
This paper is included in the Proceedings of the
2023 USENIX Annual Technical Conference.

July 10–12, 2023 • Boston, MA, USA
978-1-939133-35-9

Open access to the Proceedings of the
2023 USENIX Annual Technical Conference

is sponsored by

oBBR: Optimize Retransmissions of
BBR Flows on the Internet

Pengqiang Bi, Mengbai Xiao, Dongxiao Yu, and Guanghui Zhang,
Shandong University; Jian Tong, Jingchao Liu, and Yijun Li, BaishanCloud

https://www.usenix.org/conference/atc23/presentation/bi

oBBR: Optimize Retransmissions of BBR Flows on the Internet

Pengqiang Bi
Shandong University

Mengbai Xiao ∗

Shandong University
Dongxiao Yu

Shandong University
Guanghui Zhang

Shandong University

Jian Tong
BaishanCloud

Jingchao Liu
BaishanCloud

Yijun Li
BaishanCloud

Abstract
BBR is a model-based congestion control algorithm that has
been widely adopted on the Internet. Different from loss-
based algorithms, BBR features high throughput since it char-
acterizes the underlying link and sends data accordingly. How-
ever, BBR suffers from high retransmission rates in deploy-
ment, leading to extra bandwidth costs. In this work, we care-
fully analyze and validate the reasons for high retransmis-
sions in BBR flows. In a shallow-buffered link, the packet
losses are deeply correlated to both the bottleneck buffer
size and the in-flight data cap. Additionally, bandwidth drops
also cause unwanted retransmissions. Based on the analysis,
we design and implement oBBR, which aims at optimizing
the retransmissions in BBR flows. In oBBR, we adaptively
scale the in-flight data cap and update the bandwidth esti-
mate timely so that few excessive data are injected into the
network, avoiding packet losses. Our Internet experiments
show that oBBR achieves 1.54× higher goodput than BBRv2
and 39.48% fewer retransmissions than BBR-S, which are
both BBR variants with improved transmission performance.
When deploying BBR in Internet streaming sessions, oBBR
obtains greater QoE than BBRv2 and BBR-S without incur-
ring more retransmissions. To summarize, oBBR is designed
to help a transmission session reach high goodput and low re-
transmissions simultaneously, while other CCAs only achieve
one of them.

1 Introduction

Congestion control algorithms (CCAs) are essential for data
transmission on the Internet. The loss-based CCAs like CU-
BIC [18] treat the packet loss as a signal of network con-
gestion and thus throttle their sending rate. However, this
significantly underutilizes the underlying link capacity since
packet losses do not necessarily indicate congestion in the
Internet nowadays. To effectively exploit the bandwidth re-
sources, Google developed a model-based CCA based on

∗Corresponding author

measuring bottleneck bandwidth and round-trip propagation
time, or BBR [8]. BBR ignores packet losses but adjusts its
behaviors according to the estimated bandwidth and round-
trip time (RTT). After switching to BBR from CUBIC, the
throughput in Google’s B4 network is consistently improved
by 2-25× [9]. Since its release, BBR has been deployed on
22% of websites and accounts for over 40% of Internet traf-
fic [36]. This attracts content providers, like YouTube [7] and
Spotify [12], to adopt BBR.

While BBR exploits the bandwidth more effectively, this
algorithm also leads to high retransmission rates. BBR is
expected to send in-flight data at a volume of the bandwidth-
delay product (BDP) only, i.e., operating at Kleinrock’s opti-
mal point [29], but it is still observed that BBR injects exces-
sive data to the transmission channel because of bandwidth
overestimation [22, 50]. To avoid the excessive data accumu-
lated at the bottleneck, BBR imposes an upper bound to the
volume of in-flight data at 2×BDP. But this results in a high
packet loss ratio if the bottleneck buffer is not large enough to
hold the excessive in-flight data. As a result, a large amount
of data needs to be retransmitted, bringing extra bandwidth
costs to content providers.

Directly reducing the upper bound of in-flight data in BBR
is not feasible. By capping the in-flight data at 2×BDP, a BBR
flow could “fairly” share the bandwidth with a loss-based flow
(∼40%) when the bottleneck buffer is deep [14, 43, 52, 53].
If we limit the in-flight data in BBR further, it can no longer
compete with the loss-based flows, thus achieving a degrading
throughput.

Additionally, the high retransmission rates in BBR also
result from bandwidth drop. BBR estimates the bottleneck
bandwidth with the maximum delivery rate samples collected
in an RTT-based time window. If the bandwidth drops, BBR
will not update the bandwidth estimate until the outdated (and
overestimated) samples leave the time window. While BBR
keeps sending data and caps the in-flight data according to
the overestimated bandwidth, the bottleneck buffer is quickly
crammed and starts to discard packets. Moreover, the conges-
tion at the bottleneck buffer enlarges the latest RTT samples

USENIX Association 2023 USENIX Annual Technical Conference 537

and thus the window size, making the old bandwidth samples
expire even later.

In this paper, we propose oBBR, optimizing the retransmis-
sion rate and throughput in a BBR session. By extending the
analysis model proposed in [52], we notice that the behaviors
of a BBR flow are deeply correlated to the bottleneck buffer
size and the in-flight data cap. Capping the in-flight data to a
smaller value than 2×BDP mitigates the retransmissions in
shallow buffers, but also weakens BBR’s competitiveness in
deep buffers. Furthermore, BBR can no longer compete with
loss-based flows if the in-flight data is exactly 1×BDP. Fol-
lowing the analysis, oBBR detects if the bottleneck buffer is
shallow once a packet loss event occurs. Then, oBBR reduces
the in-flight cap accordingly so that the retransmissions are
avoided. The in-flight cap is gradually recovered in case the
packet loss is not caused by congestion. Furthermore, identi-
fying a bandwidth drop event is not straightforward in BBR.
Bandwidth samples with smaller values than the estimate are
common because only the maximum is selected. In oBBR,
we use consecutive samples of decreasing bandwidth or in-
creasing latency to identify a bandwidth drop event. However,
it is still possible that we falsely detect a bandwidth drop. We
compare the delivery performance before and after the band-
width estimate update. If the delivery performance degrades,
we revert it to the old value.

We implement oBBR within a userspace implementation
of Quick UDP Internet Connection (QUIC) [30], which is an
appealing solution to network applications like video stream-
ing due to its improved performance, high flexibility, and ease
of deployment. We evaluate oBBR in both a lab environment
and the Internet. In a stable network environment, oBBR re-
duces the packet loss ratio by up to 30× when compared to
BBR. With 2% packet losses, oBBR achieves 14.65× higher
goodput than BBRv2 which reacts to packet losses for alleviat-
ing retransmissions. In a network with fluctuating bandwidth
between 40 Mbps and 10 Mbps, oBBR reduces the retrans-
missions by 52%. The realistic network emulation and the ex-
periments on the Internet both show that oBBR achieves low
retransmission ratios as loss-based algorithms, like BBRv2
and CUBIC, and high goodput as model-based ones, like BBR.
Especially when continuously delivering data in a long Inter-
net link, oBBR has the retransmission at ∼6.5% while gaining
1.54× more goodput compared to BBRv2, which retransmits
6.71% data. Compared to BBR-S, another BBR variant that
also has reduced retransmissions and high goodput in our ex-
periments, oBBR reduces retransmissions by 39.48%. We also
implement oBBR in a video streaming system and measure
the user’s quality of experience (QoE) of streaming sessions
on the Internet. Our experiments show that oBBR guarantees
the QoE of a video session in terms of average quality, quality
switches, and rebuffering ratio better than other CCAs includ-
ing BBRv2 and BBR-S while suppressing the retransmission
ratio as low as ∼4%. In summary, oBBR achieves both high
goodput and low retransmissions in a transmission session,

ProbeRTTProbeBWDrainStartup

Figure 1: Overview of the BBR algorithm

while other CCAs only achieve one. The contributions of this
paper are as follows:

• We carefully analyze why retransmissions are common
in BBR flows. The high retransmissions in shallow-
buffered links are deeply correlated to both the in-flight
data cap and the buffer size. Moreover, the mechanism
of BBR modeling the network becomes inaccurate if the
bandwidth drops.

• We design and implement oBBR, optimizing the retrans-
missions of the BBR algorithm. oBBR adjusts the in-
flight data cap according to the bottleneck buffer size and
updates the bandwidth estimate promptly. Both reduce
the excessive data sent by oBBR, avoiding packet losses.

• We carry out extensive experiments in both a lab envi-
ronment and the Internet, justifying the design of oBBR.
We also implement oBBR in a video streaming system
on the Internet, and the results show that oBBR reaches
higher QoE than BBRv2 while both have low retrans-
mission ratios.

We briefly introduce how BBR works in Section 2 and
analyze why the transmission rate of BBR flows is high in
Section 3. The design of oBBR is presented in Section 4. In
Section 5, extensive experiments are carried out to evaluate
our design. Section 6 discusses related work and Section 7
concludes our work.

2 Background

BBR. BBR is a model-based congestion control algorithm
released by Google in 2016 [8]. In a transmission session,
BBR estimates the bottleneck bandwidth and the round-trip
propagation time of the underlying link. To get unbiased
estimates, BBR extracts the maximum from recent bandwidth
samples and the minimum from recent RTT samples.

