StRAID: Stripe-threaded Architecture for
Parity-based RAIDs with Ultra-fast SSDs

Shucheng Wang!, Qiang Cao?, Ziyi Lu!, Hong Jiang?,
Jie Yao! and Yuanyuan Dong?
T Huazhong University of Science and Technology

2 University of Texas Arlington

3 Alibaba Group

RAID Systems

 RAID (Redundant Array of Independent Disks) is widely used
* Non-parity RAID:

» RAID-0 (striping) and RAID-1 (mirroring) Ej B Ej

e Parity-based RAID:

RAID 5
> RAID-4/5/6 (1

» Balancing performance and reliability

» Read-modify-write nature i:%—f -~—g-~* E”—"—f

e | We | We
Bup1 Wip2 bp
Disk 0 Disk 1 Disk 2

RAID Systems

 RAID (Redundant Array of Independent Disks) is widely used
* Non-parity RAID:

» RAID-0 (striping) and RAID-1 (mirroring) Ej B Ej

e Parity-based RAID:

RAID 5
> RAID-4/5/6 (
» Balancing performance and reliability
» Read-modify-write nature if%—” g i‘%ﬂ*’
——
Bup1 Wip2 op
e Linux MD: popular software RAID component Disk0 Disk1 Disk2

e Linux kernel module
e No need for extra hardware
e Compatible with various storages

SSD Storage Trend

* Modern SSD hardware delivers higher write throughput

12

0
= 10.1
€ 10
o 8
=)
5 6
o
£ 4
=
2
0
Products Samsung 860 Intel DC P3700 Intel DC P4610 Samsung 980 Samsung Phison
PRO PRO PM1743
Interface SATA 3.0 PCle 3.0 PCle 3.1 PCle 4.0 PCle 5.0 PCle 5.0
Protocol SATA NVMe NVMe NVMe NVMe NVMe

Release Date Q118 Q214 Q218 Q3'20 Q1'22 Unknown

Linux MD upon SSDs

* Motivational Test

* RAIDs setup
» Non-parity: RAID-0 level
» Parity-based: RAID-5 (5+1) and RAID-6 (4+2) level
— Enable the multi-worker mechanism

e SSD products

Device Types Products Capacit Stable Write Stable Read
yp pacity Throughput (MB/s) Throughput (MB/s)
SATA SSD Samsung 860 PRO 512GB 500 510
NVMe SSD Samsung 970 PRO 512GB 2200 3200
NVMe SSD Samsung 980 PRO 1TB 2600 6900

> 14 GB/s total write bandwidth
on six SSDs

Multi-thread Write Scalability

e Parity-based RAIDs fail to scale for high-performance SSDs
» Larger performance gap on fast SSDs
» Full-stripe writes (1MB, without read-modify-write) still suffers

SATA SSDs NVMe SSDs (64KB 1/0) NVMe SSDs (IMB 1/0)

—
(S]]

2.6X - 5X

I—IA/./I‘P.

1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64
of threads # of threads # of threads

Throughput (GB/s)
Throughput (GB/s)
N oo
\l
X
 —
Throughput (GB/s)
o o

o

-o-RAID-0 -®RAID-5 -4RAID-6 -&-RAID-0 -#RAID-5 -4RAID-6 -8-RAID-0 -®RAID-5 -4&RAID-6

Multi-thread Write Scalability

e Parity-based RAIDs fail to scale for high-performance SSDs

A diminishing return in performance of the multi-worker mechanism
» Throughput gains peak at +16 worker threads (WTs)
» 5% decline with more WTs

Performance contribution of the multi-worker mechanism

1400

. —a—1UT

wn

=) 1200 2 UTs

< 1000 4 UT

= 800 S

_g 400 8 UTs

g 400 16 UTs

E 200 32 UTs
0 —o—64 UTs

Single +1 +2 +4 +8 +16 +32 +64
of worker threads

Analysis of MD

e "N-for-all" processing model

e Incoming block I/Os are
temporarily stored in the
Stripe Cache

* Aggregate bios at the granularity
of stripes

e Use stripe_heads (SH) to
maintain stripe states

e Store SHs in stripe_lists

FS Layer

Linux RAID-4/5/6 v v
Module [hashing }

——

[

L s tripe_ lists] %

——> handle_list][] [] [5
[

S
—>[inactive_list]

