki’s capacity by adding an extra homogeneous
Cuki data structure after the existing one. The new incoming
items can be inserted into the expanded data structure [50].
Except for this solution, we can adopt “partial-key linear hash-
ing” technique proposed in [43] to increase the capacity of
Cuki in a fine-grained fashion. Furthermore, similar to [26],
we adopt breadth-first search to find an empty entry. It
can be theoretically proven that the Cuckoo path found by
BFS is shorter than that found by DFS [26].

4.2 Opportunistic Aging

To update the data freshness over the sliding window, Cuki
performs aging operations periodically in the background. At
each background aging, Cuki scans the whole hash table. It
first acquires the lock of each segment, then ages the items in
that segment in turn. However, the background aging suffers
from the following issues in high concurrency scenarios.
Issue 1. Large fluctuation of estimation result: In back-
ground aging, massive obsolete items will be cleared simulta-
neously. As a result, the estimated working set size varies a
lot before and after the aging execution. Therefore, the aging
can significantly affect the error in the estimated WSS, which
decreases the estimation accuracy and stability. We conduct
an experiment to verify this, and it is in Appendix C.1.
Issue 2. Lock contention with user operations: Most op-
erations in Cuki (e.g., insertion, lookup, and aging) require
holding the lock first, which causes lock contention among
these operations. It brings in two kinds of issues. First, when
the aging operation is in execution, if there are too many ob-
solete items that need to be removed, the other data access
operations will be blocked for a long time until the lock held
by the aging process is released. It increases the delay of
other data access operations. Second, when the aging opera-
tion is waiting for execution, if there exist so many insertions
or lookup operations, the aging operation might wait a long
period before getting the lock. Thus, the obsolete items in
Cuki may not be removed in time by aging, which decreases
the estimation accuracy of Cuki.

To address these issues, we propose a lightweight concur-
rency control strategy called opportunistic aging. It amor-
tizes the aging operation into the insertion operations in Cuki.
It brings two main advantages. First, the full aging task is

Algorithm 1 Opportunistic Aging in Cuki
Input: S i is the segment to be aged, Pi is the aging pointer of S i.

1: Noa← the number of items to be aged;
2: while Noa > 0 && Pi < S i.length do
3: /* aging the Pith buckets of segment S i */
4: AgingBucket(GetBucket(S i, Pi));
5: Pi← Pi +1;
6: Noa← Noa −1;

split into multiple minor aging tasks, making the sliding win-
dow move smoother. Second, since fewer entries need to be
checked in background aging, it reduces the lock contention
risk with the background aging.

Specifically, each segment in Cuki has a pointer to track
its aging progress. Both opportunistic aging and background
aging start working from the pointer’s position. Noa items are
aged during each opportunistic aging. The pointer advances
accordingly. Subsequently, background aging ages the remain-
ing items in each segment from the position of the pointer left
by opportunistic aging. If the aging pointer is at the end of the
segment, background aging will skip this segment. Therefore,
opportunistic aging reduces lock contention.

Algorithm 1 elaborates the procedure of opportunistic ag-
ing. First, it computes the number of items that need to be
aged (noted as Noa) by the elapsed time from the beginning
of the aging period (Line 1). Suppose S i is the segment to be
aged, Pi is the aging pointer (index) of S i, Ni is the number of
buckets in S i, T is the time interval of each aging period, tcur
is the elapsed time from the beginning of the aging period,
Noa can be computed by the equation:

Noa = Ni×
tcur

T
−Pi. (4)

It guarantees that the aging progress is consistent with
the movement of the sliding window. Besides, to reduce
the latency of each insertion operation, we limit the
maximum number of items cleared during each oppor-
tunistic aging. Then, We conduct the aging operation
on the Noa items in the segment S i (Lines 2-6). The
remaining stale items, which have not been removed by
opportunistic aging, will be cleared by the background aging.

Regarding accuracy, ClockSketch [11] reveals that some
stale items are not cleaned timely by background aging (also
analyzed in our Appendix B). Opportunistic aging can miti-
gate this error by preemptively removing certain stale items
before background aging.

5 Cache Capacity Online Tuning Using Cuki

In this section, we show how Cuki can facilitate online cache
capacity tuning for many data access applications. First, Cuki
can be used in implementing the cache size adaptive tuning
mechanism. Based on that, it can accelerate data access, in-
cluding table querying and file reading. In addition, Cuki can

472 2023 USENIX Annual Technical Conference USENIX Association

also help generate miss ratio curves (MRCs), which provides
an in-depth understanding of the relationship between the
cache hit ratio and the cache size.

5.1 Data Access Application Acceleration

During setting the cache capacity for applications, we are
mainly faced with two key cache-related questions: 1) What
is the degree of the data access temporal locality for a given
data access stream? 2) How to optimize the cache utilization
online for a given data access stream?

5.1.1 Adaptive Cache Capacity Tuning Framework

In the following, we introduce the key metrics of the Cuki,
which can be used for adaptive cache capacity tuning. To
explain how to track and optimize the cache utilization with
Cuki, we define the following key metrics.
• CSS: The cache space size, which can usually be obtained
from configurations or metric monitoring of the cache system.
• WSS: The working set size over the time window, which
is estimated by Cuki online.
• CHR: The realistic cache hit ratio of the cache system,
which is often exposed by the cache metric monitor system.
• IRR: The item repetition ratio over the time window esti-
mated by Cuki. IRR is computed by ∥R∥

∥O∥ , where O and R are
the set of total accessed items and repeatedly accessed items
in the time window, respectively.

The proposed adaptive cache capacity tuning mechanism
can answer the above questions by tracking WSS and IRR in
constant time with Cuki.

IRR measures the data access temporal locality of the ap-
plication online. Specifically, since every repeatedly accessed
item is counted by Cuki, IRR can be regarded as the upper
bound of the cache hit ratio for the realistic cache system
over the past time window. WSS is the total size of recently
accessed items. It reflects the realistic cache demand of the
application in the time window. In fact, as we observed in our
real-world query service scenarios and other applications re-
ported in existing work [48,53], the working set size and data
repetition ratio do not significantly change in a short period,
following the law of temporal data locality. Thus, for a work-
load, its estimated WSS and IRR over adjacent time windows
are likely similar, and we can use the current estimation to
optimize the cache capacity for the near future.

Cuki has two main advantages in estimating WSS and IRR.
First, it can track the WSS over sliding time windows accu-
rately and stably. Second, it supports updating and querying
WSS with constant time complexity, which makes real-time
tracking and dynamic adjustment possible.

Figure 3 illustrates how Cuki and the above defined
metrics can help to improve the cache system efficiency.
Cuki is embedded into cache layer and cooperates with

Cache
Inspector

Cache
System

Data Access
Application

IRR is low
(e.g., IRR < 𝜽𝜽𝒅𝒅𝒅𝒅)

Cache
Status

A: Workload Cache
Unfriendlly

B: Cache System
Overloaded

Cuki

Working Set Size (WSS)

Item Repetition Ratio (IRR)

Cuki Metrics

C: Cache System
Underused

Cache

Cache Space Size (CSS)

Cache Hit Ratio (CHR)

Cache Metrics

…

CSS < WSS
& CHR is low

(e.g., CHR < 𝜽𝜽𝒅𝒅𝟐𝟐)

CSS > WSS
& CHR is high

(e.g., CHR > 𝜽𝜽𝒖𝒖)

N N

Y Y Y

Data Access Request Data Access Request

Figure 3: Workflow of adaptive cache capacity tuning mecha-
nism based on Cuki (grey components are proposed by us).

the cache system seamlessly. The cache system has on-
line CSS and CHR metrics, while Cuki contains WSS
and IRR statistics during the corresponding time windows.
When a data access request arrives, the metrics of the
cache system and Cuki are simultaneously updated.

The cache inspector figures out the cache system status by
comparing these metrics according to the logic in Figure 3.
Based on the cache status and the metrics in Cuki, the cache
space size can be appropriately tuned up and down online.

Specifically, the cache inspector will measure the data tem-
poral locality of the workload by checking the item repetition
ratio IRR estimated by Cuki. For case A in Figure 3, if IRR is
low (smaller than a predefined threshold θd1, e.g., 50%), the
workload itself is not cache-friendly, which means that there
exists little repeated data access during the time window. In
this case, even if adding huge cache space, we can barely get
a higher cache hit ratio CHR.