To regulate the traffic, BBR matches its average sending
rate to the bandwidth estimate and caps the in-flight data by
2×BDP. Two key parameters, pacing_gain and cwnd_gain,
are used in controlling the sending behaviors. pacing_gain
inflates or deflates the sending rate while setting it to 1
means the sender transmits data at the rate of estimated band-
width. This parameter is dynamically scaled in operation.
cwnd_gain caps the in-flight data and is set to 2 in practice,

538 2023 USENIX Annual Technical Conference USENIX Association

which means at most 2×BDP data are sent without acks. A
BBR session always switches among four phases: Startup,
Drain, ProbeBW, and ProbeRTT. An overview of the BBR
algorithm is shown in Figure 1

1) Startup: BBR detects the available bandwidth by inflat-
ing its sending rate, where pacing_gain and cwnd_gain are
both 2/ln2. It switches to the Drain phase if the measured
bandwidth stops growing.

2) Drain: BBR drains the excessive data queued at the bot-
tleneck buffer because of the exponential growth of sending
rate in the Startup phase. pacing_gain is set to ln2/2 until
the in-flight data is less than 1×BDP. BBR then enters the
ProbeBW phase.

3) ProbeBW: BBR spends most time in the ProbeBW phase,
where pacing_gain is periodically set to {1.25, 0.75, 1, 1,
1, 1, 1, 1} and cwnd_gain is fixed to 2. Periodically inflating
the sending rate helps BBR detect if the available bandwidth
has increased, and deflating the rate could drain the queued
data if the bandwidth is unchanged.

4) ProbeRTT: The ProbeRTT phase is independent of the
other phases. BBR enters ProbeRTT once the RTT estimate
has not been updated for 10 seconds. In this phase, BBR sends
only 4 packets in-flight and observes their RTTs.
BBRv2. Though BBR gains high throughput in transmission,
its mechanism has raised a few concerns: BBR does not react
to the packet losses caused by network congestion and thus
has high retransmission rates in links with a shallow bottle-
neck buffer; BBR does not share bandwidth with loss-based
algorithms fairly; The throughput drops drastically in the
ProbeRTT phase. To address these shortcomings, BBRv2 [11]
is proposed and has been deployed in Google’s internal net-
work [10].

In BBRv2, packet loss events are considered signals of
network congestion again. BBRv2 reduces the in-flight data
cap multiplicatively if the packet loss ratio exceeds a threshold
(2% in practice). But this also impairs the flow throughput
as the loss-based CCAs do in a network environment with a
high packet loss ratio (> 2%). In this work, we also compare
oBBR with BBRv2, and the results are reported in Section 5.

3 Retransmissions in BBR

In this section, we analyze two major reasons that cause high
retransmission rates of BBR flows in depth: 1) the underlying
link is shallow-buffered, and 2) the available bandwidth drops
in the transmission session.

3.1 Shallow-Buffered Link
Ideally, BBR operates at the optimal point of the transmission
channel, i.e., no packets are queued in the bottleneck buffer
and the latency approximates the physical delay. To achieve
this, the in-flight data should equal 1×BDP of the channel.
In practice, the bandwidth is usually overestimated [22, 50,

52], and thus the data would be gradually accumulated at the
bottleneck buffer until packet losses. To avoid this, the sender
employing BBR caps the in-flight data as

in f light = cwnd_gain · R̂T prop · B̂tlBw,

where R̂T prop and B̂tlBw are the estimates of round-trip
propagation time and bottleneck bandwidth, respectively.
cwnd_gain bounds the in-flight data to a small multiple of
the BDP and is commonly set to 2. We can safely assume the
volume of in-flight data reaches the upper bound most of the
time because BBR overestimates its bandwidth share when
competing with other flows [22].

However, R̂T prop and B̂tlBw are substantially affected
by the competing flows, especially the ones with loss-based
congestion control algorithms (CCAs). If the data from com-
peting flows are also queued in the bottleneck buffer, R̂T prop
is then composed of the physical delay and the queue length,
and B̂tlBw is the link capacity proportional to BBR’s buffer
occupancy ratio [52]. The volume of in-flight data is calcu-
lated as

in f light = g · (pq
c

+ l) · (1− p)c,

where g represents cwnd_gain, q is the queue capacity of
bottleneck buffer, p is the buffer ratio occupied by competing
loss-based CCA flows, l is the RTT without congestion, and c
is the link capacity. Then, the queued data of a BBR flow is

queued = g · (pq
c

+ l) · (1− p)c− (1− p)cl

= gq · p(1− p)+(g−1) · cl · (1− p).
(1)

By defining the occupied ratio of BBR flow at the bottleneck
as Qr =

queued
q and the relative size of bottleneck buffer to the

BDP as R = q
cl , we have

Qr(p;g,R) = gp(1− p)+(g−1)R−1(1− p).

This helps us understand the behaviors of BBR with different
configuration sets of g and R. We plot QR vs. p in Figure 2.

The left side of Figure 2 shows how a BBR flow behaves if
g = 2, the current setup in BBR implementations. When the
bottleneck buffer is as deep as 16×BDP, the BBR flow occu-
pies almost half the buffer no matter how many loss-based
flows coexist, which has been confirmed in prior studies [52].
If we reduce R, the shallower buffer will be more occupied
by the BBR flow. When the buffer is as shallow as 1×BDP,
the loss-based CCAs can not compete with BBR anymore.
When the buffer size is lower than 1×BDP, we do not have
enough space to hold the in-flight data and the packet loss
ratio drastically increases.

If we set g to 1, expecting that no packet is queued when
there is no competing flow, this also leads to another severe
problem. As shown in the right of Figure 2, no matter how
large the bottleneck buffer is, the BBR flow can not compete

USENIX Association 2023 USENIX Annual Technical Conference 539

0.5

1
1.25

0 0.25 0.5 0.75 1

R=16

R=2

R=1
R=0.8

converge pointQ
R

p

g = 2

1-p

0.5

1

0 0.25 0.5 0.75 1

R=0.8,1,2,16Q
R

p

g = 1

1-p

Figure 2: QR vs. p when setting g to 2 and 1. 1− p indicates the remaining buffer space for the BBR flow (from loss-based
flows). We take g = 2 and R = 16 as an example. When 1− p is above the QR curve (at the left side of the figure), the buffer has
enough space to hold the in-flight data of the BBR flow. As the loss-based CCA flows keep ramping up their in-flight data since
no packets are discarded, p is increasing, which lets the BBR flow also accumulate more data in the buffer. The intersection of
1− p and the QR curve means that the buffer is fully occupied and loss happens. The loss-based CCA flows start to back off and
then the BBR flow also backs off. As a result, the BBR flow operates around the converge point.

R=0.5R=0.8 R=1 R=2 R=160

10

20

Go
od

pu
t (

M
bp

s)

g=2
BBR CUBIC

R=0.5R=0.8 R=1 R=2 R=160

10

20

Go
od

pu
t (

M
bp

s)

g=1
BBR CUBIC

g=1 g=1.5 g=2 g=3 g=40

10

20

Go
od

pu
t (

M
bp

s)

R=16
BBR CUBIC

Figure 3: The average goodput of a BBR flow and a CUBIC flow with various configuration sets g and R

with the loss-based CCAs anymore, leading to poor perfor-
mance.

Experimental verification: We set up the testbed in our lab
environment based on nginx-quic [3], where we implement
the BBR and CUBIC algorithms in the QUIC protocol. The
details of the experimental setup are presented in Section 5.1.
In the experiments, we simultaneously launch a BBR flow
and a CUBIC flow. Both of them keep sending data without
limitation from the application layer. The bandwidth is set to
20 Mbps and the RTT is set to 40 ms. By skipping the first 60
seconds, we measure the average goodput of two flows for 7
minutes when setting g and R to different values.

In Figure 3, the leftmost reports the average goodput of two
flows when setting g = 2 and varying the bottleneck buffer
size. We can see that the goodput proportion of the BBR flow
decreases as R is greater, but it is still lower than the converge
point R−g+1

gR found in the model, which are marked as red lines
on the bars. The reason is that BBR can not adjust its behav-
ior as fast as the CUBIC does at the converging point: When
two flows fully occupy the bottleneck buffer and packets are
discarded, the CUBIC flow reduces its congestion window
and the queue size shrinks, leading to that smaller RTTs are
detected by the BBR flow. This immediately updates R̂T prop
and BBR calculates a smaller BDP. However, in the recov-

ery phase, the CUBIC flow ramps up its congestion window
quickly while BBR still uses the small BDP because the new
RTT samples are greater than R̂T prop. The inaccurate RTT
estimate expires in 10 seconds but before that, the CUBIC
flow has occupied all free space in the buffer and backs off be-
cause of the packet loss again. Furthermore, BBR periodically
enters ProbeRTT which reduces the in-flight data to 4 packets,
also yielding bandwidth to the competing flows. But since the
BBR ignores packet loss, this results in the BBR flow evicting
the CUBIC flow and starting to experience apparent packet
losses in a shallower buffer. When R is reduced to 0.5, BBR
dominates the bandwidth and the packet loss ratio increases to
13.36%. The middle of Figure 3 confirms that when g is set to
1 and no matter how large the bottleneck buffer is, BBR can
hardly compete with CUBIC and almost all the bandwidth is
used by the CUBIC flow. The rightmost of Figure 3 shows
the goodput of two flows when setting the bottleneck buffer
to 16×BDP and varying g, where BBR gains more goodput
with increasing g.

