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Energy saving is a crucial mission for data center providers.
Among many services, DNN training and inference are signif-
icant contributors to energy consumption. This work focuses
on saving energy in multi-GPU DNN training. Typically, en-
ergy savings come at the cost of some degree of performance
degradation. However, determining the acceptable level of
performance degradation for a long-running training job can
be difficult.

This work proposes ENVPIPE, an energy-saving DNN train-
ing framework. ENVPIPE aims to maximize energy saving
while maintaining negligible performance slowdown. EN-
VPIPE takes advantage of slack time created by bubbles in
pipeline parallelism. It schedules pipeline units to place bub-
bles after pipeline units as frequently as possible and then
stretches the execution time of pipeline units by lowering the
SM frequency. During this process, ENVPIPE does not mod-
ify hyperparameters or pipeline dependencies, preserving the
original accuracy of the training task. It selectively lowers the
SM frequency of pipeline units to avoid performance degra-
dation. We implement ENVPIPE as a library using PyTorch
and demonstrate that it can save up to 25.2% energy in single-
node training with 4 GPUs and 28.4% in multi-node training
with 16 GPUs, while keeping performance degradation to less
than 1%.

1 Introduction

Reducing carbon footprint is a worldwide mission. Ex-
perts estimate data centers take up 3% of the global carbon
emission, which is roughly equal to the worldwide airline in-
dustry [2]. To mitigate carbon emissions, data center providers
should actively explore energy-saving strategies for their op-
erations. One significant area to address is the energy con-
sumption associated with machine learning (ML) workloads,
which constitutes a significant portion of overall energy usage.
According to recent work, Google constantly spends 15%
of its total energy running ML workloads for the past three
years [22]. This study primarily focuses on energy saving in
the context of multi-GPU deep neural network (DNN) train-
ing, which is a prevalent method employed in modern ML
workloads.

There have been several approaches to save energy of GPU
workloads. Common methods use GPU Dynamic Voltage
and Frequency Scaling (DVFS), which seeks to identify the
optimal frequency for the Streaming Multiprocessor (SM)
clock or memory clock by balancing the tradeoff between
performance and energy consumption [3, 7, 9, 12, 17, 27–29].

Recently, Zeus [29], considers the batch size and power limit
to navigate the tradeoff between performance and energy con-
sumption. It automatically finds the optimal configuration
in recurring DNN training jobs based on the user-provided
energy-efficiency importance. Although effective, these ap-
proaches leave several limitations.

First, they may have side effects by modifying user-
provided hyperparameters. For example, Zeus adjusts the
batch size of a training job which can potentially compro-
mise statistical efficiency, even with optimally-tuned learning
rates [24]. This issue becomes particularly challenging in
non-recurring DNN training jobs where finding the batch size
and learning rate pairs that maintain statistical efficiency is
difficult. Second, it is difficult to determine how much perfor-
mance degradation is acceptable at the cost of saving energy.
Typically, the completion time of a training job varies and
is unpredictable. Therefore, ML practitioners may not know
how much delay they can accept. Furthermore, in a long-
running training task, even a small performance degradation
implies a significant delay. For instance, 10% degradation of
a month-running task translates to three days. Third, these
approaches primarily focus on individual GPU training jobs
and do not adequately address the energy consumption associ-
ated with large-model training. Large model training utilizes
multiple GPUs across multiple nodes with various parallelism
techniques.

This work proposes ENVPIPE1, a new energy-saving DNN
training framework. ENVPIPE focuses on large model train-
ing using multiple GPUs with pipeline parallelism. ENVPIPE
addresses the limitation of previous approaches with the de-
sign goals: No accuracy and performance degradation. With
the goals, users can run any DNN training jobs as if they run
them without ENVPIPE while saving energy under the hood.
To preserve the original accuracy, ENVPIPE does not modify
any user-provided hyperparameters such as batch size and
does not change data dependency while executing pipeline
units. ENVPIPE leverages the side-effect-free control knob
only, SM frequency, to save energy. To avoid performance
degradation, ENVPIPE utilizes pipeline bubbles inevitably oc-
curring when training large models with pipeline parallelism.
ENVPIPE selectively lowers SM frequency to reduce the en-
ergy consumption of pipeline units. This control stretches the
execution time of pipeline units, but ENVPIPE confines the
degree of each stretch up to the available slack time of the
bubbles, avoiding end-to-end performance degradation.

1Envelope + Pipeline Parallelism.
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This design idea is generally applicable to any DNN train-
ing job where layer-wise partitioning is feasible, enabling
training with pipeline parallelism across a large number of
GPUs. However, realizing the design idea is challenging due
to the following problems. i) To decide the value of SM fre-
quency, ENVPIPE needs to know the trend of clock speed
and training performance. The trend varies according to GPU
hardware, batch size, and the number of layers in a pipeline
stage. Offline profiling to obtain this information is impracti-
cal. Instead, ENVPIPE performs online profiling by sweeping
SM frequencies to obtain the energy-saving curve under the
given hyperparameters and GPU hardware. ii) How to sched-
ule pipeline units decides the amount of bubbles that can be
exploited. It is essential to ensure that a bubble exists after
a pipeline unit of which execution time is stretched while
ensuring that the next unit, which has data dependency, is
sufficiently distant to avoid overall performance degradation.

ENVPIPE is implemented as a library using the existing
ML framework. The ENVPIPE policy and mechanism are
clearly separated, so developers can easily add required APIs
to support a new ML framework. The current prototype of
ENVPIPE is implemented on the DeepSpeed [25] library and
uses the existing GPU device driver to control SM frequency.
We evaluate ENVPIPE in real-world workloads: BERT, GPT,
Megatron, and ResNet, and demonstrate the performance and
energy saving on two GPU hardware: V100 and RTX3090.
We perform evaluations of the workload in a single node (4
GPUs) and in multiple nodes (16 GPUs) and show that EN-
VPIPE saves energy up to 25.2% and 28.4% in single-node and
multi-node setups respectively while keeping performance
degradation to less than 1%.

This paper makes the following contributions:
• We present the design of ENVPIPE, a performance-

preserving energy-saving DNN training framework that
supports distributed training across multiple GPUs.

• ENVPIPE preserves the original statistical efficiency by not
modifying any user-provided hyperparameters and controls
only the side-effect-free control knob.