In other cases, when IRR is high, the cache inspector will
check CHR, cache space size CSS, and the working set size
WSS over the time window. For case B in Figure 3, when CHR
is low (smaller than a predefined threshold θd2, e.g., 50%) and
CSS<WSS, it means that the cache system is overloaded, and
there indeed exists some room to improve the cache perfor-
mance further. This is because the CHR is low, but CSS is
still less than the realistic cache demand measured by the esti-
mated WSS. In this case, we can improve the cache efficiency
by increasing CSS. For example, the size of an application’s
data table usually increases as the number of application users
grows. The cache system will be under-provisioned if CSS is
not carefully configured accordingly. However, with the esti-
mated WSS as the indicator, we can allocate an appropriate
amount of cache resource easily online.

Besides, if both IRR and CHR are high (larger than a prede-
fined threshold θu, e.g., 90%), it means that the cache system
has sufficient cache resource. However, the resource might
be wasted when we allocate superfluous cache space over
the realistic cache demand measured by the estimated WSS
in Cuki (case C in Figure 3). In this case, the cache sys-
tem is underused. In real-world practice, we can tune down
the cache space or leverage this information to optimize the
query task scheduling algorithms or the cluster resource rout-
ing strategies. For example, we can facilitate the load balance
of the cache system by prioritizing scheduling the query tasks

USENIX Association 2023 USENIX Annual Technical Conference 473

Presto Coordinator

HDFS / S3

Presto Worker

Alluxio Client
Cuki

LocalCache

Partition

Presto Worker

Alluxio Client
Cuki

LocalCache
…

…

Partition Partition

Partition
Request

Partition
Request

(a) Table querying framework

Alluxio Matster

HDFS / S3

File
Request

File
Request

File
Request …

Alluxio Client
Cuki

LocalCache

File

File

Alluxio Client
Cuki

LocalCache
File

…

(b) File reading framework

Figure 4: Data access applications using Cuki.

to the compute nodes where the cache is still underused.
In the last case, where both the cache hit ratio CHR and

the item repetition ratio IRR are high, and the cache space
size CSS matches the estimated realistic cache demand WSS,
the cache system is working in healthy status.

5.1.2 Table Querying Acceleration Framework

Figure 4(a) shows how the proposed adaptive cache capac-
ity tuning mechanism is integrated with Presto and Alluxio.
Presto is designed for performing SQL query computation
in memory. The Presto coordinator distributes the execution
plan fragments to Presto workers according to the scheduling
strategy. Presto workers execute query plan fragments on the
data read from the remote HDFS/S3. Since Presto workers
do not store the data, they tend to use Alluxio clients as their
cache tier. We implement the Cuki in Alluxio client to track
the LocalCache access. In order to use Alluxio LocalCache as
Presto worker’s cache, Alluxio client Jar files are distributed
to each Presto worker.

Each Presto worker queries Alluxio LocalCache inside
the same JVM through a standard HDFS interface. First,
Presto transforms the queried partitions into several splits.
Then, Presto coordinator makes the best attempt to assign the
same split to the same worker, which is cache-friendly. If the
queried splits are in the Alluxio LocalCache, splits are directly
read from local RAM and returned to Presto. Otherwise, it
retrieves data from HDFS/S3 and caches the data to local
RAM of Presto worker. Cuki monitors the whole process of
the split access in each Presto worker and updates WSS/IRR.

5.1.3 File Reading Acceleration Framework

File reading is common in distributed applications, such as
online video websites and cloud downloading services. It’s
common that there exist some hot files which are more likely
to be accessed by applications in a nearby time period. Thus,
we can use a cache system to accelerate file reading by storing
hot files. However, the size of hot files changes as time flies,
which makes it hard to determine the proper cache size. As
shown in Figure 4(b), the proposed adaptive cache capacity
tuning mechanism based on Cuki can be used to solve this
problem. The implementation of the proposed adaptive cache
capacity tuning mechanism in file reading is similar to the

above section. First, the requests for files are sent to the Al-
luxio master. Then, the Alluxio master checks whether the
requested files are stored in one of the Alluxio clients. If so,
the requested files are directly read from the local RAM of the
Alluxio client. Otherwise, Alluxio reads files from HDFS/S3
and caches the data to the local RAM of the Alluxio client.
Cuki monitors the whole file access process in each Alluxio
client and updates WSS and IRR accordingly online.

5.2 Miss Ratio Curves Generation Using Cuki
Although WSS and IRR are useful enough for the adaptive
cache capacity tuning mechanism, they still can not show in-
depth insights into the relationship between the cache hit ratio
and the cache size. Generating a miss ratio curve (MRC) as a
function of the cache size is a common method to understand
the relationship between the cache hit ratio and the cache size
thoroughly. It only needs a little change in Cuki to generate
MRCs for variable-size item access.

Similar to most MRC generation approaches [40, 41, 51],
Cuki needs to store the reuse distance distribution as RD(x).
RD(x) represents how many items are re-accessed at x LRU
stack size (x is also called as the reuse distance). With RD(x),
Cuki can compute MRC(x) simply by

∑x
i=1 RD(i)

TC , where TC is
the total items number. To compute RD(x), Cuki tracks each
item’s clock value and stores the clock distribution as CD(y).
CD(y) represents the total size of items whose clock value is
y. With CD, Cuki computes the reuse distance of the accessed
item by distance =

∑max
i=y CD(i), where y is the clock value of

the accessed item. Then, Cuki increases the RD[distance] by
one. The length of the array CD is the MAX_AGE, which
is decided by the clock bits length. Because the clock bits
length is a small constant number (never exceeding 16 in our
evaluation), the space cost of CD is negligible.

In the following, we introduce how Cuki maintains CD
when the item’s clock value changes. We use oc and nc to
represent the old clock value and the new clock value, re-
spectively. The item’s clock value changes when the item is
accessed or aged. Then, Cuki decreases the CD[oc] by the
item size and increases the CD[nc] by the item size.

6 Evaluation

6.1 Experimental Setup
To be consistent with Alluxio and Presto, we implement Cuki
and comparison methods in Java. If not explicitly mentioned,
all approaches run on a server with Intel Xeon(R) Gold 6248
CPU with ten 2.5GHz cores. The version of Alluxio and
Presto in the experiment is 2.7.0 and 0.266, respectively.
Datasets and Workloads. Experiments are run on both exist-
ing benchmarks and real-world datasets with workloads:
(1) MSR I/O trace dataset [31]. We choose the
first 12,518,968 records of MSR web proxy workload

474 2023 USENIX Annual Technical Conference USENIX Association

as a typical dataset. Each record consists of three
disk access information: timestamp, offset, and size. In
our experiment, we use the offset to represent the item ID.
(2) Twitter dataset [48]. We choose the representative
Twemcache-cluster37 first-hour data which has 10,169,267
records, and the similar Twemcache-cluster35 first-day data
as our datasets. The record’s key is regarded as the item ID,
and the item’s size is the sum of key_size and value_size.
(3) YCSB dataset [12]. We generate a concatenated trace that
contains 10 million records by the YCSB generator [47]. Each
base trace follows a zipfian distribution [32] with a skewness
factor of 0.99. The item size of each base trace ranges from
512B to 1MB, but follows different zipfian distributions.
(4) TPC-DS [38]. Typical I/O bound queries in TPC-DS are
used for the end-to-end performance evaluation.
(5) Real-world query workloads. We also adopt the real-
world query workloads from one of our large scale Presto
clusters with 200 servers in § 6.8. The total data access size
of the workload is PB-level, and the cache space is TB-level.
Comparison Approaches. Following methods are evaluated:
(1) ClockSketch [11]. We add a 32-bit size counter for each
cell of ClockSketch for WSS estimation. When a cell is first
inserted, its size counter will be set to the item’s size.
(2) SlidingSketch [20]. We apply SlidingSketch to the Bloom
filter [8] for WSS estimation. Each domain of its bucket is
used to record the item size.
(3) SWAMP [5]. SWAMP stores each item’s frequency in a
data structure called TinyTable [16]. We extend the TinyTable
in SWAMP to record each item’s size.
(4) MBF [3]. We use the Multiple Bloom Filter (MBF) im-
plementation in the latest Alluxio version [3]. Each Bloom
filter [8] is implemented with Google’s Guava library [2].
(5) RAR-CM [51]. In RAR-CM, each block has a counter to
record the last access number. To support variable-size item,
we use the RAR-CM’s counter to record its last access bytes.
(6) Cuki and Cuki-OA. Cuki is the basic approximate data
structure proposed in this paper. Cuki-OA further uses the
opportunistic aging strategy in § 4.2.
Metrics. We measure accuracy and speed performance by
following metrics:
(1) Weighted Error Rate (WER). Let error_bytes be the to-
tal size of items that are evicted faster or slower than the ideal
sliding window. The WER can be calculated by error_bytes

total_bytes .