Based on the models and the experiments, we can derive
that the packet losses of a BBR flow in a shallow-buffered
link are correlated to g and R. If we reduce g, a BBR flow
only evicts the coexisting loss-based flows and experiences
packet losses in a shallower buffer. But this weakens the

540 2023 USENIX Annual Technical Conference USENIX Association

0

250

Lo
ss

 (K
B) 20Mbps to 5Mbps

10 20
Time(s)

0

1000

2000

RT
T

(m
s)

 Bw.
drops

RTTInflight

20Mbps to 2Mbps

10 20 30
Time(s)

 Bw.
drops

RTT

0

200

400

600

In
fli

gh
t (

KB
)Inflight

Figure 4: The network characteristics of a BBR flow when
the bandwidth drops from 20 Mbps to 5 Mbps or 2 Mbps.

competitiveness of BBR in deep buffers. When g decreases to
1, BBR can hardly compete with loss-based flows no matter
how large the bottleneck buffer size is. If set it to a high value,
BBR flows have to sustain a high packet loss ratio when the
bottleneck buffer is shallow.

3.2 Bandwidth Drop

BBR collects the delivery rate samples in a time window (typ-
ically 10 RTTs) and chooses the maximum as the bandwidth
estimate. The rationale behind this is that acks can only be
delayed. However, such a mechanism makes BBR react to the
bandwidth drop sluggishly. When the bandwidth decreases,
BBR keeps sending data at a high rate until the overestimated
samples expire after 10 RTTs. This ramps up the queue size
at the bottleneck buffer and leads to packet loss once the
queue is crammed. More severely, as the packet delivery de-
lay is extended due to the congestion at the bottleneck, the
overestimated bandwidth samples expire in a longer period.

We conduct experiments to observe how a BBR flow reacts
to the bandwidth drop in our testbed. In the experiments,
the bandwidth is initially 20 Mbps, the RTT is 100 ms, and
the bottleneck buffer is 200 KB. A BBR flow is launched
to constantly send data. After ∼10 seconds since the flow
starts, we throttle the bandwidth to a lower value (5 Mbps or
2 Mbps).

The experimental results are reported in Figure 4. The x-
axis is the time elapsed since the flow starts in seconds and we
plot the RTT samples in milliseconds, in-flight data volume in
KB, and lost data volume in KB. We can observe that even the
bandwidth drops, the in-flight data volume stays almost the
same because of the unchanged B̂tlBw and R̂T prop. While
the actual bandwidth can not match the sending rate of BBR,
the RTTs of packets rise sharply due to the increasing queue
size at the bottleneck. The lost data volume also increases
during this period. Only after 10 RTTs, i.e., ∼7 seconds on
the left of Figure 4 (the RTT samples rise to ∼700 ms) and
∼15 seconds on the right of Figure 4 (the RTT samples rise
to ∼1500 ms), the bandwidth estimate is corrected and the

in-flight data match the BDP again. During the overestimation
stage, the sudden drops of RTTs are caused by the probeRTT
phase, but this does not help the BBR client realize the actual
BDP.

4 Design

As discussed in Section 3, the main reasons for high retrans-
mission rates in BBR are: 1) In a shallow buffer, the data
in-flight could not be fully contained when g is fixed to a con-
stant; 2) The bandwidth estimate is not timely updated when
the bandwidth drops. To solve these problems, we propose to

• Adaptive g: We estimate the bottleneck buffer size with
the RTT samples, and when a packet is discarded, the
value of g is adjusted accordingly.

• Timely bandwidth updates: We identify the bandwidth
drop based on both the RTT and delivery rate samples,
updating the bandwidth estimate in time. This is re-
versible if the transmission throughput decreases.

4.1 Adaptive g

In practical BBR sessions, g is set to a fixed value of 2. This
leads to the packet loss ratio drastically rising if the bottleneck
buffer is shallower than (g − 1)×BDP. In this case, BBR
packets are dropped because the in-flight data volume is larger
than the buffer size q. By setting p = 0 in Equation 1, the
excessive data volume of a BBR flow is (g−1)cl. To avoid the
packet loss events, we could adjust g to match the excessive
data volume to the shallow buffer size q, i.e.,

g =
q+ cl

cl
.

Whenever a packet loss event occurs, we can assume this
results from a shallow bottleneck buffer. To scale g, we need
to evaluate the buffer size by

q = c(l′− l),

where l′ is the delivery latency of a packet that is queued at the
end of the bottleneck buffer. Since the current buffer is full,
l′ can be reasonably estimated using the latest RTT sample
RT Tlatest . Then, we know that if

l′

l
=

RT Tlatest

R̂T prop
< g,

the bottleneck buffer is shallow.
Once we discover the packet loss is caused by a shallow

buffer, we could scale g to

min

(
1+µ · RT Tlatest − R̂T prop

R̂T prop
,gmax

)
,

USENIX Association 2023 USENIX Annual Technical Conference 541

0.25 0.50 0.75 1.00
Bandwidth of samples

normalized to the link capacity

0.0

0.5

1.0
CD

F

0.75 0.85 0.9 0.95 0.99 1.0
Bandwidth of samples

normalized to the estimate

102

103

104

m
ax

 n
um

be
r o

f
co

ns
ec

ut
iv

e
sa

m
pl

e

constant Bw.
drop to 10Mbps
drop to 5Mbps

1.0 1.5 2.0 2.15 2.25 2.5
RTT of samples

normalized to the estimate

102

103

104

m
ax

 n
um

be
r o

f
co

ns
ec

ut
iv

e
sa

m
pl

e

constant Bw.
drop to 10Mbps
drop to 5Mbps

Figure 5: The network statistics of a BBR flow in various network environments. The network bandwidth is consistently set to
20 Mbps in the transmission session or decreases to 5/2 Mbps after 10 seconds. The leftmost figure presents the cumulative
distribution function (CDF) of bandwidth samples normalized to the actual bandwidth when the bandwidth is constant. The
figure in the middle shows the max number of consecutive bandwidth samples that are below the proportions of the estimated
bandwidth. The rightmost figure shows the max number of consecutive RTT samples above thresholds of multiplicative RTTs.

where 0 < µ < 1 indicates the proportion of the shallow buffer
attributed to the BBR flow and gmax is referred to as the fixed
value used in deep buffer cases.

When the bottleneck buffer is non-shallow and there are
competing flows, RT Tlatest is expected to be greater than
gmax × R̂T prop no matter if the packet loss event is caused
by random loss or congestion. The min(·) filter helps oBBR
behave like the vanilla BBR in these cases if gmax = 2. If there
are no competing flows, a smaller g but greater than 1 still
guarantees the bandwidth is fully utilized. As a result, oBBR
can adapt to the shallow buffer cases without affecting other
scenarios.

Only scaling down g is not enough: 1) RT Tlatest might be
less than l′. For example, a packet loss happens before the
shallow buffer is crammed. 2) The bottleneck might migrate
to a deep buffer during the transmission session. Thus, we
design a recovery stage to increase g back to gmax. Whenever
an ack is received, we have

g = min
(

g+α · Sack

BDP
,gmax

)
,

where Sack is the acked data size and α is a parameter pre-
venting the congestion window growing too fast. In this way,
after the congestion window is shrunk, it keeps increasing the
value back until the packet loss happens again.

4.2 Timely Bandwidth Updates
BBR selects the maximum of bandwidth samples during the
latest 10 RTTs as B̂tlBW . In the ProbeBW stage, BBR peri-
odically inflates the sending rate to 1.25×B̂tlBW to verify if
the actual bandwidth has increased. As long as a sample of
higher bandwidth is observed, B̂tlBW is updated so that BBR
reacts to bandwidth increase timely. However, BBR fails to
adapt to the bandwidth drop in time. Though the latest acks
could show that fewer data has been received per unit time,
these signals are ignored in estimating B̂tlBW . As a result,

BBR keeps sending the data at a high rate until all samples of
high bandwidth expire.

However, observing a sample of low bandwidth does not
necessarily indicate the bandwidth has decreased. Acks might
be delayed in the transmission and this is the reason of select-
ing maximum as the estimate. We collect bandwidth samples
by running a BBR flow in the lab with 20 Mbps bandwidth
and 100 ms RTT. The bandwidth samples are normalized
to the realistic bandwidth and the results are shown in the
leftmost of Figure 5. We can find that even for an experiment
in the lab, 59% of samples are lower than 0.95×BtlBw, and
24% of samples are lower than 0.85×BtlBw.

Though the bandwidth samples could be inaccurate (we
observe a sample of 0.09×BtlBw in the experiment), the sam-
ples that are highly deviated from the realistic bandwidth
rarely appear consecutively. The middle of Figure 5 shows
the max length of consecutive samples that are below varying
thresholds proportional to the bandwidth estimate. We can
see that for the constant bandwidth, at most 22 consecutive
samples are observed below 0.75×B̂tlBw. We also manually
throttle the bandwidth to 10/5 Mbps in the transmission, and
in both cases, the length of consecutive bandwidth samples
could clearly signal the bandwidth drop. To effectively detect
the decrease of bandwidth, we check if there are k consec-
utive bandwidth samples less than 0.75×B̂tlBW . With a
longer k, we are more confident to believe that the bandwidth
has decreased rather than acks are occasionally delayed.

On the other hand, the bandwidth samples could be over-
estimated in realistic network environments. For example,
routers could aggregate acks or have the capacity of handling
burst traffic, both leading to calculating a greater bandwidth
at the BBR sender. To detect the bandwidth drop even if the
bandwidth samples are not reliable, we also use RTT sam-
ples. Since at most gmax×BDP data are sent in-flight, the RTT
samples should be about gmax×R̂T prop and samples with
obviously greater values indicate the bandwidth estimate is
not accurate anymore. We plot the max number of consecu-

542 2023 USENIX Annual Technical Conference USENIX Association

QUIC-based
HTTP Server

UDP
QUIC
HTTP

Nginx quic_server

QUIC-based
HTTP Client

UDP
QUIC
HTTP

Chromium quic_client

Network

tc

Figure 6: Overview of the testbed

tive RTT samples that are above thresholds of multiplicative
R̂T prop in the rightmost of Figure 5. When the bandwidth
is constant, at most 15 samples are observed consecutively
higher than 2.5×R̂T prop. This number increases to 373 or
328 if the bandwidth drops to 10/5 Mbps during the transmis-
sion, respectively. Thus, we also detect if there are k con-
secutive RTT samples greater than (gmax +0.5)× R̂T prop.
To the end, if any of the two cases happen, we think the
bandwidth has decreased, and we use the average of k most
recent bandwidth samples to update B̂tlBW .