• We demonstrate ENVPIPE saves up to 25.2% and 28.4%
energy saving in single- and multi-node GPU servers with
less than 1% performance degradation.

The source code of ENVPIPE is available on https://
github.com/casys-kaist/EnvPipe.

2 Background

2.1 Large Model Training with Parallelism
Recent advancements in language models have focused on

increasing the number of parameters, achieving impressive
results on various challenging tasks such as language under-
standing, generation, and reasoning. Google’s Pathways Lan-
guage Model (PaLM), a 540 billion parameter model stacked
up with numerous transformer decoder layers, has shown
breakthrough results outperforming finetuned state-of-the-

art models on various natural language tasks [8]. However,
scaling up the model size comes with a cost of increased
memory footprint, making it challenging to fit on a single
GPU memory, even with the latest GPU like the NVIDIA
H100 with 80GB. To efficiently train extremely large mod-
els, there have been several efforts to combine various par-
allelism techniques such as data, tensor, and pipeline paral-
lelism [1, 11, 15, 16, 18–20, 30]

In this study, we focus on the pipeline parallelism [11, 15,
16, 18–20] which is a commonly used technique in training
large DNNs whose models cannot fit on a single GPU. With
pipeline parallelism, a model is vertically partitioned as evenly
as possible to each worker (e.g., GPU) as pipeline stages. For
transformer-based models such as GPT, each pipeline stage
can have the same number of transformer decoder layers,
balancing the execution time across the pipeline stages. To
increase pipeline efficiency, the input batch is partitioned
into multiple microbatches, and each worker handles the mi-
crobatches in a pipelined manner. There are two different
approaches to synchronizing model parameters: synchronous
and asynchronous. Synchronous pipeline parallelism (S-PP)
ensures strict weight update semantics by periodic pipeline
flushes. S-PP does not compromise the model’s convergence
but inevitably incurs pipeline bubbles which lower the train-
ing throughput 2. Asynchronous pipeline parallelism (A-PP)
relaxes weight update semantics and fully utilizes the pipeline
throughput in a steady state by continuously pipelining micro-
batches without any pipeline flushes. A-PP hurts the statistical
efficiency of the model and can fail to converge to the target
accuracy [5].

In this work, we target S-PP which preserves the origi-
nal statistical efficiency with strict weight update semantics.
Due to pipeline flushes after every training iteration, pipeline
bubbles are inevitable which lowers the pipeline throughput.
Previous studies [15, 16, 20] focused on reducing the bub-
bles in S-PP. Rather than perceiving bubbles as an obstacle
that slows down training, we consider pipeline bubbles as an
opportunity to save energy in large model training.

2.2 Energy Scaling Valley Trend in GPUs
As it is convenient for ML practitioners to make use of

GPUs rather than NPU-like accelerators for DNN workloads,
modern cloud and data centers are operating a huge number
of GPUs. However, when training DNN workloads, GPUs
incur a significant fraction (e.g. about 70% according to [10])
of total power consumption in the whole system including
other components such as CPU and DRAM. This high power
consumption of GPUs during DNN training underscores the
importance of optimizing their energy efficiency to reduce
the overall energy consumption of cloud and data centers.
To save energy in GPUs, previous studies [3, 7, 9, 12, 17, 27–
29] have utilized Dynamic Voltage and Frequency Scaling

2GPU remains idle in pipeline bubbles
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Figure 1: Energy scaling valley trend in modern GPUs

(DVFS) and focused on balancing performance and energy
efficiency. DVFS is a widely studied technique in traditional
CPUs to balance performance and energy consumption by
scaling voltage/frequency in CPU cores. Generally, scaling
down voltage/frequency saves energy but inevitably degrades
performance, and GPUs tend to show a more complex energy
scaling trend. Tang et al. [27] studied the energy scaling trend
of various DNN training on modern datacenter GPUs and
showed that energy saving is maximized on the middle-level
core frequency and the energy consumption curve shows a
valley trend when scaling core frequency.

We measure the training throughput and energy consump-
tion by scaling the SM frequency in three different GPUs
with various up-to-date DNN models in a single GPU training
scenario. We use NVML [21], a library provided by NVIDIA,
to adjust the SM frequency of GPUs. NVML can set the max-
imum limit of SM frequency and monitor the current energy
consumption. Figure 1 exhibits that energy consumption de-
creases when lowering the frequency, but from the middle
(e.g., 1350MHz and 1020MHz in RTX3090 and V100), this
trend changes oppositely. This is because the training time
is prolonged with lower SM frequency. Since energy con-
sumption is related to both current power usage and overall
execution time, if the end-to-end execution time increases at a
faster rate than the rate of decrease in current power usage, the
overall energy consumption increases. Thus, it is crucial to
find the optimal point of SM frequency to achieve energy sav-
ing since the frequency cannot be lowered below the optimal
point.

3 Energy-efficient DNN Training

This section describes the energy-saving problem of DNN
training and discusses key insights that motivate the design
of our system.

3.1 Objective and Constraints
DNN training is a complex and time-consuming process

that places a significant emphasis on achieving statistical effi-
ciency. Consequently, developing energy-efficient strategies
for DNN training is a challenging task that can potentially
lead to unintended side effects. In this section, we highlight
several constraints that are crucial for ensuring the robustness

of an energy-saving approach and mitigating any undesirable
side effects.
No accuracy degradation. Given that training jobs are often
already hyperparameter-searched, we do not modify any user-
provided hyperparameters to ensure that the final accuracy
after finishing the training is not compromised. Therefore, the
way to achieve energy saving in this work is in sharp contrast
to prior work that reduces energy consumption by changing
hyperparameters, which can affect the final converged accu-
racy. For example, Zeus [29] studies how different batch sizes
affect energy consumption when combined with a wide vari-
ety of GPU power scaling levels. The optimal combination
chosen in Zeus thus alters depending on hardware and energy
efficiency, which is the immediate consequence of the batch
size in use. Optimizing energy consumption in this way is
advantageous when users issue recurring DNN training jobs
or can provide a set of batch sizes and corresponding hyperpa-
rameters that promise model convergence regardless of choice.
Our target scenarios do not have that expectation from users.
So, we decide to use control knobs that preserve the training’s
original statistical efficiency, such as controlling GPU SM
frequency and dependency-aware pipeline scheduling.
No performance degradation. Given that curbing SM fre-
quency to save energy affects DNN training speed, e.g., time
taken to execute a single pipeline unit, we do not want to slow
down the end-to-end training performance in exchange for
energy savings for several reasons. First, from an ML prac-
titioner’s standpoint, it is difficult to determine how much
performance degradation is acceptable across a wide range
of training jobs. The completion time of a training job typ-
ically varies and remains unpredictable until the training is
completed. Additionally, even a minor performance degrada-
tion in a long-running training task can result in a significant
delay. For instance, a 10% slowdown in training time might
seem small, but it can translate to a three-day increase in the
duration of a month-long training job. Second, from a system
administrator’s standpoint, it is difficult to estimate an abrupt
increase in GPU requests caused by prolonged DNN training
jobs, which are already computationally expensive. Because
GPU resources are highly contended and shared, prolonged
DNN training jobs that occupy GPUs for extended periods
contribute to increased GPU contention, necessitating the al-
location of additional GPUs to alleviate resource bottlenecks.
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Figure 2: Comparison of two representative pipeline scheduling