(2) Relative Error (RE). w−ŵ
w , where w and ŵ are exact and

estimated working set size (WSS), respectively.
(3) Average Relative Error (ARE). 1

|T |Σt∈T
|wt−ŵt |

wt
, where wt

and ŵt are the exact and estimated WSS at moment t.
(4) Mean Absolute Error (MAE). 1

N
∑
|MRC(x)−MRC′(x)|,

where N is the length of reuse distance array, MRC(x) is the
hit ratio at the cache size x.
(5) Throughput. In file reading experiment (§ 6.7), it is the
number of MB/s. In other experiments, it is # of operations/s.
(6) Query Latency. The end-to-end SQL query latency.

4 6 8 10 12 14 16
Fingerprint bits length

10−3

10−2

10−1

A
R

E

Cuki (ours)
Cuki-OA (ours)

(a) Effect of fingerprint (ARE)

0 2 4 6 8 10
Size encoding bits length

10−2

10−1

100

A
R

E

Group (ours)
Group-OA (ours)
Truncate
Full-size

(b) Effect of size encoding (ARE)

2 4 6 8 10 12
Clock bits length

0.0

0.1

0.2

A
R

E

Cuki (ours)
Cuki-OA (ours)

(c) Effect of clock (ARE)

2 4 6 8 10 12
Clock bits length

0.00

0.01

0.02

W
ER

Cuki (ours)
Cuki-OA (ours)

(d) Effect of clock (WER)

Figure 5: Effects of parameters in Cuki.

Parameter Settings of Approaches. All methods use the
same memory size in each experiment. For the count-based
sliding window, we set the window size to 262,144 (218) and
measure RE every 64 time units. For the time-based sliding
window, we set the window size to one-hour and one-day for
the MSR and Twitter traces as different traffics, respectively.
The default size encoding approach for Cuki is grouped size
encoding. The bits length of the fingerprint, clock and size
fields in Cuki are set to 8 if not explicitly mentioned. The
settings of the comparing methods are fully tuned to nearly
achieve their best performance for a fair comparison.

6.2 Effect of WSS Estimation Parameters
To understand the impact of the Cuki’s parameters, we con-
duct experiments on the YCSB trace with a count-based slid-
ing window. The number of entries in Cuki is fixed to 262,144
(218), just enough to track all the items within a sliding win-
dow. To reduce other parameter interference, we use the full-
size encoding method by default in this section.
(1) Effect of fingerprint bits length. As shown in Figure 5(a),
as the fingerprint bits length grows, the ARE of both Cuki
and Cuki-OA is dramatically decreased. In fact, an item’s
key is represented by its fingerprint. Thus, a small fingerprint
bits length leads to different items being hashed to the same
fingerprint, resulting in high ARE. Moreover, compared with
Cuki, Cuki-OA decreases ARE by 37% on average, which
verifies the effectiveness of the opportunistic aging strategy.
(2) Effect of size encoding methods. Figure 5(b) illustrates
the influence of different size encoding methods. The per-
formance of the truncation encoding method using and not
using opportunistic aging is the same. Thus we only show the
truncation encoding in the figure. The black line represents
the ARE of the most accurate baseline (full-size encoding).

As shown in Figure 5(b), on the one hand, full-size encod-
ing achieves the best accuracy but it stores the entire accurate
size. Compared with the truncation encoding strategy, the
grouped size encoding strategy decreases ARE by 92% on
average when the group bits length is small (< 6 bits). Thus,
we can conclude that grouped size encoding achieves the best
trade-off between memory space and estimation accuracy.

USENIX Association 2023 USENIX Annual Technical Conference 475

Cuki (ours) Cuki-OA (ours) MBF ClockSketch SlidingSketch SWAMP

40 48 56 64 72 80 88 96 192
Memory (KB)

10−2

10−1

100

A
R

E

(a) ARE on MSR trace

160 192 224 256 288 320 352 384 768
Memory (KB)

10−2

10−1

100

A
R

E

(b) ARE on Twitter trace

Figure 6: Performance comparison of accuracy.

0.50
1.00
1.50

8 scopes

Cuki
(ours)

Cuki-OA
(ours)

Clock
Sketch

MBF Sliding
Sketch

0.00

0.05

0.10

0.15

0.20

A
R

E

1.00
2.00

16 scopes

Cuki
(ours)

Cuki-OA
(ours)

Clock
Sketch

MBF Sliding
Sketch

0.00

0.05

0.10

0.15

A
R

E

Figure 7: Accuracy of multi-scope estimation.

(3) Effect of clock bits length. As shown in Figures 5(c) and
5(d), the ARE and WER can be reduced by using more clock
bits. As shown in Figure 5(c), opportunistic aging (Cuki-OA)
decreases the ARE of Cuki by 26% on average when the
length of the clock bits is small (< 8 bits). Also, we can ob-
serve from Figure 5(d) that Cuki-OA barely increases WER.

Besides the above three parameters, the parameter sliding
window size can be set as the user demands. In the above
experiments, Cuki only needs a few extra bits to track each
item’s key, access freshness, and size. Therefore, we can con-
clude that Cuki can track each item only using several bits by
sacrificing negligible accuracy.

6.3 Accuracy of WSS Estimation

In this subsection, we evaluate the accuracy of Cuki by com-
paring it with cutting-edge WSS estimation methods over
the sliding window mechanism. Figure 6 exhibits the ARE of
different methods measured in the same run on two traces. We
double the memory size at the last point of each experiment to
meet the memory requirement of each approach. As shown in
Figure 6, while the performance of all comparison approaches
gets improved with more space, Cuki and Cuki-OA exhibit
better memory-accuracy efficiency. For example, Cuki-OA
decreases ARE from 12.26% to 0.93% as the memory space
increases to 96KB on the MSR trace. In addition, Cuki-OA
decreases the ARE of Cuki by an average of 11% and 37%
on the MSR and Twitter traces, respectively. As the memory
space gradually becomes larger, the ARE of Cuki decreases to
1% and lower. However, the ARE of coarse-grained tracking
methods, such as MBF, SlidingSketch, and ClockSketch, can
hardly further decrease even with sufficient memory.

Finally, we compare the accuracy of various methods on
multi-scope WSS estimation. We use the MSR dataset as a
typical benchmark and replay it with a 144× speedup. The
time-based sliding window size is set to one hour. All methods
in the experiments use the same 24MB memory size because
of the large multi-scope combined workload. As shown in
Figure 7, Cuki-OA reduces the ARE of Cuki by 33% and 22%

Cuki (ours) Cuki-OA (ours) MBF ClockSketch SlidingSketch

0 1000 2000 3000
Time (s)

−1.0
−0.5

0.0

R
E

0 1000 2000 3000
Time (s)

−1.0
−0.5

0.0

R
E

0 1000 2000 3000
Time (s)

−1.0
−0.5

0.0

R
E

0 1000 2000 3000
Time (s)

−1.0
−0.5

0.0

R
E

0 1000 2000 3000
Time (s)

−1.0
−0.5

0.0

R
E

Figure 8: Performance comparison of stability on MSR trace
(comparison methods use 2× larger memory than Cuki).

on average for the 8 and 16 scopes WSS estimation, respec-
tively. Secondly, the ARE of Cuki-OA is 11 and 8 times lower
than the comparison algorithms on average for the 8 and 16
scopes WSS estimation, respectively. It mainly benefits from
Cuki’s extensibility which allows items of different scopes to
make better usage of memory together.

To conclude, Cuki and Cuki-OA achieve the best accuracy
with the same memory consumption among all the methods.
More experiments on the YCSB trace or using the WER
metric are in Appendix C.2. They have similar conclusions.

6.4 Stability Performance of WSS Estimation

We evaluate the stability performance of different methods
under the time-based sliding window. More experiments on
the Twitter trace and the count-based sliding window are
available in Appendix C.3. They have similar conclusions.

