
StRAID: Stripe-threaded Architecture for
Parity-based RAIDs with Ultra-fast SSDs

Shucheng Wang1, Qiang Cao1, Ziyi Lu1, Hong Jiang2,
Jie Yao1 and Yuanyuan Dong3

1 Huazhong University of Science and Technology
2 University of Texas Arlington

3 Alibaba Group

RAID Systems
• RAID (Redundant Array of Independent Disks) is widely used

• Non-parity RAID:
 RAID-0 (striping) and RAID-1 (mirroring)

• Parity-based RAID:
 RAID-4/5/6
 Balancing performance and reliability
 Read-modify-write nature

2

RAID Systems
• RAID (Redundant Array of Independent Disks) is widely used

• Non-parity RAID:
 RAID-0 (striping) and RAID-1 (mirroring)

• Parity-based RAID:
 RAID-4/5/6
 Balancing performance and reliability
 Read-modify-write nature

• Linux MD: popular software RAID component
• Linux kernel module
• No need for extra hardware
• Compatible with various storages

3

SSD Storage Trend

• Modern SSD hardware delivers higher write throughput

4

Products

Interface

Protocol

Release Date

0.5
1.9

3.1
5

6.6

10.1

0

2

4

6

8

10

12

Samsung 860
PRO

Intel DC P3700 Intel DC P4610 Samsung 980
PRO

Samsung
PM1743

Phison

SATA 3.0 PCIe 3.0 PCIe 3.1 PCIe 4.0 PCIe 5.0 PCIe 5.0

SATA NVMe NVMe NVMe NVMe NVMe

Q1'18 Q2'14 Q2'18 Q3'20 Q1'22 Unknown

Th
ro

ug
hp

ut
 (G

B/
s)

Linux MD upon SSDs
• Motivational Test

• RAIDs setup
 Non-parity: RAID-0 level
 Parity-based: RAID-5 (5+1) and RAID-6 (4+2) level

− Enable the multi-worker mechanism

• SSD products

Device Types Products Capacity Stable Write
Throughput (MB/s)

Stable Read
Throughput (MB/s)

SATA SSD Samsung 860 PRO 512GB 500 510

NVMe SSD Samsung 970 PRO 512GB 2200 3200

NVMe SSD Samsung 980 PRO 1TB 2600 6900

5
> 14 GB/s total write bandwidth

on six SSDs

Multi-thread Write Scalability

6

• Parity-based RAIDs fail to scale for high-performance SSDs
 Larger performance gap on fast SSDs
 Full-stripe writes (1MB, without read-modify-write) still suffers

0

4

8

12

1 2 4 8 16 32 64

Th
ro

ug
hp

ut
 (G

B/
s)

of threads

NVMe SSDs (64KB I/O)

RAID-0 RAID-5 RAID-6

7X

0

0.5

1

1.5

1 2 4 8 16 32 64

Th
ro

ug
hp

ut
 (G

B/
s)

of threads

SATA SSDs

RAID-0 RAID-5 RAID-6

1.9X

0

5

10

15

1 2 4 8 16 32 64

Th
ro

ug
hp

ut
 (G

B/
s)

of threads

NVMe SSDs (1MB I/O)

RAID-0 RAID-5 RAID-6

2.6X - 5X

Multi-thread Write Scalability

7

• Parity-based RAIDs fail to scale for high-performance SSDs
• A diminishing return in performance of the multi-worker mechanism
 Throughput gains peak at +16 worker threads (WTs)
 5% decline with more WTs

0
200
400
600
800

1000
1200
1400

Single +1 +2 +4 +8 +16 +32 +64

Th
ro

ug
hp

ut
 (M

B/
s)