Prior systems have centered on navigating the energy-
performance tradeoff while keeping energy and time min-
imum, i.e., Pareto optimality. Unlike these approaches, our
work primarily targets saving energy without sacrificing train-
ing time when training large models across multiple GPUs
with pipeline parallelism, one of the most commonly used
techniques in training large DNN models.

3.2 Insights

Our baseline model for distributed training, synchronous
pipeline parallelism (S-PP), inevitably incurs bubbles, as
shown in Figure 2. We selectively leverage these bubbles
only when the pipeline units preceding them do not have im-
mediate data dependencies. By reducing the SM frequency
in these units, we can extend their execution time without
necessarily delaying the start-up time of the subsequent units
that rely on their outputs. This approach enables us to achieve
energy savings while preserving performance. However, it is
important to constrain the extent of stretching in each unit
to a certain limit. This constraint ensures that no adverse
performance delays occur as a result of elongated pipeline
units.
Usable and unusable bubbles. Several S-PP designs have
been proposed to schedule pipeline units during forward-
backward computations of a single training iteration. Figure 2
shows the execution details of two representative S-PP de-
signs, GPIPE and 1F1B. The examples take four microbatches
on four GPUs. In both cases, each microbatch execution goes
through GPUs in order (GPU1→ GPU4) during the forward
pass (FP) and then in reverse order (GPU4→ GPU1) during
the backward pass (BP).

We observe that the performance-preserving energy-saving
opportunity differs significantly in these two S-PP exam-
ples. To better understand this, we classify bubbles into two
types: Unusable and Usable. A bubble is considered unus-
able when a stretched pipeline unit delays the overall training
time. In Figure 2(a), stretching the forward pipeline unit of
microbatch 4 (denoted as FP4) in GPU3 delays the start-up
time of FP4 in GPU4 because of the immediate depen-
dency caused by sending activation. This control delays the

overall execution of the total pipeline. Even though plenty
of bubbles are available after FP4 in GPU3, these bubbles
are considered unusable, and exploiting unusable bubbles to
save energy slows down training throughput, violating the
constraints defined in § 3.1.

On the contrary, a bubble is considered usable when a
stretched pipeline unit does not postpone the overall training
time. For example, in Figure 2(b), stretching the forward
pipeline unit of FP2 in GPU3 does not affect the execution of
the backward pipeline unit of microbatch 1 (denoted as BP1)
in GPU4 as these two units do not exhibit data dependency.
FP2 in GPU4 exhibits the data dependency for activation
communication, but it begins execution much later. We refer to
this type of dependency as far dependency. Consequently,
when utilizing the bubbles after FP2 in GPU3 for energy
saving, none of the pipeline units in GPU4 gets penalized.

Based on this observation, we seek to exploit as many us-
able bubbles as possible for maximizing energy saving with-
out performance degradation.

4 Design

4.1 Design Overview
This section presents the overview of our proposed system

called ENVPIPE. For a given DNN model and its hyperpa-
rameters, ENVPIPE automatically tunes the order of pipeline
units and generates an energy-saving plan controlling the SM
frequency without any manual efforts from users. First, EN-
VPIPE profiles the energy consumption of the DNN training
job for each pipeline stage to understand performance and
energy tradeoffs. Second, to increase the energy-saving oppor-
tunities, ENVPIPE reschedules the pipeline units elaborately,
increasing the amount of usable bubbles without breaking any
data dependencies between the pipeline units. Last, ENVPIPE
finds an optimal SM frequency for pipeline units on the non-
critical path to maximize energy savings without sacrificing
training throughput.

Figure 3 depicts the overview of ENVPIPE. ENVPIPE con-
sists of online profiler (§ 4.2), scheduler (§ 4.3), fre-
quency planner (§ 4.4), and execution engine. At its
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Figure 3: ENVPIPE Overview

core, ENVPIPE design clearly separates policy from mecha-
nism. ENVPIPE generates a performance-preserving energy-
saving plan by executing in the workflow of online profiler
→ scheduler→ frequency planner (policy). The execution
engine runs the energy-saving plan (mechanism).
Policy: Building the energy-saving plan. At first, ENVPIPE
runs the online profiler to construct the energy valley
curves for each pipeline stage when training the given DNN
model. Based on the online profiling result, ENVPIPE sched-
uler decides the best schedule of forward and backward
execution units, which creates plenty of usable bubbles. Us-
ing the scheduling decision, ENVPIPE runs the frequency
planner. It lowers the SM frequency of all pipeline units
inside the outermost path of the total pipeline (we call it enve-
lope) to the optimal value identified from the energy valley
curve. At this point, it is likely to degrade the training per-
formance because execution units inside the envelope are
stretched. To avoid performance degradation, ENVPIPE iden-
tifies the performance-critical path and reconfigures the SM
frequency (i.e., undo lowering SM frequency) of all units in
the performance-critical path to avoid performance slowdown.

After these steps are completed, ENVPIPE obtains the
energy-saving plan that specifies I) a schedule (placement) of
forward and backward pipeline units, and II) SM frequency
value of each pipeline unit, which achieves energy saving
without degrading performance.
Mechanism: Executing the energy-saving plan. The execu-
tion engine provides APIs for the online profiler and the
frequency planner. Internal APIs used in the ENVPIPE’s
execution engine are translated to ML platform-specific APIs
(e.g., PyTorch API calls). The engine includes HW control
APIs communicating GPU device driver to control SM fre-
quency.