Though we update the bandwidth estimate cautiously, it is
still possible that an inaccurate value is used. So we monitor
the delivery performance before and after the bandwidth up-
date, reverting to the old value if the delivery performance
decreases. Specifically, we calculate a delivery score of a fixed
time interval T following

U = delivered −10×unacked,

where delivered is the amount of data acked and unacked is
that not acked in T . We calculate the average score for 2T
before and 2T after the bandwidth update. B̂tlBW is reverted
if the score drops.

4.3 Competitiveness Analysis

As discussed in Section 3.1, the competitiveness of BBR is
determined by g and R. oBBR scales g to a smaller value once
discovering the current link is shallow-buffered, while using a
fixed gmax in deep buffers. By setting gmax to 2, oBBR behaves
just like the vanilla BBR in deep-buffered links. A smaller or
greater gmax weakens or strengthens its competitiveness.

In shallow-buffered links, the competitiveness of an oBBR
flow is determined by µ, i.e., the excessive in-flight data pro-
portional to the shallow buffer size. With a greater µ, oBBR is
more competitive, but also has a higher risk of packet losses.
Since the vanilla BBR selects a fixed g of 2, oBBR can hardly
compete with it. But we can still expect that oBBR is less
aggressive than BBR when competing with loss-based algo-
rithms.

5 Evaluation

In this section, we evaluate oBBR and other peer methods
in both a lab environment and the realistic Internet. We also
build a video streaming system with oBBR that verifies our
design also benefits network applications.

5.1 Experimental Setup
Implementation: We implement oBBR1 in nginx-quic [3],
which only has an RFC-defined congestion control algo-
rithm.2 In all experiments, we set α that controls the speed
of recovery from the packet loss to 0.01. For detecting the
bandwidth drop, we set k to 30 and T to 200 ms. We vary µ in
0.5, 0.75, and 1 to have oBBRs with different competitiveness,
which is referred to as oBBR-0.5, oBBR-0.75, and oBBR-1 in
the following discussion. In oBBR, we also set a lower bound
1.25 to cwnd_gain when the ProbeBW phase is probing for
more bandwidth.

Additionally, we implement a couple of CCAs for compar-
ison: CUBIC [18] is the default CCA in the Linux kernel,
which considers packet loss as congestion and uses a cubic
function to grow the congestion window. The vanilla version
of BBR [8] manipulates its sending behaviors only depend-
ing on the estimates of bottleneck bandwidth and propaga-
tion round-trip time. BBRv2 [11] is the successor of BBR
proposed by Google, adding reactions to packet loss and
greatly reducing retransmission rates. BBR-S [50] handles
the bandwidth overestimation caused by the burst capacity of
routers. It estimates the bandwidth at the 85th percentile of
collected samples. B3R [44] is a BBR variant, which adjusts
pacing_gain to regulate the sending rate in the ProbeBW
phase. It aims at reducing the packet loss ratio when the bot-
tleneck buffer is shallow. To compare all of these CCAs with
oBBR on an equal footing, we implement these CCAs within
nginx-quic. Implementing all of the CCAs within the same
system architecture allows us to eliminate irrelevant factors
that would otherwise complicate our comparison of CCAs.

It is worth noting that the pacing mechanism is not limited
to BBR and its variants. The pacing mechanism sends data
in a controlled manner so that the sending behavior becomes
smoother. It has been proven effective in TCP connections
with shallow bottleneck buffers [4]. So we also implement
the pacing mechanism in CUBIC. Specifically, CUBIC calcu-
lates pacing_rate by cwnd / srtt× pacing_ratio, where
cwnd is the congestion window and srtt captures the statis-
tics of RTTs in both short-term and long-term. pacing_ratio
is 2 in slow start and is 1.2 otherwise.
Testbed: We evaluate various CCAs in the client-server mode.
nginx-quic is deployed as an HTTP server so that the trans-
mission sessions in our experiments are HTTP sessions. In
our lab environment, the server resides on a Linux machine

1Our prototype is available at https://github.com/bpq233/oBBR
2RFC 9002

USENIX Association 2023 USENIX Annual Technical Conference 543

100Mbps
40ms

R=0.25

100Mbps
40ms

R=0.25
 Loss=1%

40Mbps
100ms
R=0.25

40Mbps
100ms
R=0.25

 Loss=2%

60Mbps
60ms
R=0.2

60Mbps
60ms
R=0.4

60Mbps
60ms
R=0.6

0

5

10

15

20

25
Re

tra
ns

m
iss

io
n

Ra
tio

 (%
) BBR

B3R
BBR-S
oBBR-0.5

oBBR-0.75
oBBR-1

BBRv2
CUBIC

100Mbps
40ms

R=0.25

100Mbps
40ms

R=0.25
 Loss=1%

40Mbps
100ms
R=0.25

40Mbps
100ms
R=0.25

 Loss=2%

60Mbps
60ms
R=0.2

60Mbps
60ms
R=0.4

60Mbps
60ms
R=0.6

0

20

40

60

80

100

120

Go
od

pu
t (

M
bp

s)

BBR
B3R

BBR-S
oBBR-0.5

oBBR-0.75
oBBR-1

BBRv2
CUBIC

Figure 7: Performance of various CCAs in stable network environments

running Ubuntu 20.04 LTS with an Intel i5-7300HQ CPU @
2.5 GHz (4 cores) and 16 GB RAM. The HTTP client is a
simple implementation in the Chromium project [1] that also
supports QUIC. For controlling the network conditions in our
lab environment, tc [21] is used. In addition to changing the
bandwidth, the latency, and the packet loss ratio, we adjust
two parameters, Limit and Burst, to emulate the buffer size
and the capacity of handling traffic exceeding the bandwidth
at the bottleneck router. In experiments that use tc, Burst
is set to 100 KB. An overview of the testbed is shown in
Figure 6.

5.2 Retransmissions and Throughput
In the following experiments, we configure the client to fetch
a data file of 1 GB via the HTTP protocol in a transmission
session. The performance of various CCAs is measured in
stable networks, variable networks, real network traces, and
the Internet.

5.2.1 Stable Network Environment

Single flow: We first run various CCAs in stable network
environments, where the bandwidth and the latency are set
to {100 Mbps, 40 ms} or {40 Mbps, 100 ms}. We measure
the retransmission ratio and the average goodput in a trans-
mission session. The retransmission ratio is the volume of
retransmitted data divided by the overall delivered data. R is
0.25 and the random packet loss ratio at 1% or 2% is also
added. The results are shown in Figure 7. We can see that
CUBIC and BBRv2 have the lowest retransmission ratios
since they aggressively reduce the in-flight data when detect-
ing packet losses. But both of them are vulnerable to random
packet losses. Introducing a 1% random packet loss ratio re-
duces their goodput by 76% (BBRv2) and 94% (CUBIC),
respectively. And the numbers increase to 94% (BBRv2) and
96% (CUBIC) with a 2% random packet loss ratio. On the
other hand, BBR maintains its goodput across all cases but
its retransmission ratios are also the highest, reaching 17.42%
on average. This is because BBR does not throttle its sending
rate until the packet loss ratio, whether caused by conges-

tion or random losses, reaches a relatively high threshold of
∼20%, which is not the case in our experiments. Across all
scenarios, oBBR schemes consistently have high goodput,
which is at least 82.76% of the link capacity. oBBR also sup-
presses its retransmission ratio of a session to a low value. For
example, in the network with 40 Mbps bandwidth and 100
ms latency, oBBR keeps its retransmission ratios at 0.51%
(µ =0.5), 0.62% (µ =0.75), and 1.97% (µ =1), respectively.
By introducing 2% random packet losses, oBBR has the re-
transmission ratios at 2.82% (µ =0.5), 3.06% (µ =0.75), and
3.93% (µ =1). B3R lowers its sending rate to avoid exces-
sive in-flight data, but this does not work in our experiments
because of the bandwidth estimation. As a result, the retrans-
mission ratios of B3R are similar to those of BBR. BBR-S
more accurately estimates the bandwidth in our scenarios
where the bottleneck router could handle burst traffic. Bene-
fiting from this, BBR-S retransmits fewer data than BBR and
B3R, but is still worse than oBBR schemes.

Then, we vary R to 0.2, 0.4, and 0.6, and fix the bandwidth
and latency to {60 Mbps, 60 ms}. The results are also re-
ported in Figure 7. With increasing bottleneck buffer size,
BBR, B3R, and BBR-S reach a lower retransmission ratio
accordingly because more in-flight data could be held in the
buffer. The fewer retransmissions also improve their good-
put. oBBR schemes have relatively high retransmission ratios
when R =0.2, which are 1.54% (µ =0.5), 1.55% (µ =0.75),
3.10% (µ =1). This is due to we set a lower bound of 1.25 to
g to match the 1.25×pacing_gain when probing for more
bandwidth. When the R increases, the retransmission ratios of
oBBR decrease again. For instance, when R =0.4, the retrans-
mission ratios of oBBR are 0.51% (µ =0.5), 0.61% (µ =0.75),
1.78% (µ =1). BBRv2 and CUBIC still have the lowest trans-
mission ratios while BBRv2 flows have goodput (similar to
oBBR schemes) higher than CUBIC flows.
Multiple flows: We simultaneously launch at most 5 flows
with the same CCA and measure the retransmission ratio and
goodput per flow. In the experiments, the bandwidth and the
latency are set to {100Mbps, 40ms}, and R is 0.5. No random
packet loss is introduced. The results are shown in Figure 8.
BBR still has the highest retransmission ratios, ranging from
8.41% (1-flow) to 15.25% (3-flows). As loss-based CCAs,

544 2023 USENIX Annual Technical Conference USENIX Association

1-flow 2-flows 3-flows 4-flows 5-flows0

5

10

15

20

Av
g.