\ 4

Stripe
P

BT N

———————————————————————— N

[Disk i
1 Group I
1
\ SSD1 SSD2 SSD3 SSD4 ,I

e e o o e e e M e M M M e e M M e e

Block Layer

o

User Thread

@ RAID worker

Thread

bio Block I/0O

stripe_head
SH E] with state S

SH Uninitialized
......... 4 stripe_head |,

N e e e = = - ——

Analysis of MD

e "N-for-all" processing model

e Incoming block I/Os are
temporarily stored in the
Stripe Cache

e A set number of WTs
asynchronously and non-
exclusively handle stripe-
write tasks

FS Layer

Linux RAID-4/5/6
Module

——

[stripe_lists]

—>{ handle_list |

i --------
(__hashing _}
;..............:
SH SH

P R e e e e e

- [[
—>[inactive_list]
Stripe
I_’

Cache it .t

[Disk

1 Group

|

\

SSD 1

Ssb4 -,

e e o o e e e M e M M M e e M M e e

Block Layer

User Thread

@ RAID worker

Thread

bio Block I/0O

stripe_head
SH E] with state S

SH Uninitialized
......... 4 stripe_head |,

N e e e = = - ——

Analysis of MD

e MD’s concurrency control

» The device_lock in MD

e A spin-lock shared between WTs

e For updating shared structures
(stripe_lists and metadata, etc.)

—[stripe_lists]

—

a conf->device_lock
handle_list |

P

4>[inactive list]

L

10

Analysis of MD

e MD’s concurrency control
> MD device lock —{ stripeists | BN
e A spin-lock shared between WTs —{_ handle list |

* For updating shared structures L-_,-_,-_,-_,

(stripe_lists and metadata, etc)

» Stripe-write workflow: ——{__inactive list |

L

e Multi-stage stripe processing

) ®@
() (700) &

|$ WRITE |$ CLEAR

.
&

11

Analysis of MD

e MD’s concurrency control
» MD device lock —_stripe.tists_|

a conf->device_lock
e A spin-lock shared between WTs —{_ handle list |

* For updating shared structures L-_,-_y - 7
P & /A 7

(stripe_lists and metadata, etc)

> Stripe-write workflow: | nactiveist_] 3 ‘ (1)

e Multi-stage stripe processing

e Four handling steps in each stage - SH

1. Fetch a SH from handle list |)
e o @ OO®
w J
~V"
INSERT I$ I$ I$ WRITE I$ CLEAR
1

2

Analysis of MD

Stripe states -

a Cconi STRIPE_ACTIVE

STRIPE_INSYNC

e MD’s concurrency control

» MD device lock —{_stripe.lists_|
e A spin-lock shared between WTs —{ _ handle list |

v
X
. R5_Wantread v
e For updating shared structures L-_,-_,-
R5_Wantwrite X

(stripe_lists and metadata, etc)
> Stripe-write workflow: ——{_ maevelist | (1 merE)

e Multi-stage stripe processing

e Four handling steps in each stage - SH

©
©
©
)

2. Analyze stripe & device states

- Use semaphores

g J
~"
- Need rcu_read lock
INSERT I$ I$ I$ WRITE I$ CLEAR
1

3

Analysis of MD

e MD’s concurrency control
» MD device lock —_stripe.tists_|

a conf->device_lock
e A spin-lock shared between WTs —{_ handle list |
* For updating shared structures L-_’-_’-_' -

(stripe_lists and metadata, etc)

> Stripe-write workflow: [i_j"““”‘""“) \@
e Multi-stage stripe processing > _'- @
: : 7)
* Four handling steps in each stage %/A 7 9

©
©
)

3. Operations for handling stripe

w _J
~N"
4. Release and insert the SH into a
stripe_list INSERT I$ I$ I$ WRITE I$ CLEAR
1

4

Analysis of MD

 Breakdown of CPU cycles on critical functions and locks in WTs

» CPU becomes the bottleneck on concurrency control
» Few CPU cycles are used to drive I/Os = storage devices are underutilized