ENVPIPE is implemented as a user-level library to invoke
APIs of underlying ML platforms, providing an easy-to-use,
platform-independent way to control multi-GPU pipeline
scheduling and energy consumption. In addition, due to this
clean separation of policy and mechanism, ENVPIPE can be
applicable to any ML platform by implementing required
APIs in the execution engine to support the ML platform 3.

3The current implementation supports PyTorch only

4.2 Fine-grained Online Profiling
As shown in Figure 1, energy consumption shows the valley

trend according to SM frequency. The form of valley curves
depends on GPU hardware, batch size, model architecture, and
the method of splitting the model for pipelining. Therefore,
ENVPIPE runs the online profiler to obtain the energy valley
curve from given DNN models, GPU hardware, and hyperpa-
rameters. For each pipeline stage, the online profiler sweeps
available ranges of SM frequency and measures energy con-
sumption to find the optimal SM frequency that maximizes
energy saving. The profiling steps are seamlessly integrated
into the training procedure, allowing ENVPIPE to continue
training with the weight version obtained from the profiling
steps. The energy valley curves for each pipeline stage are
generated within 100 steps and just 5 steps per frequency are
enough to detect the optimal point where the energy-saving
trend changes oppositely. Since training a model usually re-
quires thousands to millions of steps, the overhead of the
online profiler can be considered negligible. Note that the
SM frequency of a pipeline unit cannot be lowered below the
optimal energy-saving point which stretches the execution
time of the pipeline unit to about 20 - 25% in our GPU set-
tings. In addition, the online profiler measures the execution
time at maximum and optimal SM frequency’s forward and
backward pass, and available GPU memory, which is used in
the scheduling phase.

4.3 Scheduler: Utilizing Bubble

Design problems. As discussed in § 3.2, the scheduling of
forward and backward pipeline units determines the amount
of usable bubbles. When making scheduling decisions, it is
important to consider two key questions: 1) how to effectively
identify usable and unusable bubbles, and 2) how to optimize
the utilization of usable bubbles by scheduling pipeline units.
Identifying usable bubbles. To answer the first question,
we first need to identify pipeline units in the performance-
critical and non-critical paths. Figure 4(a) shows bubbles and
the performance-critical path (red boxes). It is important to
note that usable bubbles are placed after pipeline units of the
non-performance-critical paths. On the contrary, bubbles after
the pipeline units of performance-critical paths are unusable.
For example, if we stretch BP8 in GPU3 (★) which is on
the performance-critical path to use the following bubbles, it
will delay the start of BP8 in GPU2 (♠) causing performance
degradation in the overall pipeline execution.
Optimizing utilization of usable bubbles. To answer the
second question, we should consider the stretch limit of the
pipeline units. Recall that there is a limit for the pipeline unit
to get stretched because ENVPIPE does not set SM frequency
below the optimal point, which is usually about 20 – 25%
(§ 4.2). To optimize the utilization of usable bubbles, EN-
VPIPE should distribute the usable bubbles since a certain
group of bubbles at the front of the pipeline with a long idle
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Figure 4: ENVPIPE scheduling

time can be underutilized. For pipeline units to utilize the
usable bubbles at their best, the usable bubble must be evenly
distributed throughout the pipeline execution.

The ENVPIPE scheduler operates in two phases: initializa-
tion and rescheduling. During initialization, ENVPIPE em-
ploys a proven method for scheduling pipeline execution,
which has been successfully deployed in a wide range of envi-
ronments. Next, in order to enhance the utilization of usable
bubbles, ENVPIPE scheduler reschedules pipeline units in a
manner that evenly distributes these bubbles while preserving
the original data dependency between pipeline units.
Initialization. Among various existing approaches, we se-
lect one of the known methods that have the fewest units on
the performance-critical path because it contains more us-
able bubbles. As observed in § 3.2, for the 1F1B schedule,
pipeline units only along the outermost path (denoted as en-
velope) are on the performance-critical path. Therefore, we
select the 1F1B schedule, which has the minimum number of
pipeline units on the performance-critical path, as a starting
point and further reschedules the pipeline units based on this
initialization.
Rescheduling pipeline units. After initialization, ENVPIPE
reschedules pipeline units in order to reserve usable bubbles
right behind pipeline units and to distribute usable bubbles
among pipeline units. To save energy consumption, ENVPIPE
can stretch pipeline units up to the slack time made by the
following bubble. Figure 4(b) shows the result of schedul-
ing Figure 4(a). ENVPIPE moves FP units to upfront usable
bubbles (e.g., FP4, FP5, and FP6 in GPU2 ◇), generating
usable bubbles after backward units (e.g., BP3, BP4, and BP5
in GPU2△).

ENVPIPE can compute how many FPs can be rescheduled
and stretched by computing the available slack time of bub-
bles. When rescheduling the FP units, ENVPIPE considers the
following conditions. I) ENVPIPE never breaks the data de-
pendency for sending and receiving activations and gradients.
For instance, FP3 in GPU3 starts only after the activation is
sent from FP3 in GPU2. This is essential for preserving the
original data dependency of the pipeline execution. II) Be-
cause ENVPIPE moves forward units upfront, it needs to hold

Algorithm 1 Frequency Planner

1: while True do
2: ExecutePipelineStep()
3: criticalPath← FindCriticalPath()
4: if criticalPath ̸= outer envelope of total pipeline then
5: Recon f igureCriticalPath(criticalPath)
6: else
7: break
8: end if
9: end while

Figure 5: Frequency Planner Algorithm

additional activation generated by each forward unit, which
uses extra GPU memory. The memory used by activation
is freed after the corresponding backward unit consumes it.
The size of memory used by each activation is obtained by
the online profiler. Therefore, ENVPIPE computes available
memory to hold the activations and only reschedules a certain
number of forward units that can fit in the available memory
to avoid an out-of-memory error.