of worker threads

Performance contribution of the multi-worker mechanism

1 UT
2 UTs
4 UTs
8 UTs
16 UTs
32 UTs
64 UTs

Analysis of MD

8

WT

UT User Thread

RAID worker
Thread

bio

SH
stripe_head
with state SS

Block I/O

SH Uninitialized
stripe_head

bio

UT UT UT

bio

Linux RAID-4/5/6
Module

c

SH SH SH

bio

hashing

handle_list

stripe_lists

inactive_list
Stripe
Cache

FS Layer

Block Layer

SSD 1

Disk
Group

SSD 4SSD 2 SSD 3

• "N-for-all" processing model
• Incoming block I/Os are

temporarily stored in the
Stripe Cache

• Aggregate bios at the granularity
of stripes

• Use stripe_heads (SH) to
maintain stripe states

• Store SHs in stripe_lists
WRT XOR RD

Analysis of MD

9

WT

UT User Thread

RAID worker
Thread

bio

SH
stripe_head
with state SS

Block I/O

SH Uninitialized
stripe_head

bio

UT UT UT

bio

Linux RAID-4/5/6
Module

c

SH SH SH

bio

hashing

handle_list

stripe_lists

inactive_list
Stripe
Cache

FS Layer

Block Layer

SSD 1

Disk
Group

SSD 4SSD 2 SSD 3

• "N-for-all" processing model
• Incoming block I/Os are

temporarily stored in the
Stripe Cache

• A set number of WTs
asynchronously and non-
exclusively handle stripe-
write tasks

WT WT

WRT XOR RD

......

Analysis of MD

10

• MD’s concurrency control
 The device_lock in MD

• A spin-lock shared between WTs
• For updating shared structures

(stripe_lists and metadata, etc.)

conf->device_lock

handle_list

stripe_lists

inactive_list

SH

Analysis of MD

11

• MD’s concurrency control
MD device lock

• A spin-lock shared between WTs
• For updating shared structures

(stripe_lists and metadata, etc)

 Stripe-write workflow:
• Multi-stage stripe processing

READ XOR WRITE CLEARINSERT

conf->device_lock

handle_list

stripe_lists

inactive_list

SH

WT
1

WT
6

WT
8

WT
1UT

Analysis of MD

12

• MD’s concurrency control
MD device lock

• A spin-lock shared between WTs
• For updating shared structures

(stripe_lists and metadata, etc)

 Stripe-write workflow:
• Multi-stage stripe processing
• Four handling steps in each stage

1. Fetch a SH from handle_list

conf->device_lock

handle_list

stripe_lists

inactive_list

READ XOR WRITE CLEARINSERT

WT WT WT WTWT Pool

SH



Analysis of MD

13

• MD’s concurrency control
MD device lock

• A spin-lock shared between WTs
• For updating shared structures

(stripe_lists and metadata, etc)

 Stripe-write workflow:
• Multi-stage stripe processing
• Four handling steps in each stage

1. Fetch a SH from handle_list
2. Analyze stripe & device states

− Use semaphores
− Need rcu_read_lock

conf->device_lock

handle_list

stripe_lists

inactive_list

READ XOR WRITE CLEARINSERT

WT WT WT WTWT Pool

SH

Stripe states

STRIPE_ACTIVE ✓

STRIPE_INSYNC ✘

R5_Wantread ✓

R5_Wantwrite ✘

...... (51 more)



Analysis of MD

14

• MD’s concurrency control
MD device lock

• A spin-lock shared between WTs
• For updating shared structures

(stripe_lists and metadata, etc)

 Stripe-write workflow:
• Multi-stage stripe processing
• Four handling steps in each stage

1. Fetch a SH from handle_list
2. Analyze stripe & device states
3. Operations for handling stripe
4. Release and insert the SH into a

stripe_list

conf->device_lock

handle_list

stripe_lists

inactive_list

SH

READ XOR WRITE CLEARINSERT

WT WT WT WTWT Pool





Analysis of MD

15

• Breakdown of CPU cycles on critical functions and locks in WTs
 CPU becomes the bottleneck on concurrency control
 Few CPU cycles are used to drive I/Os storage devices are underutilized

0

20

40

60

80

100

Single +1 +2 +4 +8 +16 +32 +64

Ra
tio

 o
f C

PU
 c

yc
le

s
(%

)

of worker threads
Disk I/O XOR Lock Analyze Others

Analyzing stripe states
(15% CPU cycles)

Spin-locking for updating
stripe_lists and metadata

(55% CPU cycles)

Storage accessing and XORing
(< 10% CPU cycles)

bio

SH
8

UT

WT

INSERT

RETURN

str
ipe

-w
rit

e
pr

oc
es

sin
g

StRAID overview

bio

StRAID

SH
5

UT• "One-for-one" processing model
• Goals:

 Efficient CPU utilization
 Reduce partial-stripe-write penalty

• Stripe-threaded architecture
Dedicated WT for each stripe-write

• Eliminate global lock
• Reduce stripe state checking

WT

INSERT

RETURN

str
ipe

-w
rit

e
pr

oc
es

sin
g

SSD 1

Disk
Group

SSD 4SSD 2 SSD 3

StRAID overview

SSD 1

Disk
Group

SSD 4SSD 2 SSD 3

• "One-for-one" processing model
• Goals:

 Efficient CPU utilization
 Address partial-stripe-write penalty

• Stripe-threaded architecture
Dedicated WT for each stripe-write

• Eliminate global lock contention
• Reduce stripe state checking

Stripe State Table
• Conduct thread collaboration
• Maintain indispensable shared stripe

states and per-stripe locks

bio

SH
8

UT

WT

INSERT

RETURN

str
ipe

-w
rit

e
pr

oc
es

sin
g

bio

StRAID

SH
5

UT

WT

INSERT

RETURN

str
ipe

-w
rit

e
pr

oc
es

sin
g

Stripe
ID

Stripe
Lock

Shared
States

5 Locked --

-- -- --

8 Locked --

......

Stripe State Table

StRAID overview
• "One-for-one" processing model

• Goals:
 Efficient CPU utilization
 Address partial-stripe-write penalty

• Stripe-threaded architecture
Dedicated WT for each stripe-write

• Eliminate global lock contention
• Reduce stripe state checking

Stripe State Table
• Conduct thread collaboration
• Maintain indispensable shared stripe

states and per-stripe locks

Two-phase stripe submission
• Opportunistic write batching
• Per-stripe batching queue

bio

SH
8

UT

WT

INSERT

RETURN

bio

StRAID

SH
5

UT

WT

INSERT

RETURN

bio

UT

WT

INSERT

BATCH

RETURN

wa
itin

g

SSD 1

Disk
Group

SSD 4SSD 2 SSD 3

Batching
Queue

BATCH

StRAID's Concurrency Control

19

Stripe ID Stripe
Lock TID is_batching

5 Locked 0 True

-- -- -- --

8 Locked 1 True

......

Stripe State Table

• An example: four I/O threads issue block I/Os
 𝑏𝑏𝑏𝑏𝑏𝑏 0 → 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 5
 𝑏𝑏𝑏𝑏𝑏𝑏 1 𝑡𝑡𝑜𝑜 𝑏𝑏𝑏𝑏𝑏𝑏 3 → 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 8

WT1 Time Line

WT2 Time Line

WT3 Time Line

WT0 Time Line

bio 1
arriving

Lock S8
(True)

bio 0
arriving

Lock S5
(True)

WT0

WT1

WT2

WT3

StRAID's Concurrency Control

20

Stripe ID Stripe
Lock TID is_batching

5 Locked 0 True

-- -- -- --

8 Locked 1 True

......

Stripe State Table

WT0

WT1

WT2

WT3

bio 1
arriving

Lock S8
(True)

bio 0
arriving

Lock S5
(True)

Read & Batch

Read & Batch

• Dedicated WT aggregates requests targeting the same stripe in the batching phase

S5’s batching phase

S8’s batching phase

StRAID's Concurrency Control

21

Stripe ID Stripe
Lock TID is_batching

5 Locked 0 True

-- -- -- --

8 Locked 1 True

......

Stripe State Table

WT0

WT1

WT2

WT3

bio 1
arriving

Lock S8
(True)

bio 0
arriving

Lock S5
(True)

Read & Batch

Read & Batch

bio 2
arriving

Lock S8
(False)

S8 Batch
(True)

• Dedicated WT aggregates requests targeting the same stripe in the batching phase

S5’s batching phase

S8’s batching phase

StRAID's Concurrency Control

22

Stripe ID Stripe
Lock TID is_batching

5 Locked 0 True

-- -- -- --

8 Locked 1 True

......