100
S Analyzing stripe states
v 80 - 1 (15% CPU cycles)
= L !
o 60 = 1
2 1 K
o 40 ! | .) .
< : : Spin-locking for updating
o 20 = 1 stripe_lists and metadata
I I 1 (55% CPU cycles)
Single +1 +2 +4 +8 +16 +32 +64
of worker threads Storage accessing and XORing
mDisk|/0 EXOR ®Lock DAnalyze ©EOthers (<10% CPU cycles)

15

StRAID overview

. |
e "One-for-one" processing model @ i @
I
. |s: '
Goals ;
> Efficient CPU utilization p b Ny) .
» Reduce partial-stripe-write penalty i
e Stripe-threaded architecture i
> Dedicated WT for each stripe-write (Lmserr Jgsu 11| (Livserr) °H
|
 Eliminate global lock 2|2) 2|2 -
. . =|» | =|w
e Reduce stripe state checking & D o 3D
ol O | (o [&)
=fe | E|8
ni|ia : mnla
v 1) 4
| RETURN) | (RETURN)
N Ji J StRAID
2 OO00
 Group :
|

\ SSD 1 SSb2 SSD3 SSD4

StRAID overview

e "One-for-one" processing model @
e Goals:
"y

» Efficient CPU utilization
» Address partial-stripe-write penalty

e Stripe-threaded architecture

Stripe Stripe | Shared
ID Lock States

5 Locked

®
B

8 8 Locked

|
|
[INSERT)i sH E
|
g L g2 O
alg | 8|6 Stripe State Table
. — | = | O
» Stripe State Table B e | B|a
|
e Conduct thread collaboration v ! Y
R _ | RETURN) ; | RETURN)
* Maintain indispensable shared stripe I
_ \. AR J StRAID
states and per-stripe locks :
[Disk)
: Group :
! |

\ SSD 1 SsD2 SSD3 _ SSD4

StRAID overview

e "One-for-one" processing model

e Goals:
» Efficient CPU utilization
» Address partial-stripe-write penalty

e Stripe-threaded architecture

» Two-phase stripe submission
e Opportunistic write batching

* Per-stripe batching queue

()

Iy

4 hd 4
INSERT INSERT | 1pm wmn

~

SH

SH
5 8
\ 4 D \ 4 C]
RETURN) rerurn) i)
. J
[Disk
Group
——-—w—--S5SD1_ SSD2 SSD3 _ SSDA4_

J

Batching
Queue

StRAID

StRAID's Concurrency Control

e An example: four I/O threads issue block I/Os

» bio0 — stripe 5
» bio1l to bio3 — stripe 8

bio 0 Lock S5
arriving (True)
>
WTO Time Line
bio 1 Lock S8
arriving (True)

>
WT1 Time Line

WT2 Time Line

>

WT3 Time Line

>

Stripe State Table
Stripe ID S|_t(;|£|<e TID is_batching
5 Locked 0 True
8 Locked 1 True

StRAID's Concurrency Control

 Dedicated WT aggregates requests targeting the same stripe in the batching phase

A_$5°s batching phase
4 A\
bio 0 Lock S5
arriving (True) >< Read & Batch >

‘A_S8’s batching phase
A

Stripe

Stripe ID Lock

TID is_batching

5 Locked 0 True

8 Locked 1 True

bio 1 Lock S8
C arriving (True) >< Read & Batch >
. > Stripe State Table

StRAID's Concurrency Control

 Dedicated WT aggregates requests targeting the same stripe in the batching phase

ASS ’s batching phase
r N
bio 0 Lock S5
arriving (True) >< Read & Batch >
‘A_S8’s batching phase
A
bio 1 Lock S8
arriving (True) >< Read & Batch >
bio2 |/ Lock S8 \/ S8 Batch
arriving [\ (False) (True)

Stripe State Table
Stripe ID Sl_tgfke TID is_batching
5 Locked 0 True
8 Locked 1 True

21

StRAID's Concurrency Control

 Dedicated WT aggregates requests targeting the same stripe in the batching phase

A_$5°s batching phase
4 A
bio 0 Lock S5
arriving (True) >< FERE] L BRI >
>
‘A_S8’s batching phase
A
bio 1 Lock S8
arriving (True) >< Read & Batch > Q
> Stripe State Table
bi \ Waiting for WT1 to Stripeip | SUiPe 10 | s batchi
|_0'2 Lock S8 \/ S8 Batch Push bio to Batching > ripe L ock is_batching
e (False) (True) Queue (WTL) / complete 5 Locked 0 True
>
8 Locked 1 True
4