4.4 Frequency Planner: Minimizing Perfor-
mance Impact

Design problems. According to the scheduling decision, the
goal of the frequency planner is maximizing energy saving
while minimizing performance impact (less than 1%) by con-
trolling SM frequency. To achieve this, the system leaves the
SM frequency at its maximum for units on the performance-
critical path and lowers the frequency to its energy-optimal
value (obtained from the online profiler) for units not on
this path using the available slack time of usable bubbles.
However, this does not guarantee minimal performance degra-
dation, since not all bubbles can accommodate the stretched
pipeline units inside the envelope. So the question is how to
selectively reconfigure the SM frequency to minimize perfor-
mance impact. In addition, when reconfiguring the frequency
of units on the performance-critical path, it is possible that the
path may change. To prevent performance slowdowns, the sys-
tem must be able to efficiently identify the new performance-
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Figure 6: ENVPIPE frequency planning

critical path. This leads to the second design question: how
can the performance-critical path be identified quickly and
effectively?

Our strategy. Initially, ENVPIPE sets the energy-optimal SM
frequency to pipeline units on non-critical paths which is all
pipeline units inside the outer envelope of the total pipeline.
To achieve the design goal, ENVPIPE runs an iterative algo-
rithm as shown in Figure 5. Figure 6 illustrate the steps. After
executing a single pipeline step, at Line 3, the algorithm finds
the critical path of the executed pipeline (Initial of Figure 6).
Then, at Line 5, it reconfigures SM frequency of pipeline
units on the detected performance-critical path to avoid per-
formance slowdown (Iteration of Figure 6). It repeats the
find and reconfigure steps until the performance-critical path
becomes the outer envelope of the pipeline. The algorithm
stops when the critical path is identical to the outer envelope
(Termination of Figure 6). The termination condition of the
iterative algorithm ensures that the performance-critical path
is the same as that of running pipeline parallelism without us-
ing ENVPIPE while our frequency planner stretched as many
pipeline units as possible on the non-critical path.

Algorithm for finding the critical path. Figure 7 shows
the algorithm to identify the performance-critical path. The
algorithm incrementally builds the critical path backward.
current in Figure 7 is a cursor, pointing to pipeline units, and
moves backward. Initially, the cursor starts with the last unit
(BP8) in GPU1. The algorithm repeatedly updates the cursor
to point to the next pipeline unit to insert into the critical path
until the cursor reaches the starting unit (FP1) in GPU1. At
line 9, the algorithm decides the next pipeline unit to extend
the critical path backward. Figure 7(a) and (b) illustrates the
idea. Recall that the critical path consists of pipeline units
that delay the overall execution time when stretched. Thus,
we should find the pipeline unit that is affecting the start time
of the pipeline unit that the cursor is currently pointing at.
Let’s assume the current cursor points to BP8 in GPU1. The
algorithm finds the pipeline unit that is affecting the start time
of BP8 in GPU1 by comparing the slack time — the bubble
between BP7 and BP8 in GPU1 (tslack of current) — and the
dependency delay — spare time between the end of BP8 in
GPU2 and the start of BP8 in GPU1 (tdepdelay). If tslack of

8

7 8

8

7 8

Dependency Delay (tdepdelay)Bubble Slack Time (tslack)

(a) Critical path extend 

to current stage

(b) Critical path extend 

to next stage

GPU 1

GPU 2

GPU 1

GPU 2

Algorithm 2 Finding critical path

1: GPUID: e.g., GPU 1 - GPU 4
2: tslack: Slack time of the precedent bubble
3: tdepdelay: Delay between pipelineUnits with data depen-

dency
4: current ← last backward pipelineUnit in GPU 1
5: criticalPath.insert(current)
6: while current ̸= first forward pipelineUnit in GPU 1 do
7: n← GPUID of current
8: k← microbatchID of current
9: if tslack of current < tdepdelay then

10: current ← the previous pipelineUnit in GPU n
11: else
12: if current is forward pipelineUnit then
13: current ← pipelineUnit k in GPU (n−1)
14: else
15: current ← pipelineUnit k in GPU (n+1)
16: end if
17: end if
18: criticalPath.insert(current)
19: end while

Figure 7: Finding critical path

current < tdepdelay (Figure 7(a)), the precedent pipeline unit
of the same GPU is affecting the start time of BP8. So the
algorithm updates the cursor to BP7 in GPU1 to add to the
critical path. Otherwise, the pipeline unit that has the data
dependency from the next GPU is affecting the start of BP8.
Thus, the cursor is updated to BP8 in GPU2 and is added to
the critical path. After that, the algorithm repeats the same
step iteratively. The algorithm ends when the cursor reaches
the first forward unit in GPU1, which is the first pipeline unit
on the critical path that decides the starting time of the overall
pipeline execution step.
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Algorithm for reconfiguring critical path. ENVPIPE recon-
figures the pipeline units on the critical path by increasing a
small amount of SM frequency. The reconfiguration should
be done in small steps in an iterative way for two reasons.
First, by increasing the frequency in small increments, the
stretched execution time can be gradually shortened, likely
finding the point of fully utilizing the slack time of the us-
able bubbles. Second, due to the complex data dependencies
between pipeline units, the critical path may change after
reconfiguring pipeline units on the critical path. By recon-
figuring in small steps, it will be less likely to unnecessarily
increase the frequency of pipeline units on the non-critical
path, since the critical path may have changed during the
reconfiguration process.

The key question in the algorithm is identifying which
pipeline units on the critical path should be reconfigured. To
determine this, we use the observation of the trend in the
energy-scaling valley curve shown in Figure 1. From the opti-
mal point (minimum energy), as the SM frequency increases,
the energy consumption and performance increase at different
rates. Therefore, ENVPIPE defines the performance-energy
utility as the ratio of performance increase to energy increase
for a frequency increase. In general, the performance-energy
utility diminishes as it is further from the optimal point. Thus,
to maximize the utility, the system should prioritize reconfig-
uration of SM frequency close to the optimal point.

Using this observation, ENVPIPE takes a balanced ap-
proach. After finding the critical path, ENVPIPE finds the
pipeline units with the minimum SM frequency (i.e., closest
one to the optimal value) and increases their SM frequency.
This allows for the SM frequencies of all pipeline units on the
critical path to be balanced as much as possible. For compari-
son, the system also implemented a simple approach called
greedy. This approach selects pipeline units backwards from
the end of the critical path and reconfigures them until their
frequency is the maximum default frequency of a GPU. This
approach also achieves the performance goal by increasing the
SM frequency of pipeline units on the performance-critical
path, but not in a balanced way.