Stripe State Table

WT0

WT1

WT2

WT3

bio 1
arriving

Lock S8
(True)

bio 0
arriving

Lock S5
(True)

Read & Batch

Read & Batch

bio 2
arriving

Lock S8
(False)

S8 Batch
(True)

Push bio to Batching
Queue (WT1)

• Dedicated WT aggregates requests targeting the same stripe in the batching phase

S5’s batching phase

S8’s batching phase

Waiting for WT1 to

complete

StRAID's Concurrency Control

23

Stripe ID Stripe
Lock TID is_batching

5 Locked 0 False

-- -- -- --

8 Locked 1 False

......

Stripe State Table

WT0

WT1

WT2

WT3

bio 1
arriving

Lock S8
(True)

bio 0
arriving

Lock S5
(True)

Read & Batch

Read & Batch

bio 2
arriving

Lock S8
(False)

S8 Batch
(True)

Push bio to Batching
Queue (WT1)

Stop Stripe 8
batching

• Dedicated WT stops batching phase after reading complete

Waiting for WT1 to

complete

Stop Stripe 5
batching

StRAID's Concurrency Control

24

Stripe ID Stripe
Lock TID is_batching

5 Locked 0 False

-- -- -- --

8 Locked 1 False

......

Stripe State Table

WT0

WT1

WT2

WT3

bio 1
arriving

Lock S8
(True)

bio 0
arriving

Lock S5
(True)

Read & Batch

Read & Batch

bio 2
arriving

Lock S8
(False)

S8 Batch
(True)

Push bio to Batching
Queue (WT1)

Stop Stripe 8
batching

Lock S8
(False)

bio 3
arriving

S8 Batch
(False)

Waiting for WT1 to

complete

Waiting for WT1 to

complete

Stop Stripe 5
batching

• Dedicated WT stops batching phase after reading complete
• Requests failed to batch must wait for the dedicated WT to complete

StRAID's Concurrency Control

25WT3 Time Line

WT1 Time Line

WT2 Time Line

Read & Batch

Waiting for WT1
to complete

Waiting for WT1 to complete

Lock S8
(False)

bio 1
arriving

Lock S8
(True) Batching Re-read bio 1

return

bio 2
arriving

Lock S8
(False)

S8 Batch Push bio to Batching
Queue(WT1)

bio 2
return

bio 3
arriving

S8 Batch
(False)

XOR

WT0 Time Line

Read & Batch
bio 0

arriving
Lock S5
(True) Batching Re-read bio 0

returnXOR
WT0

WT1

WT2

WT3

Write

Write

Stripe ID Stripe
Lock TID is_batching

5 Unlocked -- --

-- -- -- --

8 Unlocked -- --

......

Stripe State Table

Clear
SST

Clear
SST

• After completing stripe processing, WT cleans up SST-entry and returns I/O

StRAID's Concurrency Control

26WT3 Time Line

WT1 Time Line

WT2 Time Line

Read & Batch

Waiting for WT1
to complete

Waiting for WT1 to complete

Lock S8
(False)

bio 1
arriving

Lock S8
(True) Batching Re-read bio 1

return

bio 2
arriving

Lock S8
(False)

S8 Batch Push bio to Batching
Queue(WT1)

bio 2
return

bio 3
arriving

S8 Batch
(False)

Lock S8
(True)

XOR

WT0 Time Line

Read & Batch
bio 0

arriving
Lock S5
(True) Batching Re-read bio 0

returnXOR
WT0

WT1

WT2

WT3

Write

Write

Stripe ID Stripe
Lock TID is_batching

5 Unlocked -- --

-- -- -- --

8 Locked 3 True

......

Stripe State Table

Clear
SST

Clear
SST

• The waiting WT will try to re-acquire the stripe lock

Evaluation Setup

System Linux kernel version 5.13

CPU Duel Intel Xeon Gold 6328 CPU (totally 56 physical cores)

Memory 256 GB

SSD
6 x Samsung 970PRO（NVMe, 2.2GB/s stable write）

6 x Samsung 980PRO（NVMe, 2.6GB/s stable write）

PM 6 x Intel Optane PM 128GB（2.3GB/s stable write）

• Platform

27

• RAID setup
 RAID-5 (5+1) and RAID-6 (4+2) with 64KB chunk size

• Workloads
 Micro-benchmarks: partial-stripe writes (64KB) and full-stripe writes (1MB)