We replay the MSR trace with 168× speedup and use
192KB memory for the Cuki. In order to meet the compari-
son methods’ memory requirements, they use double amount
of memory than Cuki. Figure 8 illustrates the stability per-
formance of different methods over the time-based sliding
window. SWAMP is omitted due to it only supports the count-
based sliding window. There are jagged fluctuations in estima-
tion for all methods because of the movement of the sliding
window. Specifically, MBF switches a Bloom filter out pe-
riodically and drops the corresponding items. ClockSkech’s
fluctuations are mainly due to hash collision with limited
memory. SlidingSketch can hardly track all items within a
sliding window due to limited memory space.

For Cuki, despite its performance being affected by aging
operations, its estimation is stable. The stability is mainly
attributed to its per-item size tracking. Notably, opportunistic
aging can make the movement of sliding windows smoother.

To conclude, Cuki and Cuki-OA use less memory and
achieve the most stable estimation results.

6.5 Scalability of WSS Estimation

We evaluate the thread scalability of the comparison methods.
Specifically, we use the MSR trace with the count-based slid-
ing window, and the memory size is set to 40KB. SWAMP is
omitted due to not supporting multi-thread concurrency.

Figure 9 shows that increasing concurrency can not im-
prove ClockSketch’s throughput significantly. SlidingSketch

476 2023 USENIX Annual Technical Conference USENIX Association

4 8 12 16
Number of threads

0.5
1.0
1.5
2.0

Th
ro

ug
hp

ut

(M
op

s/
se

c) MBF
ClockSketch
SlidingSketch
Cuki (ours)
Cuki-OA (ours)

Figure 9: Throughput with concurrent threads.

Cuki(ours) MBF FC-150MB FC-280MB FC-10GB
Methods

0.25

0.50

0.75

1.00

C
H
R

Worker1 Worker2 Worker3 Worker4 Worker5

(a) Cache hit ratio (CHR)

Cuki
(ours) MBF

FC-150MB
FC-280MB

FC-10GB

Methods

0.25

0.50

0.75

1.00

A
vg

. C
H

R

101

102

103

104

105

C
ac

he
 S

iz
e

(M
B

)

Cache Size

(b) Avg. cache hit ratio (CHR)

Cuki

(ours)MBF
FC-150MB

FC-280MB
FC-10GB

FC-10GB-T

Methods

100

101

102

103

A
vg

. Q
ue

ry
 L

at
en

cy
 (s

)

101

102

103

104

105

C
ac

he
 S

iz
e

(M
B

)

Cache Size

(c) Avg. presto query latency

Figure 10: Performance of adaptive cache capacity tuning
mechanism in table querying (FC-100MB represents the fixed
cache size 100MB, FC-10GB-T represents running with WSS
estimation in the fixed cache size 10GB, others are similar).

has heavy aging tasks after each operation. Thus, its scala-
bility is limited. MBF can improve throughput by increasing
concurrency, but it needs to manage Bloom filters for insertion
and lookup, resulting in lower throughput than Cuki.

Cuki and Cuki-OA have near-linear multi-threading scala-
bility due to their fine-grained concurrency control optimiza-
tion strategies. To conclude, both Cuki and Cuki-OA achieve
near-linear multi-threading scalability.

6.6 Cache Tuning Performance with Cuki

(1) End-to-End Performance in Table Querying : The ex-
periments run on a Presto cluster with one coordinator and five
workers using the I/O-bound TPC-DS dataset. FC-150MB,
FC-280MB, and FC-10GB represent the cache system is in
overloaded, healthy, and underused statuses, respectively. The
280MB cache size is manually chosen because it is the most
competitive cache size that makes a good trade-off between
the cache hit ratio and the cache capacity.

The adaptive cache capacity tuning mechanism use 125MB
memory, which is the default value in MBF [3]. As shown in
Figure 10(a), the cache hit ratio of FC-150MB is the lowest
one. And, the cache hit ratio of FC-10GB can be regarded
as the upper bound. By using Cuki, the cache system nearly
achieves the upper bound of the cache hit ratio. Figure 10(b)
shows the average cache hit ratio and the maximum total
cache space allocated by the proposed adaptive cache capacity
tuning mechanism and others. Compared with FC-280MB,
our method improves the average cache hit ratio by around
11% while using a similar total cache size. This is because that
our method allocates the cache space to each Presto worker
according to their different demand. Overall, by using Cuki,
the cache system can not only reach the upper limit of the

Cuki (ours) MBF
FC-200MB

FC-10GB

Methods

0.25

0.50

0.75

1.00

A
vg

. C
H

R

101

102

103

104

105

C
ac

he
 S

iz
e

(M
B

)

Cache Size

(a) Avg. cache hit ratio (CHR)

Cuki (ours) MBF
FC-200MB

FC-10GB

Methods

0

10

20

Th
ro

ug
hp

ut
 (M

B
/s

)

101

102

103

104

105

C
ac

he
 S

iz
e

(M
B

)

Cache Size

(b) File reading throughput

Figure 11: Performance of adaptive cache capacity tuning
mechanism in file reading (FC-200MB and FC-10GB repre-
sent the fixed cache size are 200MB and 10GB).

MSR Twitter YCSB
Traces

0.000

0.025

0.050

0.075

M
A
E

Cuki(ours)
RAR-CM

(a) Mean absolute error

MSR Twitter YCSB
Traces

105

106

107

M
em

or
y

(b
yt

es
)

Cuki(ours)
RAR-CM

(b) Memory

Figure 12: Performance of Cuki in MRCs generation.

cache hit ratio, but also improve the cache utilization.
The average query latency of different approaches is shown

in Figure 10(c), the average query latency of FC-10GB-T
(the fixed 10 GB cache size with WSS estimation) is close
to FC-10GB. The average query latency of Cuki is close to
the FC-10GB which is the lower bound of latency. Compared
with MBF, FC-150MB, and FC-280MB, Cuki can reduce the
query latency by around 69%, 97%, and 71%, respectively.
(2) End-to-End Performance in File Reading: This experi-
ment uses the first 9000 data access requests in YCSB [47]
trace as the workload. For each unique trace item, we generate
a file whose size is the item value and store the file in remote
storage S3. We run the experiments on an Alluxio cluster
with three EC2 servers and deploy an EC2 client which runs
in three threads to access data. Each thread sends 3000 file
reading requests and repeats three times.

As shown in Figure 11(a) the cache hit ratio of FC-200MB
is the lowest. The cache hit ratio of FC-10GB can be seen as
the upper bound because the 10GB cache size is enough to
cover all workloads. The cache hit ratio of Cuki is close to
the FC-10GB, which means Cuki helps the cache system to
reach almost the upper bound of the cache hit ratio.

As shown in Figure 11(b), we compare the end-to-end file
reading throughput of the above comparison methods. The
throughput of Cuki is close to FC-10GB which is the upper
bound of the throughput. Overall, Cuki can improve the cache
utilization of file reading to reach higher throughput.

6.7 Accuracy of Miss Ratio Curves Generation
We compare the accuracy of miss ratio curves (MRCs) gen-
eration among Cuki and RAR-CM. Considering the poor
support for the sliding window mechanism in RAR-CM [51],
the window length is the same as the trace length.

As shown in Figure 12(b), Cuki uses 96KB memory for
MSR trace and 1MB memory for other traces. Each item in
RAR-CM needs 128 bits to be stored, which is larger than
Cuki’s 56 bits. In order to make RAR-CM more accurate, we

USENIX Association 2023 USENIX Annual Technical Conference 477

0 20 40 60 80
Time (min)

0
2
4
6
8

W
SS

 (G
B

)

Cuki(ours)
MBF

(a) Working set size estimation

0 10 20 30
Time (h)

0.8

0.9

1.0

C
H

R

Cuki (IRR)
RealCache (CHR)

0.8

0.9

1.0

IR
R

(b) Cache hit and item repetition ratios

Figure 13: Large-scale real-world practice.

allocate RAR-CM 10 MB memory, which is 10× larger than
Cuki. Figure 12(a) shows the accuracy of Cuki in MRCs gen-
eration. Compared with RAR-CM, Cuki reduces the MAE by
around 48%, 82%, and 91% in the MSR, Twitter, and YCSB
traces, respectively. This is because that Cuki can better sup-
port variable-size item. Moreover, RAR-CM estimates the
re-access ratio to compute the reuse distance, which is inaccu-
rate. In addition, Cuki achieves comparable throughput with
RAR-CM in experiments. Overall, Cuki costs less memory
and generates more accurate MRC than RAR-CM.