4.5 Discussions

4.5.1 Size of Bubble and Energy Saving

The size of the bubble highly influences the achieved en-
ergy saving. The opportunity to leverage pipeline bubbles
increases as the size of the bubble increases thus leading to
higher energy savings. Since ENVPIPE does not change the
user-provided hyperparameters, achieved energy saving may
differ according to the user-provided input or bubble-reducing
methods that were studied in previous S-PP works [15,16,20].
Number of microbatches. The size of the bubble gets amor-
tized over the number of micro-steps. Thus, as the number
of microbatches increases, the fraction of the pipeline bub-
ble decreases. For the portion of the bubble to be minimized,

the number of microbatches should be larger than the num-
ber of pipeline stages. However, increasing the number of
microbatches indefinitely is not possible because increasing
the number of microbatches leads to an increase in global
batch size. Even with a carefully tuned learning rate, there is
a maximum limit in global batch size to preserve the statis-
tical efficiency [24]. We show as a sensitivity study how the
number of microbatches affects energy saving.
Partition method of pipeline stages. The partition method
to split pipeline stages affects the size of pipeline bubbles.
Pipeline bubbles are minimized when the execution time
among pipeline stages is well-balanced, but it is not straight-
forward. Several partition methods are possible, but each of
them has its own pros and cons. First, the model can be par-
titioned by balancing the execution time of layers per stage.
By balancing the execution time of layers per stage, the size
of the bubble is minimized. However, balancing the execu-
tion time of layers may lead to memory imbalance among
pipeline stages. Second, stages can be partitioned by balanc-
ing the memory consumption of GPUs. Balancing the mem-
ory footprint across pipeline stages can provide advantages
in memory-constrained environments. However, because of
the imbalance of execution time among stages, the size of
the bubble increases. We evaluate how the stage partition
methods affect the energy saving in § 6.2.3 (Table 2).
Bubble-reducing methods. Our work stands apart from pre-
vious studies that aim to reduce bubbles in S-PP [15, 16, 20].
While these studies may reduce pipeline bubbles, the bub-
bles cannot be completely eliminated, so ENVPIPE can still
leverage the bubbles to save energy. Moreover, these bubble-
reducing methods have inherent drawbacks. For instance,
Merak [15] necessitates activation recomputation, leading to
additional performance overhead by repeated computations.
Chimera [16] proposes a bidirectional pipeline but with ad-
ditional memory consumption from weight parameters and
activations since a single stage needs to maintain weights
and activations that were originally maintained by two stages.
PTD-T [20] introduces an interleaved 1F1B pipeline schedule,
which reduces bubbles but adds communication overhead to
the scheduling process. In contrast, our approach in ENVPIPE
effectively utilizes bubbles without introducing these draw-
backs, offering a clear advantage in saving energy in pipeline
parallelism.

4.5.2 Energy Consumption of Bubbles

Readers may raise the following question, "Would a naïve
approach that just reduces the power consumption of bubbles
save more energy than ENVPIPE?" Even if one hypotheti-
cally assumes that the power usage of bubbles is reduced to
0W, ENVPIPE’s approach still demonstrates superior energy
savings. Figure 8 illustrates a simplified example comparing
the naïve approach and ENVPIPE. In the naïve approach, the
total energy consumption is 8.75J, where the forward unit con-
sumes 8.75J of energy while the bubble consumes 0J. On the
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Figure 8: Energy consumption of bubbles

other hand, in ENVPIPE’s approach where the forward unit is
stretched to exploit the bubbles, the total energy consumption
becomes 7.5J. The energy consumption of the stretched for-
ward unit is already lower than the naïve approach’s forward
unit since decreasing the SM frequency reduces the end-to-
end energy consumption of the forward unit. As demonstrated
in this example, even when the power usage of bubbles is re-
duced to 0W, ENVPIPE’s approach still has lower end-to-end
energy consumption. Furthermore, in RTX3090, we measure
that the power usage of bubbles is approximately 100W out
of 350W at the lowest SM frequency with P2 P-State.

4.5.3 Scaling with Data Parallelism
The common practice for training large models that cannot

fit in a single GPU is to combine pipeline parallelism with
data parallelism or tensor parallelism, allowing for sharded
models to fit within the constraints of a single GPU. We show
in the evaluation section that our performance-preserving
energy-saving approach with pipeline parallelism can easily
scale with data parallelism in multi-node training.

5 Implementation

We implement our prototype, ENVPIPE, on top of Deep-
Speed [25]. ENVPIPE’s HW controller to lock SM frequency
and DeepSpeed’s basic mechanism such as executing for-
ward/backward pass, send/receiving activations and gradients,
and reducing computed gradients are used for executing EN-
VPIPE’s performance-preserving energy-saving plan. In this
section, we introduce some important considerations when
utilizing the underlying mechanisms of ML platforms since
naïve usage of those mechanisms can lead to ineffective usage
of bubbles or performance degradation.

5.1 Asynchronous Communication
Activations and gradients must be transferred between

GPUs for the pipeline to be executed. When sending activa-
tions or gradients, communication needs to be asynchronous
(i.e. non-blocking) for pipeline units to effectively use bubbles.
If GPU communication is synchronous, idle time of bubbles
is wasted since blocking communication calls prevents the
next scheduled pipeline units to execute. When the source
GPU sends data to the target GPU, the communication gets
blocked until the target GPU receives the data and the next
scheduled pipeline units cannot be executed, thereby wast-
ing the opportunity to utilize pipeline bubbles. On the other
hand, for non-blocking asynchronous communication, when
the source GPU sends data to the target GPU, the source GPU
does not have to wait until the target GPU receives the data

10

Freq. change

10 10
(a) Unintended early 

      frequency change
(b) Syscall overhead (c) Precise control with 

  minimal overhead

Freq. change Freq. change

# (a) Unintended early frequency change
exec_forward_pass(0)
lock_gpu_clock(1300)
exec_forward_pass(1)

# (b) System call overhead
exec_forward_pass(0)
torch.cuda.synchronize()
lock_gpu_clock(1300)
exec_forward_pass(1)

# (c) Precise control with minimal overhead
exec_forward_pass(0)
torch.cuda.synchronize()
threading.Thread(lock_gpu_clock , args=(1300))
exec_forward_pass(1)

Figure 9: Precise SM frequency control

and can execute the next pipeline unit, effectively utilizing
pipeline bubbles.