 R
et

ra
ns

m
iss

io
n

Ra
tio

 p
er

 fl
ow

 (%
)

BBR
B3R

BBR-S
oBBR-0.5

oBBR-0.75
oBBR-1

BBRv2
CUBIC

1-flow 2-flows 3-flows 4-flows 5-flows0

25

50

75

100

125

Av
g.

 G
oo

dp
ut

 p
er

 fl
ow

 (M
bp

s)

BBR
B3R

BBR-S
oBBR-0.5

oBBR-0.75
oBBR-1

BBRv2
CUBIC

Figure 8: Performance of various CCAs in multi-flow scenarios

0 20 40 60
Time (s)

0

20

40

Ba
nd

wi
dt

h
(M

bp
s) Real BBR oBBR

7.5 10.0 12.5 15.0 17.5
Time (s)

200

400

600

RT
T

(m
s)

BBR
oBBR

0 100 200 300 400
Time (s)

0

20

40

60

Re
tra

ns
m

iss
io

ns
 (M

B) BBR
oBBR

0 50 100
Time (s)

0

10

20

30

40

50

Go
od

pu
t (

M
bp

s) BBR oBBR

Figure 9: Performance of BBR and oBBR when bandwidth varies in a transmission session

CUBIC and BBRv2 retransmit few packets. When launching
multiple BBR-like flows, i.e., BBR, B3R, BBR-S, or oBBR,
higher retransmission ratios per flow are observed. The reason
is that for each flow, the bandwidth overestimation is more se-
vere: while some of the flows periodically switch to the drain
cycle (pacing_gain=0.75) of ProbeBW or to ProbeRTT and
yield bandwidth, the other flows obtain bandwidth estimate
samples higher than the current ones. These overestimated
samples are continuously used even though the co-existing
flows scale back their sending rates. Such overestimations are
alleviated when the number of flows increases (4-flows and
5-flows) because less bandwidth is allocated to each flow. For
oBBR, if we set µ to 1.0 which intends to send excessive data
exactly matching the bottleneck buffer, the overestimation
easily results in the in-flight data being more than that. As
a result, the retransmission ratio per flow of oBBR-1 grows
to 7.59% at most (3-flows). When setting µ to 0.5 and 0.75,
the bandwidth overestimation can hardly affect the transmis-
sion since oBBR leaves a margin in the bottleneck buffer on
purpose. The highest retransmission ratios of oBBR-0.5 and
oBBR-0.75 are 0.52% (2-flows) and 0.99% (3-flows), respec-
tively. We also report goodput per flow in Figure 8, and it
shows that all CCAs could effectively exploit and fairly share
the link capacity.

5.2.2 Variable Bandwidth

We also set dynamic bandwidth to observe if oBBR reacts to
the bandwidth drop timely as expected. In the experiments,
the latency is 100 ms and the bottleneck buffer is 300 KB. We
periodically change the bandwidth between 40 Mbps and 10
Mbps every 10 seconds. We evaluate oBBR and BBR, and
the results are shown in Figure 9. The left two figures plot

0 1000 2000 30000

320

Ba
nd

wi
dt

h
(M

bp
s) Bandwidth

0

640

static1
RTT

0 1000 2000 30000

320 Bandwidth

0

160

RT
T

(m
s)

static2
RTT

0 500 1000 1500
Time (s)

0

240

Ba
nd

wi
dt

h
(M

bp
s) Bandwidth

0

240

car1
RTT

0 250 500 750 1000
Time (s)

0

100 Bandwidth

0

560

RT
T

(m
s)

car2
RTT

Figure 10: Characteristics of the realistic network traces

the bandwidth samples and the latency samples collected at
the sender, respectively. We can see that oBBR reacts to the
bandwidth drop more promptly as the bandwidth samples
follow the real bandwidth change (the red line) in ∼2 seconds.
BBR only summarizes a more accurate bandwidth estimate
after ∼6 seconds because the high bandwidth estimate not
only expires after 10 RTTs but also prolongs the latest RTT
samples to ∼600 milliseconds. While BBR sends in-flight
data exceeding the bottleneck buffer, packet losses happen.
Figure 9 also shows that BBR spends 2.09× more bandwidth
than oBBR on retransmitting lost data while both of them
achieve almost the same goodput in the transmission session.

5.2.3 Realistic Network Traces

We also test various CCAs in our lab by emulating the real
network conditions following publicly available traces [41],
which are collected from a major mobile operator in Ireland.
Four traces are selected: static1, static2, car1, and car2. static*
means the trace is collected from a static object, probably a

USENIX Association 2023 USENIX Annual Technical Conference 545

BBR
B3R

BBR-S
oBBR-0.5

oBBR-0.75

oBBR-1

BBRv2
CUBIC

0

5

10

15

Re
tra

ns
m

iss
io

n
Ra

tio
 (%

)

0

10

20

30

40

50

Go
od

pu
t (

M
bp

s)

static1 & 0.25xBDP
Retransmission Ratio
Goodput

BBR
B3R

BBR-S
oBBR-0.5

oBBR-0.75

oBBR-1

BBRv2
CUBIC

0

5

10

15

Re
tra

ns
m

iss
io

n
Ra

tio
 (%

)

0

10

20

30

40

50

Go
od

pu
t (

M
bp

s)

static2 & 0.5xBDP
Retransmission Ratio
Goodput

BBR
B3R

BBR-S
oBBR-0.5

oBBR-0.75

oBBR-1

BBRv2
CUBIC

0

5

10

15

Re
tra

ns
m

iss
io

n
Ra

tio
 (%

)

0

10

20

30

40

50

Go
od

pu
t (

M
bp

s)

car1 & 0.75xBDP
Retransmission Ratio
Goodput

BBR
B3R

BBR-S
oBBR-0.5

oBBR-0.75

oBBR-1

BBRv2
CUBIC

0

5

10

15

Re
tra

ns
m

iss
io

n
Ra

tio
 (%

)

0

10

20

30

40

50

Go
od

pu
t (

M
bp

s)

car2 & 1xBDP
Retransmission Ratio
Goodput

Figure 11: Performance of various CCAs in the testbed emulating the realistic network

Table 1: Characteristics of the realistic network traces
avg. bandwidth avg. RTT duration

static1 45±62 Mbps 80±47 ms 3,137 s
static2 70±80 Mbps 69±6 ms 3,322 s
car1 32±64 Mbps 78±18 ms 1,645 s
car2 10±15 Mbps 118±78 ms 1,155 s

PC, and car* means the trace is collected from a moving
object, probably a car. Table 1 characterizes the traces and
Figure 10 shows how the bandwidth and RTT vary over time.

We set R to different values for these traces. It is worth
noting that no random packet losses are introduced in the em-
ulations. We record retransmission ratios and average goodput
of various CCAs. The results are reported in Figure 11. We
can see that BBRv2 and CUBIC still have the lowest retrans-
mission ratios in all cases, and more interestingly, they have
lower goodput when compared to the oBBR schemes because
oBBR reacts to the network dynamics more timely. Other
performance trends are similar to those in stable network en-
vironments: BBR and B3R have the highest retransmission
ratios. BBR-S has lower retransmission ratios but is still worse
than oBBR. oBBR achieves the highest goodput in three out
of four traces (35 Mbps of oBBR-1 in static1, 32 Mbps of
oBBR-1 in static2, and 13 Mbps of oBBR-0.75 in car1).

5.2.4 Competitiveness

In this section, we measure how oBBR competes with other
CCAs. We compare oBBR to BBR, CUBIC, and BBRv2,
respectively. We also set µ to {0.5, 0.75, 1} for observing
how this parameter affects oBBR’s competitiveness. In exper-
iments, the bandwidth is 40 Mbps and the latency is 100 ms.
R is set to 0.5 or 1.0. For a transmission session, two flows,
where one must be an oBBR flow, are launched simultane-
ously. We record the goodput of each flow and terminate both
flows once the 1 GB data file has been fully delivered.

The results are shown in Figure 12. When competing with
BBR, oBBR can hardly gain bandwidth when the buffer is as
shallow as 0.5×BDP because BBR sends more in-flight data.
This can be alleviated by increasing µ. Setting µ to 1 helps
oBBR share 33% bandwidth. When the buffer size increases
to 1×BDP, BBR performs less aggressively and even setting

µ to 0.5 lets oBBR take 40.5% bandwidth. When competing
with CUBIC, oBBR is aggressive in shallower buffers. But
oBBR yields more bandwidth to CUBIC than BBR which
takes almost all bandwidth in a 0.5×BDP buffer. In a buffer
of 1×BDP, CUBIC takes up to 46.6% bandwidth share. When
competing with BBRv2 in a 0.5×BDP buffer, the trend of
bandwidth shares is similar to CUBIC because both of them
react to packet losses. But since BBRv2 probes RTT more
frequently, it takes more bandwidth in a 1×BDP buffer.