 Macro-benchmarks: traces from Microsoft, Ali-Pangu, and Filebench

Micro-benchmark Results

• StRAID archives 2.4x - 3.1x higher write throughput than MD

• StRAID reduces 76% - 90% average write latency from MD

0
2
4
6
8

10
12

1 2 4 8 16 32 64

Th
ro

ug
hp

ut
 (G

B/
s)

of user threads

Write Throughput

StRAID-P StRAID-F MD-P MD-F

100

1000

10000

1 2 4 8 16 32 64

La
te

nc
y

(u
s)

of user threads

Average Latency

StRAID-P StRAID-F MD-P MD-F

Breakdown of CPU cycles
• StRAID reduces up to 90% lock overhead

• < 5% CPU overhead on the two-phase submission

• The total CPU utilization of StRAID is up to 6.3x lower than MD

0

1000

2000

3000

4000

5000

1 2 4 8 16 32 64

To
ta

l C
PU

 (%
)

of user threads

Total CPU Utilizations (lower is better)

StRAID-P StRAID-F MD-P MD-F

4495%

704%

0%

20%

40%

60%

80%

100%

MD-P StRAID-P MD-F StRAID-F

Ra
tio

 o
f C

PU
 c

yc
le

s
(%

)

Breakdown of CPU

I/O XOR Batching Lock Analyze Other

Upper bound Evaluation

• Run StRAID over six ramdisks (*-RAM) and Intel Optane PMs (*-PM)

• StRAID on RAMs archives up to 5.8x higher throughput than MD

30

0

10

20

30

40

1 2 4 8 16 32 64

Th
ro

ug
hp

ut
 (G

B/
s)

of user threads

Full-stripe writes

StRAID-PM StRAID-RAM MD-PM MD-RAM

0
5

10
15
20
25
30

1 2 4 8 16 32 64

Th
ro

ug
hp

ut
 (G

B/
s)

of user threads

Partial-stripe writes

StRAID-PM StRAID-RAM MD-PM MD-RAM

5.8x

>35GB/s

Macro-benchmark Results

0

2

4

6

1 11 21 31 41 51 61

Th
ro

ug
hp

ut
 (G

B/
s)

Time (seconds)

Throughput

MD
StRAID

0

50

100

0 1 2 3

CD
F

(%
)

Latency (ms)

Latency CDF

MD
StRAID 0

50

100

0 2 4 6

CD
F

(%
)

Latency (ms)

Latency CDF

• Average throughput: 2x – 2.8x higher than MD

• Mean, average, and 99th-percentile latency: 10.3x, 49%, and 25% lower than MD

0
2
4
6
8

10

1 11 21 31

Th
ro

ug
hp

ut
 (G

B/
s)

Time (seconds)

Throughput

0

2.5

5

0 20 40 60 80

Th
ro

ug
hp

ut
 (G

B/
s)

Time (seconds)

Throughput

0

50

100

0 1 2 3

CD
F

(%
)

Latency (ms)

Latency CDF

Ali-Pangu Filebench (fileserver) Microsoft (prn0)

Conclusion

• StRAID: a new architecture for parity-based RAID on SSDs
 Stripe-threaded architecture to efficiently parallelize stripe-write tasks
 Two-phase stripe submission to address partial-stripe-write penalty
 Performs significantly better than existing Linux MD

• See paper for more details

• Source code: https://github.com/wsczq1/straid

32

Thanks

https://github.com/wsczq1/straid

	StRAID: Stripe-threaded Architecture for Parity-based RAIDs with Ultra-fast SSDs
	RAID Systems
	RAID Systems
	SSD Storage Trend
	Linux MD upon SSDs
	Multi-thread Write Scalability
	Multi-thread Write Scalability
	Analysis of MD
	Analysis of MD
	Analysis of MD
	Analysis of MD
	Analysis of MD
	Analysis of MD
	Analysis of MD
	Analysis of MD
	StRAID overview
	StRAID overview
	StRAID overview
	StRAID's Concurrency Control
	StRAID's Concurrency Control
	StRAID's Concurrency Control
	StRAID's Concurrency Control
	StRAID's Concurrency Control
	StRAID's Concurrency Control
	StRAID's Concurrency Control
	StRAID's Concurrency Control
	Evaluation Setup
	Micro-benchmark Results
	Breakdown of CPU cycles
	Upper bound Evaluation
	Macro-benchmark Results
	Conclusion