NCCL’s default blocking p2p communication can be easily
changed to non-blocking communication by increasing the
NCCL buffer size with NCCL_BUFFSIZE environment vari-
able. NCCL buffer is used when communicating data between
pairs of GPUs. P2p send operation fills up the target GPU’s
buffer and the target GPU fetches data from the buffer in
FIFO for another send operation to fill the buffer. If the NCCL
buffer is full, send operation should wait until the buffer of tar-
get GPU has free space. If the NCCL buffer has enough free
space, p2p send operation can complete without waiting for
p2p recv operation to be called from target GPU. ENVPIPE
makes sure that NCCL buffer size is enough to handle all ac-
tivations and gradients to be communicated in a non-blocking
way to effectively use bubbles.

5.2 Precise SM Frequency Control

Controlling SM frequency from user space needs an ioctl
system call to the device driver which can induce overhead
lowering the training throughput. Also because of the asyn-
chronous CUDA programming model, ioctl calls on the
CPU side should be executed with precise synchronization
barriers between pipeline units for SM frequency to be con-
trolled at exact timing.

Figure 9 shows how precise SM control with minimal over-
head can be performed. In Figure 9(a), lock_gpu_clock()
is called between two forward executions without any syn-
chronization barrier. Because of the asynchronous CUDA
programming model, ioctl call gets executed on the CPU
side before the first forward execution completes, resulting
in an unintended early frequency change. In Figure 9(b), the
synchronization barrier is placed before lock_gpu_clock(),
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Model Microbatch Minibatch

Single-V100

BERT-336M 4 64
GPT-125M 2 32

Megatron-125M 4 64
ResNet-152 2 32

Single-3090

BERT-1.3B 4 64
BERT-3.9B 2 32
GPT-350M 4 64

Megatron-350M 4 64
Megatron-760M 4 64

Table 1: Model configuration for single-node training.

preventing unintended early frequency change. However, the
ioctl call on the CPU side with the default synchronous pro-
gramming model delays subsequent forward execution calls
and GPU remains idle until the ioctl call returns. In Fig-
ure 9(c), by executing lock_gpu_clock() in another thread,
subsequent forward execution on the GPU side can be concur-
rently executed with the ioctl call on the CPU side, perform-
ing precise frequency control with a minimal performance
impact.

6 Evaluation

Our evaluations focus on confirming our energy-saving de-
sign choices that preserve DNN training performance. Specif-
ically, we compare performance and energy consumption
for various scheduling strategies when training different, up-
to-date DNN models, including transformer-based language
models and CNN models, on both single-node and multi-node
training setups. To faithfully demonstrate the benefits of our
approach in challenging scenarios, we have all models parti-
tioned to balance execution time among pipeline stages, e.g.,
balancing the number of layers for transformer-based models.
This pipeline-balanced parallel execution provides high train-
ing performance, making the energy savings on top of it more
meaningful.

6.1 Methodology
Testbed setup. All experiments are performed on PyTorch
1.13. For single-node experiments, we use two different server
setups: Single-V100 and Single-3090. Single-V100 uses AWS
P3.8xLarge instance which has four NVIDIA Tesla V100
GPUs with 16GB of memory each, Intel Xeon E5-2686 v4
CPU (32 vCPUs), and 244GB of main memory, while Single-
3090 has four NVIDIA Ampere RTX3090 GPUs with 24GB
of memory each, Intel(R) Xeon(R) Gold 6326 CPU (64 vC-
PUs), and 256GB of main memory. For multi-node experi-
ments, our setup Multi-V100 uses two AWS P3.16xLarge
instances each with 8 NVIDIA Tesla V100 GPUs, Intel Xeon
E5-2686 v4 CPU (64 vCPUs), and 488GB of main memory.
So, Multi-V100 is equipped with a total of 16 V100 GPUs.
These cloud instances are connected to a 25Gbps Ethernet
network.

Benchmarks. We compare ENVPIPE with the following
energy-saving methods:
• Baseline: run all GPUs with maximum SM frequency.
• Uniform: run all GPUs with optimal SM frequency that

represents the minimum point in the energy valley curve.
• NoRecfg: ENVPIPE without reconfiguring critical path to

minimize performance impact.
Our single-node experiments are based on nine different mod-
els, as shown in Table 1. All models run with 16 microbatches,
while for Megatron-125M, ResNet-152, and BERT-3.9B, the
minibatch and microbatch size are reduced to fit in GPU mem-
ory. For multi-node experiments, we combine data parallelism
(DP) and pipeline parallelism (PP) in several different ways
across 16 GPUs. The number of microbatches for pipelining
changes according to the DP and PP dimensions while the
size of minibatch remains constant.
Metrics. Performance for all experiments is measured by
averaging the throughput of 30 training iterations after warm-
up and energy consumption is measured using the NVML
library 4 during the 30 training iterations.

6.2 Experimental Results

6.2.1 Single-node Energy Saving
Main results. We first compare ENVPIPE to Baseline, which
consumes the most energy among competing methods, to
highlight our ability to preserve performance. We measure
the throughput and energy consumption for the benchmarks in
Table 1 and present the results in Figure 10. The results show
that ENVPIPE consistently uses less energy than Baseline
while retaining the original training performance for all mod-
els, confirming its effectiveness. Specifically, for Single-V100,
ENVPIPE saves energy consumption by an average of 18.6%,
ranging from 12.1% to 25.2%. For Single-3090, ENVPIPE
saves energy consumption by an average of 12.8%, ranging
from 8.1% to 19.4%. Performance is mostly preserved, with
throughput only degrading less than 1% in all cases.
Analysis of energy saving. We next compare ENVPIPE to
other baselines by focusing on two models, BERT-1.3B and
GPT-350M, trained on Single-3090. The results from Fig-
ure 11 show that other naïvely designed strategies, such as
Uniform or NoRecfg, fail to meet our energy savings goal with-
out sacrificing performance. Specifically, in Uniform, as all
GPUs blindly scale SM frequency without considering per-
formance effects, both throughput and energy consumption
inevitably become the lowest. In NoRecfg, which does not
reconfigure the SM frequency, all pipeline units inside the
outer envelope are stretched to the largest extent. This strategy
also inevitably degrades performance since not all bubbles
can accommodate those stretched pipeline units inside the en-
velope. On the other hand, ENVPIPE allows for more adaptive
and effective use of pipeline bubbles, minimizing the impact
on performance.