6.8 Real-world Practice
We elaborate on how Cuki is used in our real-world large-scale
query platforms with the cache system called ShadowCache.
ShadowCache is being leveraged to understand the system
bottleneck and help with query system routing design deci-
sions. Specifically, with ShadowCache, the overall system
can efficiently decide how to size the cache for each tenant,
and what the potential cache hit ratio improvement is. In the
following, we evaluate the usability of the working set size es-
timation methods on a middle-scale Presto cluster (GB-level
cache space). We implement the proposed Cuki-based cache
capacity tuning mechanism. MBF is also used for comparison.

Figure 13(a) shows the estimated WSS of Cuki and MBF
on a middle-scale cluster. There exist fluctuation for MBF
in its estimation due to periodically removing a part of its
statistics as analyzed in § 6.3 and § 6.4. In fact, the cache
system can hardly distinguish the normal workload changes
from the MBF fluctuations. In contrast, Cuki provides stable
working set size estimation with little fluctuation. Thus, Cuki
is more credible and effective in real-world scenarios.

Next, we deploy the proposed approach on a large-scale
real-world Presto cluster (TB-level cache space with 200
servers). Figure 13(b) shows the performance of query work-
loads over one day on the Presto cluster, showing the realistic
cache hit ratio (CHR) performance of the cache system and
the item repetition ratio (IRR) estimated by Cuki. It can be
seen that IRR is much higher than the CHR of cache between
the 16th hour to the 19th hour. We can find that there is an
opportunity to increase the cache capacity based on the esti-
mated WSS during that period to improve the cache hit ratio.

Another interesting discovery during our deployment is
that the WSS of each Presto worker is quite unbalanced. This
is because that the data hotness of each table or partition is
different in real-world scenarios. The extent of the imbalance
is related to the access patterns. Cuki is very helpful for global

cache space allocation with multiple-scope optimization.

7 Related Work

A key challenge for improving cache utilization is provi-
sioning the suitable cache size to fit dynamic workloads
online. As analyzed in § 2, we summarize the prior works
in four categories: Rule-based approaches [21, 24, 34, 42],
ML-based approaches [4, 28, 30, 33, 35], MRC-based ap-
proaches [15, 19, 22, 36, 40, 41, 45, 51, 52], and window-based
approaches [5, 11, 20].

The most recent works related to ours are ClockSketch [11],
RAR-CM [51], and MBF [3]. ClockSketch [11] maintains
a clock value for each item to support the sliding window
mechanism. However, ClockSketch uses the bitmap [44] or
the Bloom filter [8] to estimate cardinality. It brings WSS
estimation error as not being aware of items’ various sizes
but using maximum likelihood estimation with inferior ARE.
RAR-CM [51] uses a hashmap to record item access informa-
tion and estimate the item repetition ratio. However, RAR-CM
is designed for fixed-size item tracking and might be inaccu-
rate for variable-size item tracking. Moreover, RAR-CM has
non-negligible memory consumption when handling a large
number of unique items. MBF [1, 25] uses a series of Bloom
filters to record different statistics in segments of the sliding
window. However, the switching of Bloom filters makes the
estimation result accuracy unstable.

8 Conclusion and Future Work

In this paper, we propose Cuki, an approximate data structure
for estimating the online WSS and IRR for variable-size item
access with proven accuracy guarantee. Cuki can also be
extended to solve the multi-scope WSS tracking problem.
Experimental results show that Cuki outperforms the cutting-
edge algorithms by 10× in accuracy. Moreover, the proposed
adaptive cache capacity tuning method based on Cuki can
significantly improve the cache performance online.

In the future, we plan to explore more application scenarios
of Cuki in the cloud-native data processing environment.

Acknowledgements

We thank reviewers and shepherd for their valuable comments
and help. This work is funded in part by the National Natu-
ral Science Foundation of China (No.62072230, 62272223),
Jiangsu Province Science and Technology Key Program
(No.BE2021729), the Postgraduate Research & Practice In-
novation Program of Jiangsu Province (No.KYCX22_0152),
the Fundamental Research Funds for the Central Universities
(No.020214380089, 020214380098, 020214912216), and the
Collaborative Innovation Center of Novel Software Technol-
ogy and Industrialization. Bin Fan, Haipeng Dai, Rong Gu,
and Guihai Chen are the corresponding authors of this paper.

478 2023 USENIX Annual Technical Conference USENIX Association

References

[1] Alluxio. https://www.alluxio.io/, 2016.

[2] Guava: Google Core Libraries for Java. https://
github.com/google/guava, 2020.

[3] The Implementation of Multiple Bloom
Filter. https://github.com/Alluxio/
alluxio/blob/v2.7.0/core/client/fs/src/
main/java/alluxio/client/file/cache/
CacheManagerWithShadowCache.java, 2021.

[4] Omid Alipourfard, Hongqiang Harry Liu, Jianshu Chen,
Shivaram Venkataraman, Minlan Yu, and Ming Zhang.
CherryPick: Adaptively Unearthing the Best Cloud Con-
figurations for Big Data Analytics. In 14th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI’17), pages 469–482, 2017.

[5] Eran Assaf, Ran Ben Basat, Gil Einziger, and Roy Fried-
man. Pay for a Sliding Bloom Filter and Get Counting,
Distinct Elements, and Entropy for Free. In 37th IEEE
International Conference on Computer Communications
(INFOCOM’18), pages 2204–2212. IEEE, 2018.

[6] Ran Ben Basat, Michael Mitzenmacher, and Shay Var-
gaftik. How to Send a Real Number Using a Single
Bit (And Some Shared Randomness). In 48th Interna-
tional Colloquium on Automata, Languages, and Pro-
gramming, (ICALP’21), pages 439–458, 2021.

[7] Ran Ben-Basat, Gil Einziger, and Roy Friedman. Give
me some slack: Efficient network measurements. In 43rd
International Symposium on Mathematical Foundations
of Computer Science, (MFCS’18), pages 543–559, 2018.

[8] Burton H Bloom. Space/Time Trade-Offs in Hash Cod-
ing with Allowable Errors. Communications of the ACM,
13(7):422–426, 1970.

[9] Paris Carbone, Stephan Ewen, Gyula Fóra, Seif Haridi,
Stefan Richter, and Kostas Tzoumas. State Manage-
ment in Apache Flink®: Consistent Stateful Distributed
Stream Processing. Proceedings of the VLDB Endow-
ment (VLDB’17), 10(12):1718–1729, 2017.

[10] Hanhua Chen, Liangyi Liao, Hai Jin, and Jie Wu. The
Dynamic Cuckoo Filter. In 25th IEEE International
Conference on Network Protocols (ICNP’17), pages 1–
10, 2017.

[11] Peiqing Chen, Dong Chen, Lingxiao Zheng, Jizhou Li,
and Tong Yang. Out of Many We are One: Measuring
Item Batch with Clock-Sketch. In 48th ACM Conference
on Management of Data (SIGMOD’21), pages 261–273,
2021.

[12] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking Cloud
Serving Systems with YCSB. In 1st ACM symposium
on Cloud computing (SoCC’10), pages 143–154, 2010.

[13] Fernando J Corbato. A paging experiment with the
multics system. Technical report, MASSACHUSETTS
INST OF TECH CAMBRIDGE PROJECT MAC, 1968.

[14] L De La Peña-Auerbach. A simple derivation of the
schroedinger equation from the theory of markoff pro-
cesses. Physics Letters A, 24(11):603–604, 1967.

[15] Chen Ding and Yutao Zhong. Predicting whole-program
locality through reuse distance analysis. In 24th ACM
conference on Programming language design and im-
plementation (PLDI’03), pages 245–257, 2003.

[16] Gil Einziger and Roy Friedman. Counting with
Tinytable: Every Bit Counts! In 17th International
Conference on Distributed Computing and Networking
(ICDCN’16), pages 1–10, 2016.

[17] Bin Fan, Dave G Andersen, Michael Kaminsky, and
Michael D Mitzenmacher. Cuckoo Filter: Practically
Better than Bloom. In 10th ACM Conference on
Emerging Networking Experiments and Technologies
(CoNext’14), pages 75–88, 2014.