StRAID's Concurrency Control

 Dedicated WT stops batching phase after reading complete

Stop Stripe 5
bio 0 Lock S5 batching
arriving (True) >< Read & Batch >®
4
Stop Stripe 8
blo L Lock S8 batching
arriving (True) >< Read & Batch >®
4

bio 2 Lock S8 ><88 Batc >< Push bio to Batching \ Waiting for WT1 to>

arriving [\ (False) True) Queue (WT1) / complete
>

Stripe State Table
Stripe ID Sl_tgfke TID is_batching
5 Locked | 0

 Dedicated WT stops batching phase after reading complete
e Requests failed to batch must wait for the dedicated WT to complete

StRAID's Concurrency Control

Stop Stripe 5
bio 0 Lock S5 batching
arriving (True) >< Read & Batch >®
4
Stop Stripe 8
bio 1 Lock S8 batching
arriving (True) >< Read & Batch >®
4
bio2 |/ Lock S8 \/' S8 Batch Push bio to Batching \ __\Vaiting for WT1 to
amving 1\ - (False) /\ - (True) Queve (WT1) /" complete

>

bio 3
arriving

Lock S8 SR Waiting for WT1 to

>

(False) (False) complete

>

Stripe State Table
Stripe ID Sl:[(;'(ff TID is_batching
5 Locked 0 False
8 Locked 1

2

4

o After completing stripe processing, WT cleans up SST-entry and returns 1/O

StRAID's Concurrency Control

bio0 |/ Lock S5 Clear\] bio0
arriving [\ (True) >< Read & Batch >‘<Batch|ng><Re rea><XOR><erte>< ssT /| return
WTO Time Line
biol |/ Lock S8 : : Clear\| bio1l
arriving \ (True) >< Read & Batch ><Batch|ng><Re-rea><XOR><Wnte>< ssT /| return |
Stripe State Table
WT1 Time Line
bio 2 |/ Lock S8\ /S8 Batch\/ Push bio to Batchin bio 2 Stripe ID Slit;flf TID | is_batching
. (Fal g Waiting for WT1 to complete
g alse) Queue(WT1) , | return , 5 Uileahed
WT2 Time Line
bio3 |/ Lock S8\ /S8 Batch\ Waiting for WT1 ° Unlocked
arriving [\ (False) /\ (False) complete

>

WT3 Time Line

StRAID's Concurrency Control

e The waiting WT will try to re-acquire the stripe lock

bio0 |/ Lock S5 : : Clear\| bio0
arriving [\ (True) >< Read & Batch >< Batchlng><Re-rea><XOR><Wr|te>< ssT / retun
@
@ WTO Time Line
biol |/ Lock S8 : : Clear\| bio1l
arriving \ (True) >< Read & Batch >< Batch|ng><Re-rea><XOR><Wr|te>< ssT /| retum |
. Stripe State Table
WT1 Time Line
bio2 |/Lock S8\/s8 Batch\/ Push bio to Batchin bio 2 swipeD | 0E¢ | TID | is batching
. ate ush bio to batching Waiting for WT1 to complete
arriving |\ (False) Queue(WT1) .| return 5 Uil
° >
WT2 Time Line
bio3 |/ Lock S8\ /S8 Batch\ Waiting for WT1 Lock S8 8 Locked 3 True
arriving [\ (False) /\ (False) o complete (Trye)
WT3 Time Line

Evaluation Setup

e Platform
System Linux kernel version 5.13
CPU Duel Intel Xeon Gold 6328 CPU (totally 56 physical cores)
Memory 256 GB
6 x Samsung 970PRO (NVMe, 2.2GB/s stable write)
>5P 6 x Samsung 980PR0O (NVMe, 2.6GB/s stable write)
PM 6 x Intel Optane PM 128GB (2.3GB/s stable write)
* RAID setup

» RAID-5 (5+1) and RAID-6 (4+2) with 64KB chunk size
e Workloads

» Micro-benchmarks: partial-stripe writes (64KB) and full-stripe writes (1MB)
» Macro-benchmarks: traces from Microsoft, Ali-Pangu, and Filebench