5.2.5 Internet

We further carry out the data delivery experiments in the In-
ternet environment. We deploy the server in a data center in
Virginia, USA, and the client in Shandong, China. The server
is equipped with a 2-core CPU @ 2.5 GHz and 4 GB RAM,
and its maximum egress bandwidth is 80 Mbps. The operat-
ing system is Ubuntu 20.04 LTS. The average link latency is
about 270 ms. We experiment with data transmission in the
morning, afternoon, and midnight. The results are shown in
Figure 13. From the figure, CUBIC has the lowest retransmis-
sion ratio at 0.16% because it is the most sensitive algorithm
to packet losses, and it also has the lowest goodput of 6.30
Mbps. BBRv2 has a retransmission ratio of 6.71% which
is higher than the oBBR schemes because it fails to adjust
its behavior timely in such a complex network environment,
and its average goodput is 17.66 Mbps since the unavoid-
able packet losses in long Internet links. By setting µ to 0.75,
oBBR achieves the highest goodput of 27.17 Mbps, which
is 1.54× higher than BBRv2. Our oBBR schemes also have
low retransmission ratios at 6.30% (µ=0.5), 6.58% (µ=0.75),
and 6.85% (µ=1), which means 39.48%, 36.79%, and 36.11%
fewer data are retransmitted compared to BBR-S, another
BBR variant reaching a high goodput (26.94 Mbps) and a
low retransmission ratio (10.41%) in the Internet experiments.
These experiments indicate that oBBR could fully exploit the
Internet link capacity while suppressing the retransmissions
effectively.

5.3 Video Streaming

We also evaluate oBBR in video streaming, which is the dom-
inant data delivery service on the Internet today.

546 2023 USENIX Annual Technical Conference USENIX Association

R:0.5
μ : 0.5

R:0.5
μ : 0.75

R:0.5
μ : 1.0

R:1.0
μ : 0.5

R:1.0
μ : 0.75

R:1.0
μ : 1.0

0

10

20

30

40

50
Go

od
pu

t (
M

bp
s)

BBR
BBRv2

oBBR
CUBIC

Figure 12: Competitiveness of oBBR against other CCAs

5.3.1 Experimental setup

We build a video streaming system based on dynamic adap-
tive streaming over HTTP (DASH) [47], which uses HTTP
as the vehicle for delivering video data. On the server, the
test video is encoded into multiple bitrates and is further sep-
arated into segments of fixed length. Each of the segments
is identified by a uniform resource locator (URL). We use
dash.js [2] as the video player that fetches video segments
to the client. In the player, the adaptive bitrate (ABR) algo-
rithm dynamically switches between a buffer-based one and
a throughput-based one to determine the quality of the next
segment to download [46].

We use a 10-min video Big Buck Bunny as the test video,
which is encoded into 10 bitrates of {254, 507, 759, 1013,
1254, 1883, 3134, 4952, 9914, 14931} Kbps. 3 For each bitrate
level, the video is chunked into segments of 4 seconds. We
put the server in Virginia and the client in Shandong, China.
The experiments are carried out on the real-world Internet.

5.3.2 Metrics

Three metrics are used in the evaluation: average quality (AQ),
quality switches (QS), and rebuffering ratio (RB).
Average quality: the average quality level (from 0 to 9) of
all played segments. We expect the viewer to have a better
quality of experience (QoE) with a greater AQ.
Quality switches: the number of segments with a lower qual-
ity than the previous one. A low QS means the visual quality
does not fluctuate in playback, also indicating better QoE.
Rebuffering ratio: the proportion of time consumed in re-
buffering. The viewers will stop watching if the rebuffer-
ing time is long. RB is calculated as (playback time −
video length)/video length.

5.3.3 Results and analysis

Figure 14 shows the performance of different CCAs in real-
world video streaming sessions. For the retransmission ratio,

3Available at https://dash.akamaized.net/akamai/bbb_30fps/

BBR B3R BBR-S
oBBR-0.5

oBBR-0.75

oBBR-1
BBRv2

CUBIC
0

10

20

30

Re
tra

ns
m

iss
io

n
Ra

tio
 (%

)

0

10

20

30

40

Go
od

pu
t (

M
bp

s)

Retransmission Ratio Goodput

Figure 13: Performance of various CCAs on the Internet

BBR-S, BBRv2, CUBIC, and the oBBR schemes have sim-
ilar performance, which is much lower than BBR and B3R.
However, the low retransmission ratio of BBR-S, BBRv2,
and CUBIC comes at the cost of low throughput, i.e., these
algorithms fail to support the application layer to deliver high-
quality videos. They have the lowest average quality, the
highest quality switches, and the highest rebuffering ratio. For
CUBIC, as it is too sensitive to packet loss, its throughput is
suppressed at the lowest level, and the client almost selects
the lowest quality level to fetch. This also decreases the re-
buffering ratio of the CUBIC session. The oBBR also has
low retransmission ratios (<4%) in the streaming sessions,
but the user’s QoE is not sacrificed. For example, by setting µ
to 0.5, oBBR achieves the average quality of 6.37, the qual-
ity switches of 4, and the rebuffering ratio of 0.28%. Thus,
the experiments show that oBBR benefits video streaming
applications. It improves the QoE without incurring high re-
transmissions as BBR, which is friendly to content providers.

6 Related Work

BBR. BBR has been well-studied since it was proposed. It has
been deployed in various networking scenarios, including mo-
biles [51], Wireless LANs [16], and clouds [17], and these re-
search point out that the pacing mechanism in BBR may lead
to poor performance. BBR is also implemented in MPTCP
on Linux and the superior performance over other congestion
control algorithms is observed [5]. The BBR-based MPTCP
is further improved with respect to fairness and throughput in
following studies [20, 35]. The performance of BBR against
most existing CCAs has been extensively evaluated [31]. Such
a wide range of research uncover that BBR still has problems.
Bandwidth overestimation in BBR. Since BBR selects the
maximum of delivery rate samples within the latest 10 RTTs
as the estimated bandwidth [56], it is easy to overestimate the
bandwidth, which could result in network congestion. Chiari-
otti et al. [13] adopt the Adaptive Tobit Kalman Filter instead
of the maximum filter for estimating bandwidth more accu-
rately. Another study [19] suggests using Kalman Filter at

USENIX Association 2023 USENIX Annual Technical Conference 547

BBR
B3R

oBBR-0.5

oBBR-0.75

oBBR-1

BBR-S
BBRv2

CUBIC

0

2

4

6

8

10
Re

tra
ns

m
iss

io
n

ra
tio

 (%
)

BBR
B3R

oBBR-0.5

oBBR-0.75

oBBR-1

BBR-S
BBRv2

CUBIC

0

2

4

6

8

AQ

BBR
B3R

oBBR-0.5

oBBR-0.75

oBBR-1

BBR-S
BBRv2

CUBIC

0

5

10

15

20

25

30

QS

BBR
B3R

oBBR-0.5

oBBR-0.75

oBBR-1

BBR-S
BBRv2

CUBIC

0

1

2

3

RB
 (%

)

Figure 14: Performance of various CCAs in an Internet video streaming session

the receiver side and to communicate with the sender with
the newly defined feedback frame of QUIC. A delayed band-
width update strategy [48] also helps, which does not update
the bandwidth estimate unless consecutive rate samples are
received. BBRx [24] adjusts the estimated bandwidth based
on the RTT deviation in an online learning manner. Different
from these studies, we use a utility function to evaluate the
delivery before and after the bandwidth update and revert to
the old value if the throughput degrades.
High retransmissions in BBR. The high retransmission rates
of BBR in shallow buffers have been recognized in prior stud-
ies [6, 14, 22]. To reduce the retransmissions, BBR-ACD [34]
halves its congestion window when three consecutive iden-
tical RTT samples are received or the latest RTT sample is
greater than 2×RTT estimate. BBR-A [33] is an extension to
BBR-ACD that additionally decreases its pacing rate while
the congestion window is reduced. In another study [45], the
accurate propagation latency is detected when competing with
CUBIC flows, and it cuts the congestion window to 1/3 of the
in-flight data once there is packet loss. The existing optimiza-
tions for reducing high retransmissions in BBR flows apply
loss-based multiplication to reduce the congestion window.
oBBR sets the congestion window as BDP plus a proportion
of bottleneck buffer so that the in-flight data will not keep de-
creasing even in a complex network, effectively guaranteeing
the transmission throughput.
Unfairness of BBR. BBR has also been criticized for its un-
fairness when competing with loss-based CCAs [23, 42, 55].
Models [37,52] are proposed for dissection. Researchers have
found that a BBR flow occupies the same share of bandwidth
regardless of how many loss-based flows coexist [52]. Fur-
thermore, if too many BBR flows coexist, their advantage in
throughput diminishes [37]. A learning-based model [27] has
been proposed for determining the type of competing flows
and mitigating the BBR’s aggressiveness once the competi-
tors are loss-based. Besides, a BBR flow gains a competitive
advantage against another BBR flow if its propagation time
is longer [32, 39, 40, 43, 49]. BBQ [32] enforces a cap to the
span of the period that BBR pours more data for bandwidth
probing. This bounds the advantage that a BBR flow with
a long delivery latency can gain. BBR-E [28] reduces the
in-flight data cap when the recent RTTs exceed a threshold.
In another work [26], a factor γ is designed to compensate for

the impacts of different RTTs, which makes the in-flight data
from various flows almost the same. The fairness of BBR is
out of the scope of this paper, but this is important and worth
further exploring in future work.
BBRv2. To address these problems, Google introduced
BBRv2 [11], which has been tested in a few studies [15, 25,
38, 54]. BBRv2 improves the fairness between flows with dif-
ferent RTTs and behaves less aggressively against loss-based
CCAs [15, 38]. BBRv2 also reduces the high retransmission
rates in BBR but at the cost of weakened resistance to packet
losses [25]. In a network with bandwidth fluctuations, BBRv2
performs poorly [54]. In this work, we strive to solve the
problems, i.e., degrading throughput and low responsiveness
towards network dynamics, that still exist in BBRv2.