[18] Bin Fan, David G Andersen, and Michael Kaminsky.
Memc3: Compact and Concurrent Memcache with
Dumber Caching and Smarter Hashing. In 10th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI’13), pages 371–384, 2013.

[19] Alexander Fuerst and Prateek Sharma. FaasCache: keep-
ing serverless computing alive with greedy-dual caching.
In 26th ACM International Conference on Architectural
Support for Programming Languages and Operating
Systems, Virtual Event (ASPLOS’21), pages 386–400,
2021.

[20] Xiangyang Gou, Long He, Yinda Zhang, Ke Wang, Xilai
Liu, Tong Yang, Yi Wang, and Bin Cui. Sliding Sketches:
a Framework Using Time Zones for Data Stream Pro-
cessing in Sliding Windows. In 26th ACM Conference
on Knowledge Discovery and Data Mining (KDD’20),
pages 1015–1025, 2020.

[21] Rong Gu, Kai Zhang, Zhihao Xu, Yang Che, Bin Fan,
Haojun Hou, Haipeng Dai, Li Yi, Yu Ding, Guihai Chen,
and Yihua Huang. Fluid: Dataset Abstraction and Elastic
Acceleration for Cloud-native Deep Learning Training
Jobs. In 38th IEEE International Conference on Data
Engineering (ICDE’22), pages 2182–2195, 2022.

USENIX Association 2023 USENIX Annual Technical Conference 479

https://www.alluxio.io/
https://github.com/google/guava
https://github.com/google/guava
https://github.com/Alluxio/alluxio/blob/v2.7.0/core/client/fs/src/main/java/alluxio/client/file/cache/CacheManagerWithShadowCache.java
https://github.com/Alluxio/alluxio/blob/v2.7.0/core/client/fs/src/main/java/alluxio/client/file/cache/CacheManagerWithShadowCache.java
https://github.com/Alluxio/alluxio/blob/v2.7.0/core/client/fs/src/main/java/alluxio/client/file/cache/CacheManagerWithShadowCache.java
https://github.com/Alluxio/alluxio/blob/v2.7.0/core/client/fs/src/main/java/alluxio/client/file/cache/CacheManagerWithShadowCache.java

[22] Xiameng Hu, Xiaolin Wang, Lan Zhou, Yingwei Luo,
Chen Ding, and Zhenlin Wang. Kinetic Modeling of
Data Eviction in Cache. In 27th USENIX Annual Tech-
nical Conference (USENIX ATC’16), pages 351–364,
2016.

[23] Faria Kalim, Le Xu, Sharanya Bathey, Richa Meherwal,
and Indranil Gupta. Henge: Intent-Driven Multi-Tenant
Stream Processing. In 9th ACM Symposium on Cloud
Computing (SoCC’18), pages 249–262, 2018.

[24] Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh
Trivedi, Jonas Pfefferle, and Christos Kozyrakis. Pocket:
Elastic Ephemeral Storage for Serverless Analytics. In
13th USENIX Symposium on Operating Systems Design
and Implementation (OSDI’18), pages 427–444, 2018.

[25] Haoyuan Li, Ali Ghodsi, Matei Zaharia, Scott Shenker,
and Ion Stoica. Tachyon: Reliable, memory speed stor-
age for cluster computing frameworks. In 5th ACM
Symposium on Cloud Computing (SoCC’14), page 1–15,
2014.

[26] Xiaozhou Li, David G Andersen, Michael Kaminsky,
and Michael J Freedman. Algorithmic Improvements
for Fast Concurrent Cuckoo Hashing. In 9th European
Conference on Computer Systems (EuroSys’14), pages
1–14, 2014.

[27] Lailong Luo, Deke Guo, Ori Rottenstreich, Richard T. B.
Ma, Xueshan Luo, and Bangbang Ren. The Consistent
Cuckoo Filter. In 38th IEEE International Conference
on Computer Communications (INFOCOM’19), pages
712–720, 2019.

[28] Ashraf Mahgoub, Alexander Michaelson Medoff,
Rakesh Kumar, Subrata Mitra, Ana Klimovic, Somali
Chaterji, and Saurabh Bagchi. OPTIMUSCLOUD: Het-
erogeneous configuration optimization for distributed
databases in the cloud. In 31st USENIX Annual Tech-
nical Conference (USENIX ATC’20), pages 189–203,
2020.

[29] Richard L. Mattson, Jan Gecsei, Donald R. Slutz, and
Irving L. Traiger. Evaluation Techniques for Storage
Hierarchies. IBM Systems journal, 9(2):78–117, 1970.

[30] Djob Mvondo, Mathieu Bacou, Kevin Nguetchouang,
Lucien Ngale, Stéphane Pouget, Josiane Kouam, Renaud
Lachaize, Jinho Hwang, Tim Wood, Daniel Hagimont,
Noël De Palma, Bernabé Batchakui, and Alain Tchana.
OFC: An Opportunistic Caching System for FaaS Plat-
forms. In 16th European Conference on Computer Sys-
tems (EuroSys’21), page 228–244, 2021.

[31] Dushyanth Narayanan, Austin Donnelly, and Antony
Rowstron. Write Off-Loading: Practical Power Man-
agement for Enterprise Storage. ACM Transactions on
Storage (TOS’08), 4(3):1–23, 2008.

[32] David MW Powers. Applications and explanations of
zipf’s law. In New methods in language processing and
computational natural language learning, 1998.

[33] Gourav Rattihalli, Madhusudhan Govindaraju, Hui Lu,
and Devesh Tiwari. Exploring potential for non-
disruptive vertical auto scaling and resource estimation
in kubernetes. In 12nd International Conference on
Cloud Computing (CLOUD’19), pages 33–40, 2019.

[34] Francisco Romero, Gohar Irfan Chaudhry, Íñigo Goiri,
Pragna Gopa, Paul Batum, Neeraja J Yadwadkar, Ro-
drigo Fonseca, Christos Kozyrakis, and Ricardo Bian-
chini. Faa$T: A transparent auto-scaling cache for
serverless applications. In 12nd ACM Symposium on
Cloud Computing (SoCC’21), pages 122–137, 2021.

[35] Krzysztof Rzadca, Pawel Findeisen, Jacek Swiderski,
Przemyslaw Zych, Przemyslaw Broniek, Jarek Kus-
mierek, Pawel Nowak, Beata Strack, Piotr Witusowski,
Steven Hand, and John Wilkes. Autopilot: Workload
Autoscaling at Google. In 15th European Conference
on Computer Systems (EuroSys’20), pages 1–16, 2020.

[36] Trausti Saemundsson, Hjortur Bjornsson, Gregory
Chockler, and Ymir Vigfusson. Dynamic Performance
Profiling of Cloud Caches. In 5th ACM Symposium on
Cloud Computing (SoCC’14), pages 1–14, 2014.

[37] Raghav Sethi, Martin Traverso, Dain Sundstrom, David
Phillips, Wenlei Xie, Yutian Sun, Nezih Yegitbasi,
Haozhun Jin, Eric Hwang, Nileema Shingte, and Christo-
pher Berner. Presto: SQL on Everything. In 35th
IEEE International Conference on Data Engineering
(ICDE’19), pages 1802–1813. IEEE, 2019.

[38] TPC-DS Benchmark. http://www.tpc.org/tpcds/,
2006.

[39] Vojislav Ðukić, Sangeetha Abdu Jyothi, Bojan Karlaš,
Muhsen Owaida, Ce Zhang, and Ankit Singla. Is Ad-
vance Knowledge of Flow Sizes a Plausible Assump-
tion? In 16th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI’19), pages 565–
580, 2019.

[40] Carl Waldspurger, Trausti Saemundsson, Irfan Ahmad,
and Nohhyun Park. Cache modeling and Optimization
using Miniature Simulations. In 28th USENIX Annual
Technical Conference (USENIX ATC’17), pages 487–
498, 2017.

480 2023 USENIX Annual Technical Conference USENIX Association

http://www.tpc.org/tpcds/

[41] Carl A Waldspurger, Nohhyun Park, Alexander Garth-
waite, and Irfan Ahmad. Efficient MRC Construction
with SHARDS. In 13rd USENIX Conference on File and
Storage Technologies (FAST’15), pages 95–110, 2015.