4Energy consumption of GPUs (not entire system).
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Figure 10: Throughput and energy consumption of various DNN models in single-node training
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Figure 11: Normalized throughput and energy consumption break-
down
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Figure 12: Comparison of reconfiguration policy

Comparison of reconfiguration policies. We now evalu-
ate two different reconfiguration policies for the frequency
planner of ENVPIPE, balanced (our default) and greedy, using
models trained on Single-V100. The results shown in Fig-
ure 12 demonstrate that for BERT-336M, GPT-125M, and
ResNet-152, the balanced method saves more energy than the
greedy method, with a range of 5.2 to 8.9%. However, the dif-
ference in energy savings is insignificant for Megatron-125M.
This is because the portion of pipeline bubbles (a measure of
how much time is spent by bubbles) is larger for Megatron
models due to additional computation on the loss computation
layer, which is insignificant in other models, leading to longer
execution times in the last stage of the pipeline. This por-
tion exists even though the model is evenly partitioned across
GPUs w.r.t. the number of transformer-based layers placed on
each GPU. In summary, the balanced method delivers more
benefits than the greedy method but exhibits different relative
effectiveness according to how bubbles are composed.
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Figure 13: Throughput and energy consumption of Megatron-1.3B
on Multi-V100

6.2.2 Multi-node Energy Saving

To study the efficacy of ENVPIPE under multi-node train-
ing, we examine the throughput and energy consumption of
Megatron-1.3B trained on Multi-V100. Training sweeps differ-
ent data parallel (DP) and pipeline parallel (PP) dimensions, as
shown in Figure 13. Achieving efficient memory utilization in
distributed training can be challenging when relying solely on
data parallelism. Due to memory constraints, training could
not be completed for DP8+PP2 and DP16+PP1. Also, we
omit DP1+PP16, i.e., single-way DP combined with 16-way
PP, since it is challenging to evenly split 24 transformer-based
layers in Megatron-1.3B over 16 pipeline stages. We thus
compare the throughput and energy consumption of Baseline
and ENVPIPE mainly for DP2+PP8 and DP4+PP4, and show
the results in Figure 13. ENVPIPE saves energy by 28.4%
for DP2+PP8 and 19.4% for DP4+PP4 compared to Baseline.
Similar to the single-node experiments, the throughput degra-
dation for both cases is less than 1%, indicating that ENVPIPE
can maintain its benefits when scaling to two or potentially
more GPU nodes.
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Figure 14: Sensitivity study of number of microbatches (M = num-
ber of microbatches, K = number of pipeline stages)

6.2.3 Sensitivity Study
Different number of microbatches. We examine how chang-
ing the number of microbatches affects the effectiveness of
ENVPIPE on Single-V100. The results, shown in Figure 14,
reveal that the impact on energy savings differs between
Megatron-125M and other models (BERT-336, GPT-125M,
and ResNet-152). Megatron-125M model can save more en-
ergy when trained on a larger number of microbatches. This is
largely due to an imbalance in pipeline stages and a larger por-
tion of pipeline bubbles as compared to other models, which
can be effectively harnessed over a long sequence of pipelined
executions. However, for other models, increasing the num-
ber of microbatches does not result in further energy savings
because it quickly leads to amortized bubble sizes.
Stage partition methods. Transformer-based models, which
we have used for experiments thus far, are easy to partition in a
balanced manner because of their regular structures. However,
models like CNNs have non-regular structures, so different
partitioning methods with ENVPIPE can presumably offer
different benefits. To investigate this, we evaluate two differ-
ent partitioning methods, balancing execution time or mem-
ory footprint, using a popular CNN model, ResNet-152 on
Single-3090. Both methods are considered beneficial from the
perspective of system utilization, as they make training faster
or more memory-efficient. The results from Table 2 show that
balancing execution time leads to higher throughput, but the
energy savings between the two methods are similar. This is
because the stages at the front of the pipeline have more activa-
tions to store in memory, so shifting computation to the back
of the pipeline stage can balance memory usage but cause
an imbalance in computation between stages. Consequently,
there is not much computation left to stretch in the pipeline
stages at the front, limiting energy-saving opportunities.

7 Related Work

Pipeline parallelism. Bubbles in pipeline parallelism have
been considered as an obstacle that slows down training
throughput and previous studies focused on reducing the bub-
ble with new scheduling methods [15, 16, 20]. On the other
hand, ENVPIPE considers bubbles as an opportunity and lever-
ages bubbles to save energy.
Data center energy analysis. Recent studies focused on

Partition Method GPU Memory (GB) Perf. (sample/s) Energy (%)

Execution Time 7.5 / 7.1 / 6.1 / 3.8 20.5 83.1
Memory 6.9 / 5.0 / 6.0 / 5.0 14.2 84.4

Table 2: Comparison of partition method of pipeline stages

analyzing carbon emission and energy usage to measure the
environmental impact when training large models in datacen-
ters [14, 22, 23]. Treehouse [4] aims to reduce the carbon
intensity of datacenters from a software perspective by pro-
viding suites of resources to application developers to better
understand the trade-off between performance and carbon
emissions. Strubell et al. [26] emphasizes the importance of
quantifying the environmental cost of training neural network
models for NLP.
Improving energy efficiency with GPU DVFS. Previous
approaches to improve energy efficiency in GPUs have uti-
lized GPU DVFS techniques by characterizing the relation-
ship between performance and energy efficiency [6, 9, 13, 28].
Tang et al. [27] studied the energy scaling trend of various
DNN training jobs on modern datacenter GPUs. Zeus [29]
considers batch size as a new control knob for improving
energy efficiency on DNN training, navigating the energy-
performance tradeoff with Pareto optimality. Similarly, Batch-
sizer [17] considers batch size on DNN inference. Unlike
previous approaches, ENVPIPE saves energy by leveraging
only the side-effect-free control knob in multi-GPU training.

8 Conclusion

In this study, we propose ENVPIPE, a performance-
preserving energy-saving DNN training framework. ENVPIPE
saves energy with no accuracy and performance degradation
by leveraging bubbles in pipeline parallelism. ENVPIPE pro-
files the optimal SM frequency of each pipeline stage, sched-
ules pipeline units to make the best out of usable bubbles,
and selectively reduces the SM frequency of pipeline units
as much as possible with only a certain limit to avoid any
adverse performance delay. ENVPIPE can save energy up to
25.2% energy in single-node training with 4 GPUs and 28.4%
in multi-node training with 16 GPUs with less than 1% of
performance degradation.
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