Micro-benchmark Results

e StRAID archives 2.4x - 3.1x higher write throughput than MD

e StRAID reduces 76% - 90% average write latency from MD

Write Throughput

—_—
o DN

Throughput (GB/s)

o N B~ o0

1 2 4 8 16 32 64
of user threads

-B- StRAID-P —e—StRAID-F - MD-P —e—-MD-F

Latency (us)

Average Latency
10000

1 2 4 8 16 32 64

of user threads

B StRAID-P mStRAID-F mMD-P EmMD-F

Breakdown of CPU cycles

e StRAID reduces up to 90% lock overhead

e < 5% CPU overhead on the two-phase submission

e The total CPU utilization of StRAID is up to 6.3x lower than MD

Breakdown of CPU Total CPU Utilizations (lower is better)

100% 5000
S _ m 4495%
= 80% . --- _ 4000 ’
@ .)/ S
o 7 , 5
‘3\ 60% I/ // % 3000
> ! % — 2000
O 40% / -6
s) F 1000
9 [} /
S 20% , .
o

0% 1 2 4 8 16 32 64
MD-P StRAID-P MD-F StRAID-F # of user threads

BI/0 BXOR MBatching BMLock @Analyze B Other - #- StRAID-P —e—StRAID-F -®- MD-P —e—MD-F

Upper bound Evaluation

e Run StRAID over six ramdisks (*-RAM) and Intel Optane PMs (*-PM)

e StRAID on RAMs archives up to 5.8x higher throughput than MD

Partial-stripe writes

g EB— B St bl Sl

1 2 4 8 16 32 b4
of user threads

- @®- StRAID-PM —e—StRAID-RAM MD-PM ——MD-RAM

Full-stripe writes
>35GB/s

w B
o o

—
o

Throughput (GB/s)
N
o

1 2 4 8 16 32 64
of user threads

- ®- StRAID-PM —e—StRAID-RAM MD-PM ——MD-RAM

Macro-benchmark Results

e Average throughput: 2x — 2.8x higher than MD
* Mean, average, and 99"-percentile latency: 10.3x, 49%, and 25% lower than MD

— Throughput Throughput — Throughput
% 6 10 < 5
G} =MD m /_/-V""V’\’ 5
A o 8 =
5 4 \’wa\ —StRAID = 4 5
Q. o
o < 4 [=)
o} 2 g’ =]
8 wa o 2 8
= = o
“ o0 = 0 =0
1 m 21 31 41 51 61 1 1 21 31 0 20 40 60 80
Time (seconds) Time (seconds) Time (seconds)
Latency CDF Latency CDF Latency CDF
100 100 100
w 50 L 50 L 50
o —MD o o
0 —StRAID 0 0
0 1 2 3 0 2 4 6 0 1 2 3
Latency (ms) Latency (ms) Latency (ms)

Ali-Pangu Filebench (fileserver) Microsoft (prn0)

Conclusion

e StRAID: a new architecture for parity-based RAID on SSDs

» Stripe-threaded architecture to efficiently parallelize stripe-write tasks
» Two-phase stripe submission to address partial-stripe-write penalty
» Performs significantly better than existing Linux MD

e See paper for more details

e Source code: https://github.com/wsczal/straid

Thanks

https://github.com/wsczq1/straid

	StRAID: Stripe-threaded Architecture for Parity-based RAIDs with Ultra-fast SSDs
	RAID Systems
	RAID Systems
	SSD Storage Trend
	Linux MD upon SSDs
	Multi-thread Write Scalability
	Multi-thread Write Scalability
	Analysis of MD
	Analysis of MD
	Analysis of MD
	Analysis of MD
	Analysis of MD
	Analysis of MD
	Analysis of MD
	Analysis of MD
	StRAID overview
	StRAID overview
	StRAID overview
	StRAID's Concurrency Control
	StRAID's Concurrency Control
	StRAID's Concurrency Control
	StRAID's Concurrency Control
	StRAID's Concurrency Control
	StRAID's Concurrency Control
	StRAID's Concurrency Control
	StRAID's Concurrency Control
	Evaluation Setup
	Micro-benchmark Results
	Breakdown of CPU cycles
	Upper bound Evaluation
	Macro-benchmark Results
	Conclusion