[42] Ao Wang, Jingyuan Zhang, Xiaolong Ma, Ali Anwar,
Lukas Rupprecht, Dimitrios Skourtis, Vasily Tarasov,
Feng Yan, and Yue Cheng. InfiniCache: Exploit-
ing Ephemeral Serverless Functions to Build a Cost-
Effective Memory Cache. In 18th USENIX Conference
on File and Storage Technologies (FAST’20), pages 267–
281, 2020.

[43] Hancheng Wang, Haipeng Dai, Meng Li, Jun Yu, Rong
Gu, Jiaqi Zheng, and Guihai Chen. Bamboo Filters:
Make Resizing Smooth. In 38th IEEE International
Conference on Data Engineering (ICDE’22), pages 979–
991, 2022.

[44] Kyu-Young Whang, Brad T Vander-Zanden, and
Howard M Taylor. A Linear-Time Probabilistic Count-
ing Algorithm for Database Applications. ACM Transac-
tions on Database Systems (TODS’90), 15(2):208–229,
1990.

[45] Jake Wires, Stephen Ingram, Zachary Drudi,
Nicholas JA Harvey, and Andrew Warfield. Characteriz-
ing Storage Workloads with Counter Stacks. In 11th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI’14), pages 335–349, 2014.

[46] Le Xu, Shivaram Venkataraman, Indranil Gupta, Luo
Mai, and Rahul Potharaju. Move Fast and Meet Dead-
lines: Fine-Grained Real-Time Stream Processing with
Cameo. In 18th USENIX Symposium on Networked
Systems Design and Implementation (NSDI’21), pages
389–405, 2021.

[47] Yahoo! Cloud Serving Benchmark (YCSB). https:
//github.com/brianfrankcooper/YCSB, 2020.

[48] Juncheng Yang, Yao Yue, and KV Rashmi. A large Scale
Analysis of Hundreds of In-Memory Cache Clusters at
Twitter. In 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI’20), pages
191–208, 2020.

[49] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das,
Ankur Dave, Justin Ma, Murphy McCauly, Michael J.
Franklin, Scott Shenker, and Ion Stoica. Resilient Dis-
tributed Datasets: A Fault-Tolerant Abstraction for In-
Memory Cluster Computing. In 9th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI’12), San Jose, CA, USA, April 25-27, 2012, pages
15–28, 2012.

[50] Fan Zhang, Hanhua Chen, Hai Jin, and Pedro Reviriego.
The Logarithmic Dynamic Cuckoo Filter. In 37th
IEEE International Conference on Data Engineering
(ICDE’21), pages 948–959, 2021.

[51] Yu Zhang, Ping Huang, Ke Zhou, Hua Wang, Jianying
Hu, Yongguang Ji, and Bin Cheng. OSCA: An Online-
Model based cache allocation scheme in cloud block
storage systems. In 31st USENIX Annual Technical
Conference (USENIX ATC’20), pages 785–798, 2020.

[52] Weiming Zhao, Xinxin Jin, Zhenlin Wang, Xiaolin
Wang, Yingwei Luo, and Xiaoming Li. Low Cost Work-
ing Set Size Tracking. In 22nd USENIX Annual Tech-
nical Conference (USENIX ATC’11), pages 223–229,
2011.

[53] Yang Zhou, Tong Yang, Jie Jiang, Bin Cui, Minlan Yu,
Xiaoming Li, and Steve Uhlig. A Community Cache
with Complete Information. In 19th USENIX Confer-
ence on File and Storage Technologies (FAST’21), pages
323–340, 2021.

USENIX Association 2023 USENIX Annual Technical Conference 481

https://github.com/brianfrankcooper/YCSB
https://github.com/brianfrankcooper/YCSB

Technical Appendix

A Artifact Appendix

Abstract

Cuki is implemented on Alluxio. It also relies on Presto, Hive,
and HDFS to function properly. We prepare the programs,
assemble a workflow of Cuki and package the artifact into the
Git repository.

Scope

The artifact estimates the WSS of different traces. It verifies
the basic function of Cuki and validates the accuracy improve-
ment brought by item-wise fine-grained tracking. In addition,
this artifact also validates the MRC generation accuracy of
Cuki is higher than the SOTA algorithm.

Contents

The artifact includes the source code of Cuki and experiments
scripts. A "README.md" file can be also found in the artifact.
It contains detailed description of the artifact and a step-by-
step instruction for evaluation.

Hosting

The artifact is available at GitHub1. All branches are needed to
be cloned or downloaded for evaluation. The commit version
is the latest one.

Requirements

The environment of the artifact includes Hive 3.1.3, Maven
3.5.4, Hadoop 3.3.1, Java 8, Prometheus 2.37.0, Mysql 8.0.3,
and S3.

B Theoretical Proof of Cuki

We first analyze the false positive rate of Cuki. Then, we the-
oretically demonstrate that Cuki outperforms the competitive
state-of-the-art algorithms in space usage under the same false
positive rate. We summarize the notations in Table 1.

Theorem B.1. For Cuki with f -bits fingerprint and s-bits
clock, the false positive rate is given by

ε = 1−
(
1−

1
2 f

)2b· 2s
2s−1 ·

D
n·b

≈
2s

2s−1
·

2D
n ·2 f , (5)

1Our artifact: https://github.com/shadowcache/Cuki-
Artifact-WSS-Estimation.

Table 1: Notations
Notations Definition

f Bits length of the fingerprint
s Bits length of the clock
ε False positive rate
b Number of entries in a bucket
D Number of distinct items in a sliding window
n Number of buckets in a Cuki
α Load factor of a Cuki
N Number of items in a Cuki
T Size of a sliding window

where b represents the number of entries in each bucket,D
represents the number of distinct items in each sliding window,
and n represents the number of buckets in Cuki.

Proof: The false positive rate of Cuki comes from two aspects:
(i) Cuki stores fingerprints instead of original item keys. (ii)
The outdated items in Cuki might not be cleaned up timely.
For Cuki with n buckets, we define the load factor as

α =
N

n ·b
, (6)

where N represents the number of fingerprints stored in Cuki,
and b represents the number of entries in each bucket.

When querying an element that does not exist in Cuki,
2 ·b ·α fingerprints need to be checked. For Cuki with f -bits
per fingerprint, each check may match a wrong fingerprint and
return a false positive with a probability of 1/2 f . Therefore,
the false positive rate caused by storing fingerprints is

ε = 1− (1−1/2 f)2bα. (7)

For any item in Cuki, it will be cleaned up after performing
2s rounds of the aging operation. For a sliding window of size
T , to prevent an item from being mistakenly deleted before
its time window ends, the frequency of the aging operation is
T

2s−1 . Thus, for an item in the data stream, the time interval
between insertion and clean-up is 2s

2s−1T . In other words,
Cuki actually stores all the items inserted within the time
interval 2s

2s−1T , which is 2s

2s−1 times of the sliding window
size. Suppose the number of distinct items within each sliding
window isD, the number of items stored in Cuki is given by

N =
2s

2s−1
D. (8)

Combining Equations (6), (7), and (8), we have

ε = 1−
(
1−

1
2 f

)2b· 2s
2s−1 ·

D
nb

≈
2s

2s−1
·

2D
n ·2 f . □

Experimental verification: We conduct experiments to vali-
date Theorem B.1. We vary f from 4 to 11, and set s as 12 -
f . Other parameters follow the settings in § 6. As shown in
Figure 14, the experimental results show that the theoretical
false positive rate well matches the experimental results.

482 2023 USENIX Annual Technical Conference USENIX Association

https://github.com/shadowcache/Cuki-Artifact-WSS-Estimation.
https://github.com/shadowcache/Cuki-Artifact-WSS-Estimation.

4 5 6 7 8 9 10 11
Fingerprint bits length

0.0

0.1

0.2

Fa
ls

e
po

si
tiv

e
ra

te

Empirical value
Theoretical value

Figure 14: Verification of Theorem B.1.

Corollary B.1.1. For a fixed memory consumption M, when
s = 1, the minimum false positive rate is given by

8D
n ·2M/n·b

,

where M = n ·b(f + s) represents the memory consumption of
fingerprints and clocks in Cuki, n represents the number of
buckets in Cuki, b represents the number of entries in each
bucket, f represents the bits length of the fingerprint, s repre-
sents the bits length of the clock, andD represents the number
of distinct items in each sliding window.