7 Conclusion

In this work, we carefully analyze the reasons for high retrans-
missions in BBR flows. We notice that the packet losses in
shallow-buffered links are closely correlated to the in-flight
data cap and the buffer size. Additionally, the slow reaction to
bandwidth drops also makes BBR send excessive data to the
transmission channel, thus leading to high retransmissions. To
solve the problems, we design oBBR, which intelligently de-
tects the bottleneck buffer size and scales the in-flight data cap
accordingly, avoiding packet losses in the shallow-buffered
links. oBBR also detects the bandwidth drop in an accurate
and timely manner and tweaks its sending rate to avoid con-
gestion. Extensive experiments in both a lab environment
and the Internet have shown that oBBR significantly reduces
retransmissions while still reaching a high data delivery rate.

Acknowledgments

We thank our shepherd, Eric Eide, and the anonymous review-
ers for their constructive comments. This work has been par-
tially supported by the grants from the National Natural Sci-
ence Foundation of China (No.62102229 and No.62122042),
the Natural Science Foundation of Shandong Province, China
(No.ZR202206140010), and the Shandong Excellent Young
Scientists Fund Program Overseas (No.2023HWYQ-045).

548 2023 USENIX Annual Technical Conference USENIX Association

References

[1] Chromium. https://github.com/chromium/chromium/.

[2] Dash-Industry-Forum. https://github.com/Dash-Indus
try-Forum/dash.js/.

[3] Nginx-Quic. https://quic.nginx.org/.

[4] Amit Aggarwal, Stefan Savage, and Thomas E. Ander-
son. Understanding the Performance of TCP Pacing. In
Proceedings of the 19th IEEE Conference on Computer
Communications (INFOCOM), pages 1157–1165, 2000.

[5] Phillipe Austria, Chol Hyun Park, Ju-Yeon Jo, Yoohwan
Kim, Rahul Sundaresan, and Khanh D. Pham. BBR Con-
gestion Control Analysis with Multipath TCP (MPTCP)
and Asymmetrical Latency Subflow. In Proceedings of
the 12th Computing and Communication Workshop and
Conference (CCWC), pages 1065–1069, 2022.

[6] Yi Cao, Arpit Jain, Kriti Sharma, Aruna Balasubrama-
nian, and Anshul Gandhi. When to Use and When Not to
Use BBR: An Empirical Analysis and Evaluation Study.
In Proceedings of the 19th ACM SIGCOMM Internet
Measurement Conference (IMC), pages 130–136, 2019.

[7] Neal Cardwell and Yuchung Cheng. TCP BBR
Congestion Control Comes to GCP – Your Internet Just
Got Faster. https://cloud.google.com/blog/products/net
working/tcp-bbr-congestion-control-comes-to-gcp-y
our-internet-just-got-faster/, 2017.

[8] Neal Cardwell, Yuchung Cheng, C. Stephen Gunn,
Soheil Hassas Yeganeh, and Van Jacobson. BBR:
Congestion-Based Congestion Control: Measuring Bot-
tleneck Bandwidth and Round-Trip Propagation Time.
ACM Queue, 14(5):20–53, 2016.

[9] Neal Cardwell, Yuchung Cheng, C. Stephen Gunn,
Soheil Hassas Yeganeh, and Van Jacobson. BBR:
Congestion-Based Congestion Control. Communica-
tions of the ACM, 60(2):58–66, 2017.

[10] Neal Cardwell, Yuchung Cheng, Kevin Yang, So-
heil Hassas Yeganeh, Priyaranjan Jha, Yousuk Se-
ung, Luke Hsiao, Matt Mathis, Van Jacobson, Ian
Swett, Bin Wu, and Victor Vasiliev. BBRv2 Up-
date: Internet Drafts & Deployment Inside Google.
https://datatracker.ietf.org/meeting/112/materials/slid

es-112-iccrg-bbrv2-update-00/, 2021.

[11] Neal Cardwell, Yuchung Cheng, Soheil Hassas Yeganeh,
Ian Swett, and Van Jacobson. BBR Congestion Control.
https://datatracker.ietf.org/doc/draft-cardwell-iccrg-b
br-congestion-control/02/, 2022.

[12] Erik Carlsson and Eirini Kakogianni. Smoother Stream-
ing with BBR. https://engineering.atspotify.com/2018/
08/smoother-streaming-with-bbr/, 2018.

[13] Federico Chiariotti, Andrea Zanella, Stepán Kucera, and
Holger Claussen. BBR-S: A Low-Latency BBR Mod-
ification for Fast-Varying Connections. IEEE Access,
9:76364–76378, 2021.

[14] Mo Dong, Tong Meng, Doron Zarchy, Engin Arslan,
Yossi Gilad, Brighten Godfrey, and Michael Schapira.
PCC Vivace: Online-Learning Congestion Control. In
Proceedings of the 15th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI),
pages 343–356, 2018.

[15] Jose Gomez, Elie Kfoury, Jorge Crichigno, Elias Bou-
Harb, and Gautam Srivastava. A Performance Evalua-
tion of TCP BBRv2 Alpha. In Proceedings of the 43rd
International Conference on Telecommunications and
Signal Processing (TSP), pages 309–312, 2020.

[16] Carlo Augusto Grazia, Natale Patriciello, Martin Klapez,
and Maurizio Casoni. BBR+: Improving TCP BBR
Performance over WLAN. In Proceedings of the IEEE
International Conference on Communications (ICC),
pages 1–6, 2020.

[17] Phuong Ha, Minh Vu, Tuan-Anh Le, and Lisong Xu.
TCP BBR in Cloud Networks: Challenges, Analysis,
and Solutions. In Proceedings of the 41th IEEE Inter-
national Conference on Distributed Computing Systems
(ICDCS), pages 943–953, 2021.

[18] Sangtae Ha, Injong Rhee, and Lisong Xu. CUBIC:
A New TCP-friendly High-Speed TCP Variant. ACM
SIGOPS Operating Systems Review, 42(5):64–74, 2008.

[19] Habtegebreil Haile, Karl-Johan Grinnemo, Per Hurtig,
and Anna Brunström. RBBR: A Receiver-Driven BBR
in QUIC for Low-Latency in Cellular Networks. IEEE
Access, 10:18707–18719, 2022.

[20] Jiangping Han, Kaiping Xue, Yitao Xing, Peilin Hong,
and David S. L. Wei. Measurement and Redesign of
BBR-Based MPTCP. In Proceedings of the ACM SIG-
COMM Conference Posters and Demos, pages 75–77,
2019.

[21] Stephen Hemminger. Network emulation with NetEm.
In Proceedings of the Linux conf au, volume 5, 2005.

[22] Mario Hock, Roland Bless, and Martina Zitterbart. Ex-
perimental Evaluation of BBR Congestion Control. In
Proceedings of the 25th IEEE International Conference
on Network Protocols (ICNP), pages 1–10, 2017.

USENIX Association 2023 USENIX Annual Technical Conference 549

https://github.com/chromium/chromium/
https://github.com/Dash-Industry-Forum/dash.js/
https://github.com/Dash-Industry-Forum/dash.js/
https://quic.nginx.org/
https://cloud.google.com/blog/products/networking/tcp-bbr-congestion-control-comes-to-gcp-your-internet-just-got-faster/
https://cloud.google.com/blog/products/networking/tcp-bbr-congestion-control-comes-to-gcp-your-internet-just-got-faster/
https://cloud.google.com/blog/products/networking/tcp-bbr-congestion-control-comes-to-gcp-your-internet-just-got-faster/
https://datatracker.ietf.org/meeting/112/materials/slides-112-iccrg-bbrv2-update-00/
https://datatracker.ietf.org/meeting/112/materials/slides-112-iccrg-bbrv2-update-00/
https://datatracker.ietf.org/doc/draft-cardwell-iccrg-bbr-congestion-control/02/
https://datatracker.ietf.org/doc/draft-cardwell-iccrg-bbr-congestion-control/02/
https://engineering.atspotify.com/2018/08/smoother-streaming-with-bbr/
https://engineering.atspotify.com/2018/08/smoother-streaming-with-bbr/

[23] Per Hurtig, Habtegebreil Haile, Karl-Johan Grinnemo,
Anna Brunström, Eneko Atxutegi, Fidel Liberal, and
Åke Arvidsson. Impact of TCP BBR on CUBIC Traffic:
A Mixed Workload Evaluation. In Proceedings of the
30th International Teletraffic Congress (ITC), pages 218–
226, 2018.

[24] Jae Won Chung, Feng Li, and Beomjun Kim. BBRx:
Extending BBR for Customized TCP Performance. In
Proceedings of the Proc. NetDev 0x12, pages 262–276,
2018.

[25] Elie F. Kfoury, Jose Gomez, Jorge Crichigno, and Elias
Bou-Harb. An Emulation-Based Evaluation of TCP
BBRv2 Alpha for Wired Broadband. Computer Com-
munications, 161:212–224, 2020.

[26] Geon-Hwan Kim and You Ze Cho. Delay-Aware BBR
Congestion Control Algorithm for RTT Fairness Im-
provement. IEEE Access, 8:4099–4109, 2020.

