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RAID Systems
• RAID (Redundant Array of Independent Disks) is widely used

• Non-parity RAID:
 RAID-0 (striping) and RAID-1 (mirroring)

• Parity-based RAID: 
 RAID-4/5/6
 Balancing performance and reliability
 Read-modify-write nature
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RAID Systems
• RAID (Redundant Array of Independent Disks) is widely used

• Non-parity RAID:
 RAID-0 (striping) and RAID-1 (mirroring)

• Parity-based RAID: 
 RAID-4/5/6
 Balancing performance and reliability
 Read-modify-write nature

• Linux MD: popular software RAID component
• Linux kernel module
• No need for extra hardware
• Compatible with various storages
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SSD Storage Trend

• Modern SSD hardware delivers higher write throughput
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Linux MD upon SSDs
• Motivational Test

• RAIDs setup
 Non-parity: RAID-0 level
 Parity-based: RAID-5 (5+1) and RAID-6 (4+2) level

− Enable the multi-worker mechanism

• SSD products

Device Types Products Capacity Stable Write 
Throughput (MB/s)

Stable Read 
Throughput (MB/s)

SATA SSD Samsung 860 PRO 512GB 500 510

NVMe SSD Samsung 970 PRO 512GB 2200 3200

NVMe SSD Samsung 980 PRO 1TB 2600 6900

5
> 14 GB/s total write bandwidth

on six SSDs



Multi-thread Write Scalability
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• Parity-based RAIDs fail to scale for high-performance SSDs
 Larger performance gap on fast SSDs
 Full-stripe writes (1MB, without read-modify-write) still suffers
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Multi-thread Write Scalability
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• Parity-based RAIDs fail to scale for high-performance SSDs
• A diminishing return in performance of the multi-worker mechanism
 Throughput gains peak at +16 worker threads (WTs)
 5% decline with more WTs
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Analysis of MD
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• "N-for-all" processing model
• Incoming block I/Os are 

temporarily stored in the 
Stripe Cache 

• A set number of WTs 
asynchronously and non-
exclusively handle stripe-
write tasks
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Analysis of MD
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• MD’s concurrency control
 The device_lock in MD

• A spin-lock shared between WTs
• For updating shared structures 

(stripe_lists and metadata, etc.)

conf->device_lock

handle_list

stripe_lists

inactive_list

SH



Analysis of MD
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• MD’s concurrency control
MD device lock 

• A spin-lock shared between WTs
• For updating shared structures 

(stripe_lists and metadata, etc)

 Stripe-write workflow:
• Multi-stage stripe processing 
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Analysis of MD
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• MD’s concurrency control
MD device lock 

• A spin-lock shared between WTs
• For updating shared structures 

(stripe_lists and metadata, etc)

 Stripe-write workflow:
• Multi-stage stripe processing 
• Four handling steps in each stage

1. Fetch a SH from handle_list

conf->device_lock

handle_list

stripe_lists

inactive_list

READ XOR WRITE CLEARINSERT

WT WT WT WTWT Pool

SH





Analysis of MD
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• MD’s concurrency control
MD device lock 

• A spin-lock shared between WTs
• For updating shared structures 

(stripe_lists and metadata, etc)

 Stripe-write workflow:
• Multi-stage stripe processing 
• Four handling steps in each stage

1. Fetch a SH from handle_list
2. Analyze stripe & device states

− Use semaphores
− Need rcu_read_lock

conf->device_lock

handle_list

stripe_lists

inactive_list

READ XOR WRITE CLEARINSERT

WT WT WT WTWT Pool

SH

Stripe states

STRIPE_ACTIVE ✓

STRIPE_INSYNC ✘

R5_Wantread ✓

R5_Wantwrite ✘

...... (51 more)





Analysis of MD
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• MD’s concurrency control
MD device lock 

• A spin-lock shared between WTs
• For updating shared structures 

(stripe_lists and metadata, etc)

 Stripe-write workflow:
• Multi-stage stripe processing 
• Four handling steps in each stage

1. Fetch a SH from handle_list
2. Analyze stripe & device states
3. Operations for handling stripe
4. Release and insert the SH into a 

stripe_list

conf->device_lock

handle_list

stripe_lists

inactive_list

SH

READ XOR WRITE CLEARINSERT

WT WT WT WTWT Pool







Analysis of MD
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• Breakdown of CPU cycles on critical functions and locks in WTs
 CPU becomes the bottleneck on concurrency control
 Few CPU cycles are used to drive I/Os storage devices are underutilized
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StRAID overview
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• "One-for-one" processing model
• Goals: 