Proof: As per Theorem B.1, the false positive rate is mainly
affected by f and s. Thus we only analyze the memory con-
sumption of fingerprints and clocks. Plug f = M

nb − s into
Equation (5), and we get

ε(s) =
2D

n ·2M/nb ·
4s

2s−1
,

where s = 1,2, . . . , M
nb − 1. Obviously, the false positive rate

increases as s increases, and ε(s) is the minimum when s = 1.
This completes the proof. □

Corollary B.1.2. For the same false positive rate ε, Cuki
requires less space than ClockSketch [11] and SWAMP [5].

Proof: According to Corollary B.1.1, let T = n ·b, n > 8, the
memory consumption of Cuki can be computed as

M(ε) = T log2
8D
nε
< T log2

D

ε
≤ T log2

T

ε
. (9)

According to [11], by ignoring the memory consumption
caused by storing the size field and the payload field, the
memory consumption of SWAMP is

M1(ε) > T log2
T

ε
. (10)

Therefore, to achieve the same false positive rate ε, the mem-
ory consumption of Cuki is always lower than that of SWAMP.

As per [11], the memory consumption of ClockSketch is

M2(ε) ≈
8

3ln2
T log2

1
ε
≈ 3.8472T log2

1
ε
. (11)

Let T = 2D, the memory consumption of Cuki is given as

M(ε) = 4T +T log2
1
ε
. (12)

When ε < 37.76%, which is often satisfied in real-world ap-
plications [17], M(ε) < M2(ε). This completes the proof. □

C Evaluation

C.1 Motivated Example of Opportunistic Ag-
ing: Estimation Fluctuation

4 5 6 7 8
Time (×106)

0.00

0.02

0.04

R
el

at
iv

e
Er

ro
r

Figure 15: An example of estimation result fluctuating on the
YCSB dataset (The size of a count-based sliding window is
65,536, and the clock bits is set to 4).

A large number of items will be cleared at the same time
in the background aging process. As shown in Figure 15,
the working set size is overestimated before aging. After the
execution of aging, a tremendous amount of items are instantly
cleared. Therefore the estimation result are fluctuating, and
may affect the error of the estimated WSS. We propose an
optimization method named opportunistic aging to alleviate
this problem in aging operation.

C.2 Accuracy Evaluation of Cuki
In this experiment, we evaluate the accuracy of different WSS
estimation methods. This experiment observes an additional
metric WER on three traces (including the YCSB trace not
shown in § 6.3), which can be seen as a supplement to § 6.3.

Cuki (ours) Cuki-OA (ours) MBF ClockSketch SlidingSketch SWAMP

40 48 56 64 72 80 88 96 192
Memory (KB)

10−2

10−1

W
ER

(a) WER on MSR trace

160 192 224 256 288 320 352 384 768
Memory (KB)

10−2

10−1

W
ER

(b) WER on Twitter trace

320 384 448 512 576 640 704 7681563
Memory (KB)

10−2

10−1

W
ER

(c) WER on YCSB trace

320 384 448 512 576 640 704 7681563
Memory (KB)

10−2

10−1

100

A
R

E

(d) ARE on YCSB trace

Figure 16: Performance comparison of accuracy.

Figure 16 shows the ARE and WER of different methods
measured in the same run on three traces. The ARE or WER
of All methods is high without sufficient memory. The ARE
or WER of Cuki decreases to 1% and lower as the memory
space gradually becomes larger. However, even with sufficient
memory, the ARE or WER of other methods can hardly further
decrease. Take the ClockSketch as an example, The WER of

USENIX Association 2023 USENIX Annual Technical Conference 483

ClockSketch is decreased from 12.52% to 5.13% on MSR
trace as the memory increases to 1563KB. In contrast, Cuki
decreases the WER from 1.14% to 0.24% as the memory
increases to 768KB. This is due to the fine-grained per-item
tracking method in Cuki. Although the WER of MBF is close
to Cuki on the Twitter trace, Cuki performs much better in
other traces. This is because MBF switches a Bloom filter out
periodically and causes errors for the estimated result.

To conclude, similar to the experiment results in § 6.3,
Cuki and Cuki-OA still achieve the best accuracy with the
same memory consumption regarding the WER metric and
YCSB trace.

C.3 Stability Evaluation of Cuki

Cuki (ours) Cuki-OA (ours) MBF ClockSketch SlidingSketch

0 1000 2000 3000
Time (s)

−0.5

0.0

R
E

0 1000 2000 3000
Time (s)

−0.5

0.0

R
E

0 1000 2000 3000
Time (s)

−0.5

0.0

R
E

0 1000 2000 3000
Time (s)

−0.5

0.0

R
E

0 1000 2000 3000
Time (s)

−1.0
−0.5

0.0

R
E

Figure 17: Performance comparison of stability in Twitter
trace (time-based)

Cuki (ours) Cuki-OA (ours) MBF ClockSketch SlidingSketch SWAMP

0 2 4 6 8 10 12
Time (×106)

−1
0
1

R
E

0 2 4 6 8 10 12
Time (×106)

−1
0
1

R
E

0 2 4 6 8 10 12
Time (×106)

−1
0
1

R
E

0 2 4 6 8 10 12
Time (×106)

−1
0
1

R
E

0 2 4 6 8 10 12
Time (×106)

−1
0
1

R
E

0 2 4 6 8 10 12
Time (×106)

−1
0
1

R
E

(a) MSR trace

0 2 4 6 8 10
Time (×106)

−1

0

R
E

0 2 4 6 8 10
Time (×106)

−1

0

R
E

0 2 4 6 8 10
Time (×106)

−1

0

R
E

0 2 4 6 8 10
Time (×106)

−1

0

R
E

0 2 4 6 8 10
Time (×106)

−1

0

R
E

0 2 4 6 8 10
Time (×106)

−1

0

R
E

(b) Twitter trace

0 2 4 6 8 10
Time (×106)

−1

0

R
E

0 2 4 6 8 10
Time (×106)

−1

0

R
E

0 2 4 6 8 10
Time (×106)

−1

0

R
E

0 2 4 6 8 10
Time (×106)

−1

0

R
E

0 2 4 6 8 10
Time (×106)

−1

0

R
E

0 2 4 6 8 10
Time (×106)

−1

0

R
E

(c) YCSB trace

Figure 18: Performance comparison of stability (count-based)

In this experiment, we evaluate the stability of different
methods under the time-based sliding window and the count-

based sliding window. For the count-based sliding window,
We use the default configuration described in § 6.1. For
the time-based sliding window on Twitter trace, we allocate
1408KB memory for Cuki and double memory for other meth-
ods to meet their memory requirements. We replay the Twitter
trace with 24× speedup according to the data request traffic.
Figures 17 and 18 illustrate the stability performance of dif-
ferent methods over the time-based sliding window and the
count-based sliding window, respectively. The estimation re-
sults of a count-based sliding window are more stable than
that of a time-based sliding window. This is because the num-
ber of items in a count-based window is fixed. However, there
are still some jagged fluctuations in all methods. The rea-
sons for these fluctuations are the same as we show in § 6.4.
Benefiting from the per-item size tracking, the RE of Cuki
and Cuki-OA is the most stable of the other four methods.
Cuki-OA has a more stable estimation result than Cuki be-
cause of the opportunistic aging. To sum up, we conclude that
Cuki and Cuki-OA also achieve the most stable and accurate
estimates on a count-based window.

484 2023 USENIX Annual Technical Conference USENIX Association

	Introduction
	Background
	Design of Cuki
	Data Structure
	Operations in Cuki

	Concurrency Control in Cuki
	Segmented Lock and Concurrent Insertion
	Opportunistic Aging

	Cache Capacity Online Tuning Using Cuki
	Data Access Application Acceleration
	Adaptive Cache Capacity Tuning Framework
	Table Querying Acceleration Framework
	File Reading Acceleration Framework

	Miss Ratio Curves Generation Using Cuki

	Evaluation
	Experimental Setup
	Effect of WSS Estimation Parameters
	Accuracy of WSS Estimation
	Stability Performance of WSS Estimation
	Scalability of WSS Estimation
	Cache Tuning Performance with Cuki
	Accuracy of Miss Ratio Curves Generation
	Real-world Practice

	Related Work
	Conclusion and Future Work
	Artifact Appendix
	Theoretical Proof of Cuki
	Evaluation
	Motivated Example of Opportunistic Aging: Estimation Fluctuation
	Accuracy Evaluation of Cuki
	Stability Evaluation of Cuki