[27] Geon-Hwan Kim, Yeong-Jun Song, and You-Ze Cho.
Improvement of Inter-protocol Fairness for BBR Con-
gestion Control Using Machine Learning. In Proceed-
ings of the International Conference on Artificial Intel-
ligence in Information and Communication (ICAIIC),
pages 501–504, 2020.

[28] Geon-Hwan Kim, Yeong-Jun Song, Imtiaz Mahmud,
and You-Ze Cho. Enhanced BBR Congestion Control
Algorithm for Improving RTT Fairness. In Proceedings
of the 11th International Conference on Ubiquitous and
Future Networks (ICUFN), pages 358–360, 2019.

[29] Leonard Kleinrock. Power and Deterministic Rules of
Thumb for Probabilistic Problems in Computer Com-
munications. In Proceedings of the IEEE International
Conference on Communications (ICC), pages 43.1.1–
43.1.10, 1979.

[30] Adam Langley, Alistair Riddoch, Alyssa Wilk, Antonio
Vicente, Charles Krasic, Dan Zhang, Fan Yang, Fedor
Kouranov, Ian Swett, Janardhan R. Iyengar, Jeff Bailey,
Jeremy Dorfman, Jim Roskind, Joanna Kulik, Patrik
Westin, Raman Tenneti, Robbie Shade, Ryan Hamilton,
Victor Vasiliev, Wan-Teh Chang, and Zhongyi Shi. The
QUIC Transport Protocol: Design and Internet-Scale
Deployment. In Proceedings of the ACM SIGCOMM
Conference (SIGCOMM), pages 183–196, 2017.

[31] Jinting Lin, Lin Cui, Yuxiang Zhang, Fung Po Tso, and
Quanlong Guan. Extensive Evaluation on the Perfor-
mance and Behaviour of TCP Congestion Control Pro-
tocols under Varied Network Scenarios. Computer Net-
works, 163:106872, 2019.

[32] Shiyao Ma, Jingjie Jiang, Wei Wang, and Bo Li. Fair-
ness of congestion-based congestion control: Exper-
imental evaluation and analysis. arXiv preprint
arXiv:1706.09115, 2017.

[33] Imtiaz Mahmud and You-Ze Cho. BBR Advanced
(BBR-A) - Reduced Retransmissions with Improved
Fairness. ICT Express, 6(4):343–347, 2020.

[34] Imtiaz Mahmud, Geon-Hwan Kim, Tabassum Lubna,
and You-Ze Cho. BBR-ACD: BBR with Advanced
Congestion Detection. Electronics, 9(1):136, 2020.

[35] Imtiaz Mahmud, Tabassum Lubna, Yeong-Jun Song, and
You-Ze Cho. Coupled Multipath BBR (C-MPBBR): A
Efficient Congestion Control Algorithm for Multipath
TCP. IEEE Access, 8:165497–165511, 2020.

[36] Ayush Mishra, Xiangpeng Sun, Atishya Jain, Sameer
Pande, Raj Joshi, and Ben Leong. The Great Internet
TCP Congestion Control Census. Proceedings of the
ACM on Measurement and Analysis of Computing Sys-
tems, 3(3):45:1–45:24, 2019.

[37] Ayush Mishra, Wee Han Tiu, and Ben Leong. Are we
heading towards a BBR-dominant internet? In Proceed-
ings of the 22th ACM SIGCOMM Internet Measurement
Conference (IMC), pages 538–550, 2022.

[38] Aarti Nandagiri, Mohit P. Tahiliani, Vishal Misra, and
K. K. Ramakrishnan. BBRvl vs BBRv2: Examining
Performance Differences through Experimental Evalu-
ation. In Proceedings of the 26th IEEE International
Symposium on Local and Metropolitan Area Networks
(LANMAN), pages 1–6, 2020.

[39] Wansu Pan, Xiaofeng Li, Haibo Tan, Jinlin Xu, and Xiru
Li. Improvement of RTT Fairness Problem in BBR
Congestion Control Algorithm by Gamma Correction.
Sensors, 21(12):4128, 2021.

[40] Wansu Pan, Haibo Tan, Xiru Li, and Xiaofeng Li. Im-
proved RTT Fairness of BBR Congestion Control Al-
gorithm Based on Adaptive Congestion Window. Elec-
tronics, 10(5):615, 2021.

[41] Darijo Raca, Dylan Leahy, Cormac J. Sreenan, and Ja-
son J. Quinlan. Beyond Throughput, the Next Genera-
tion: A 5G Dataset with Channel and Context Metrics.
In Proceedings of the 11th ACM SIGMM Conference on
Multimedia Systems (MMSys), pages 303–308, 2020.

[42] Kanon Sasaki, Masato Hanai, Kouto Miyazawa, Aki
Kobayashi, Naoki Oda, and Saneyasu Yamaguchi. TCP
Fairness Among Modern TCP Congestion Control Al-
gorithms Including TCP BBR. In Proceedings of the 7th
IEEE International Conference on Cloud Networking
(CloudNet), pages 1–4, 2018.

550 2023 USENIX Annual Technical Conference USENIX Association

[43] Dominik Scholz, Benedikt Jaeger, Lukas Schwaighofer,
Daniel Raumer, Fabien Geyer, and Georg Carle. To-
wards a Deeper Understanding of TCP BBR Congestion
Control. In Proceedings of the 17th IFIP International
Conference on Networking, pages 109–117, 2018.

[44] Tarun Singhania, Wasim Arif, and Debarati Sen. B3R: A
New Approach to BBR Congestion Control for Shallow
Buffers. In Proceedings of the Advanced Communica-
tion Technologies and Signal Processing (ACTS), pages
1–6, 2021.

[45] Yeong-Jun Song, Geon-Hwan Kim, and You-Ze Cho.
Improvement of Cyclic Performance Variation between
TCP BBR and CUBIC. In Proceedings of the 25th Asia-
Pacific Conference on Communications (APCC), pages
1–6, 2019.

[46] Kevin Spiteri, Ramesh K. Sitaraman, and Daniel Spara-
cio. From Theory to Practice: Improving Bitrate Adapta-
tion in the DASH Reference Player. ACM Transactions
on Multimedia Computing, Communications, and Appli-
cations, 15(2s):67:1–67:29, 2019.

[47] Thomas Stockhammer. Dynamic Adaptive Streaming
over HTTP: Standards and Design Principles. In Pro-
ceedings of the 2nd ACM SIGMM Conference on Multi-
media Systems (MMSys), pages 133–144, 2011.

[48] Bo Su, Xianliang Jiang, Guang Jin, and Haiming Chen.
Rethinking the Rate Estimation of BBR Congestion
Control. Electronics Letters, 56(5):239–241, 2020.

[49] Weifeng Sun, Minghan Jia, Guanghao Zhang, and Zun
Wang. RFBBR: A RTT Faireness Awared Algorithm
Based on BBR. In Proceedings of the International
Conferences on Smart Internet of Things (SmartIoT),
pages 124–131, 2020.

[50] Santiago Vargas, Rebecca Drucker, Aiswarya Ren-
ganathan, Aruna Balasubramanian, and Anshul Gandhi.
BBR Bufferbloat in DASH Video. In Proceedings of
the 30th The Web Conference (WWW), pages 329–341,
2021.

[51] Santiago Vargas, Gautham Gunapati, Anshul Gandhi,
and Aruna Balasubramanian. Are Mobiles Ready for
BBR? In Proceedings of the 22th ACM SIGCOMM
Internet Measurement Conference (IMC), pages 551–
559, 2022.

[52] Ranysha Ware, Matthew K. Mukerjee, Srinivasan Se-
shan, and Justine Sherry. Modeling BBR’s Interactions
with Loss-Based Congestion Control. In Proceedings of
the 19th ACM SIGCOMM Internet Measurement Con-
ference (IMC), pages 137–143, 2019.

[53] Ranysha Ware, Matthew K Mukerjee, Justine Sherry,
and Srinivasan Seshan. The Battle for Bandwidth: Fair-
ness and Heterogeneous Congestion Control. USENIX
Symposium on Networked Systems Design and Imple-
mentation Poster, 2018.

[54] Furong Yang, Qinghua Wu, Zhenyu Li, Yanmei Liu, Gio-
vanni Pau, and Gaogang Xie. BBRv2+: Towards Bal-
ancing Aggressiveness and Fairness with Delay-Based
Bandwidth Probing. Computer Networks, 206:108789,
2022.

[55] Yuxiang Zhang, Lin Cui, and Fung Po Tso. Modest BBR:
Enabling Better Fairness for BBR Congestion Control.
In Proceedings of the 23th International Symposium
on Computers and Communications (ISCC), pages 646–
651, 2018.

[56] Zhenzhe Zhong, Isabelle Hamchaoui, Rida Khatoun, and
Ahmed Serhrouchni. Performance Evaluation of CQIC
and TCP BBR in Mobile Network. In Proceedings of
the 21th Conference on Innovation in Clouds, Internet
and Networks (ICIN), pages 1–5, 2018.

USENIX Association 2023 USENIX Annual Technical Conference 551

	Introduction
	Background
	Retransmissions in BBR
	Shallow-Buffered Link
	Bandwidth Drop

	Design
	Adaptive g
	Timely Bandwidth Updates
	Competitiveness Analysis

	Evaluation
	Experimental Setup
	Retransmissions and Throughput
	Stable Network Environment
	Variable Bandwidth
	Realistic Network Traces
	Competitiveness
	Internet

	Video Streaming
	Experimental setup
	Metrics
	Results and analysis

	Related Work
	Conclusion