 Efficient CPU utilization
 Address partial-stripe-write penalty

• Stripe-threaded architecture
Dedicated WT for each stripe-write

• Eliminate global lock contention
• Reduce stripe state checking

Stripe State Table
• Conduct thread collaboration
• Maintain indispensable shared stripe 

states and per-stripe locks
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StRAID overview
• "One-for-one" processing model

• Goals: 
 Efficient CPU utilization
 Address partial-stripe-write penalty

• Stripe-threaded architecture
Dedicated WT for each stripe-write

• Eliminate global lock contention
• Reduce stripe state checking

Stripe State Table
• Conduct thread collaboration
• Maintain indispensable shared stripe 

states and per-stripe locks

Two-phase stripe submission
• Opportunistic write batching
• Per-stripe batching queue
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StRAID's Concurrency Control
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Stripe ID Stripe 
Lock TID is_batching

5 Locked 0 True

-- -- -- --

8 Locked 1 True

......

Stripe State Table

• An example: four I/O threads issue block I/Os
 𝑏𝑏𝑏𝑏𝑏𝑏 0 → 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 5
 𝑏𝑏𝑏𝑏𝑏𝑏 1 𝑡𝑡𝑜𝑜 𝑏𝑏𝑏𝑏𝑏𝑏 3 → 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 8
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WT2 Time Line

WT3 Time Line

WT0 Time Line

bio 1
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Lock S8
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bio 0
arriving

Lock S5
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WT0
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StRAID's Concurrency Control
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Stripe ID Stripe 
Lock TID is_batching

5 Locked 0 True

-- -- -- --

8 Locked 1 True

......

Stripe State Table
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Read & Batch 

Read & Batch 

• Dedicated WT aggregates requests targeting the same stripe in the batching phase 

S5’s batching phase 

S8’s batching phase 



StRAID's Concurrency Control
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Stripe ID Stripe 
Lock TID is_batching

5 Locked 0 True

-- -- -- --

8 Locked 1 True

......

Stripe State Table
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• Dedicated WT aggregates requests targeting the same stripe in the batching phase 
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S8’s batching phase 



StRAID's Concurrency Control
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Stripe ID Stripe 
Lock TID is_batching
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StRAID's Concurrency Control
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Stripe ID Stripe 
Lock TID is_batching
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StRAID's Concurrency Control
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• Dedicated WT stops batching phase after reading complete
• Requests failed to batch must wait for the dedicated WT to complete



StRAID's Concurrency Control
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• After completing stripe processing, WT cleans up SST-entry and returns I/O



StRAID's Concurrency Control
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Evaluation Setup

System Linux kernel version 5.13

CPU Duel Intel Xeon Gold 6328 CPU (totally 56 physical cores)

Memory 256 GB

SSD
6 x Samsung 970PRO（NVMe, 2.2GB/s stable write）

6 x Samsung 980PRO（NVMe, 2.6GB/s stable write）

PM 6 x Intel Optane PM 128GB（2.3GB/s stable write）

• Platform
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• RAID setup
 RAID-5 (5+1) and RAID-6 (4+2) with 64KB chunk size

• Workloads
 Micro-benchmarks: partial-stripe writes (64KB) and full-stripe writes (1MB)

 Macro-benchmarks: traces from Microsoft, Ali-Pangu, and Filebench



Micro-benchmark Results

• StRAID archives 2.4x - 3.1x higher write throughput than MD

• StRAID reduces 76% - 90% average write latency from MD 
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Breakdown of CPU cycles
• StRAID reduces up to 90% lock overhead

• < 5% CPU overhead on the two-phase submission 

• The total CPU utilization of StRAID is up to 6.3x lower than MD
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Upper bound Evaluation

• Run StRAID over six ramdisks (*-RAM) and Intel Optane PMs (*-PM)

• StRAID on RAMs archives up to 5.8x higher throughput than MD
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Macro-benchmark Results
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• Average throughput: 2x – 2.8x higher than MD

• Mean, average, and 99th-percentile latency: 10.3x, 49%, and 25% lower than MD
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Conclusion

• StRAID: a new architecture for parity-based RAID on SSDs
 Stripe-threaded architecture to efficiently parallelize stripe-write tasks
 Two-phase stripe submission to address partial-stripe-write penalty
 Performs significantly better than existing Linux MD

• See paper for more details

• Source code: https://github.com/wsczq1/straid
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Thanks

https://github.com/wsczq1/straid
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