USENIX

TIFA RTIF.
EVALUA EVALUAT
AVAILABLE FUNCTIONAL REPRODUCED

Primo: Practical Learning-Augmented
Systems with Interpretable Models

Qinghao Hu?, Harsha Nori?, Peng Sun3, Yonggang Wen?, Tianwei Zhang?

SINGAPORE sensetime

2
ERTEN NANYANG S-LAB B
TECHNOLOGICAL . ft I‘ "
UNIVERSITY | , FOR ADVANCED O] Microso m "’

Machine Learning in Systems

« Learning-Augmented System is an emerging research topic

__ N e e
[
é@ Storage i i}{ Cluster Scheduling
D DeepSketch [FAST 22]: 33% Data Reduction i i Sinan [ASPLOS 21]: 68% Resource Conservation
[
[
LinnOS [OSDI ‘20]: 80% Latency Reduction i i Helios [SC 27]: 6x JCT Reduction
[
[
HDDse [ATC 20]: 58x System Reliability i i FIRM [OSDI ‘20]: 16x SLO-Violation Reduction
|l
__ E = e e e e e e e e e
Q Network i c’a\ Security
= 1
= Clara [SOSP 21]: 89% Throughput Improvement i i FARE [NDSS ‘21]: 100% Fake Accounts Blocking
1
[]
NeuroPlan [SIGCOMM °21]: 17% Cost Saving i i Apichecker [EuroSys 20]: 96% Malware App Recall
[]
[]
LRB [NSDI '20]: 25% WAN Traffic Reduction i i AdGraph [S&P 20]: 95% Accuracy in AD Blocking
[]
[

ML Brings Awesome System Improvement!

I Challenges in Practical Deployment

Prototype (7 - System

,\'—\
| >
°

- More challenges in practice

Research Testbed Production Environment

I Challenges in Practical Deployment

Prototype System

1V

Research Testbed Production Environment

n High Training and Tuning Cost

« Continuous Model Fine-tuning / Retraining is Necessary

1) System environment change: scale up 4/ down ¥ over time

2) Workload change: distribution drift

* Microsoft Operation Experience [AutoSys, ATC ‘20]
1) Cost often exceed enterprise expectation

2) Performance in testbed might not match the production environment

Prototype System

L
.:) 1|Cost

Research Testbed Production Environment

Strict Inference Overhead Requirement

Latency Constraint Resource Constraint
h Wi
& &g 3
Al Apps. ~10ms ML-Sys: ~10us CPU Memory Storage

« Limited Scalability = Testbed-scale " Production-scale X

« Side-effect to Production Workloads ML models occupy too much resources

Prototype 2|0Overhead System
SHE S

Research Testbed Production Environment

DL Model

Insufficient Data
Traditional ML Model

ML Model is Data-Driven Performance More complex model
needs more data !

Data Volume
Some Scenarios Meet Data Issue

High Data Collection Cost Sensitive / Privacy-related Data

- Data Augmentation and Synthesis Techniques

- Possible induce bias and distribution drift - Not work in practice
Prototype 2|0Overhead System
| 4 A4
[J
-y 1|Cost 3

Research Testbed Production Environment

E Opaque Decision Process

Many Learning-Augmented Systems Rely on Black-Box Models

@ Data ——— Black-box ’----» _!e Decision

Models How the model make decision?

System States Scale Up?
Workload Features Schedule? Should | trust the prediction?

User Configurations Terminate?
DNNs

* Interpretability is Important But Often Ignored

Operators need sufficient confidences to deploy learning-augmented systems

Prototype 2|Overhead 4|Opacity System
R BN NN
[J
-y 1|Cost 3|Data

Research Testbed Production Environment

E Hard to Adjust

System Adjustment is Needed Too Complex for System Operators

Different:

Y2

How to adjust the model?

{

‘{‘
Y

0
DEA

.'/
|

1 ---o .
1 ---o et
-0 -

System Scale Machine Type

Al

A
’<\.~\§

Is the adjustment correct?

How to determine layers / neurons?

« Improper Modifications - Severe Performance Degradation

Operators need guided or automatic model adjustment

Prototype 2|Overhead 4|Opacity System

AN
A N

[©

B 1

Research Testbed ment Production Environment

Cost 3(Data S|Adjust

1|Cost
2|overhead
3|Data
4|opacity

5|Adjustment

How to address these issues?

I Existing Solution

Interpreting Black-box Models

LEMNA [CCS “18]

DeepAid [CCS 21] Oreate anather surrogate model to explain the ariginal model

Network: Metis [SIGCOMM ‘20]

Security:

Limitations
Interpretation Training Inference Insufficient
Individual ~ Entire Fidelity Cost Overhead Data
Interpreting Black-box v X X X X X

Any solution that can solve all challenges?

10

IOurApproach

Interpreting Black-bex-Medels

Adopt and Optimize Interpretable Models Directly

Linear Regression Logistic Regression Decision Tree ...

Benefits
Inherently Intelligible Simple & Lightweight
Interpretation Training Inference Insufficient
Individual ~ Entire Fidelity Cost Overhead Data
Interpreting Black-box v X X X X X
Interpretable Model v v v v v v

11

I Why Interpretable Models Work

Major Concern --- Is there a trade-off between model accuracy and interpretability? g)

Key Observations

1. Input feature 2. Model Scale
% E
~ ResNet-18 1IM params
Al Apps: Image Pixels = Word Embeddings Al Apps:
BERT-Base 110M params
= e
ML-Sys. System States Workload Features ML-Sys: RL-Sys <I0K neurons'
Meaningful and Lower Dimensional Smaller Scale and Latency Sensitive

Interpretable Models have Comparable Performance and Less Overhead

[1]: whiRL [SIGCOMM ‘21] 12

I Primo Design

Primo (Prior-based interpretable model optimization)

Objective --- Transparent, Accurate and Lightweight Learning-Augmented Systems

Different System Requirements

1 Online Systems 2 Offline Systems
Real-time Response No Latency Requirement
Performance-Latency Trade-off Focus on Performance

Primo support various interpretable models

Main Modules

=1
—
D
=
©
-
1)
—
jab]
=2
D
<
@)
Qo
@
(7]
—]
-
=
=
>
«
T
o
2
~
T
—
@)
o
D
n
2
>
«Q
O
©
=
=4
N
Q
=
o
>

13

I Interpretable Models Training

* Two Interpretable Models

PrAM: Addictive Model based Method

Summation of univariate or bivariant shape functions

Purpose: For better prediction accuracy

PrDT: Decision Tree based Method

Each decision can be clear visualized

Purpose: For strict latency and computation resource

o - - —

__

Training Stage

PrAM PrDT
S

f’(xl) yes no

+ Gi<e) @<&)
f (x2) no | yes no yes

+ T2 < &4

yes no

fm(ﬁl, 3:2)

__

L ———

14

I Interpretable Models Training

» Bayes Optimization
Efficient search for the optimal model configuration

Purpose: For accurate and succinct model

 Distill Engine
Mimic the behavior of the original model

Purpose: For RL-based system support

o - - —

__

Training Stage

PrAM PrDT
f'(z1) yes no
+ (-’131 < Ez) (332 < 53)

f (x2) no | yes no yes
+ T2 < &4
yes no
fm(ﬁl, $2)

— — — — — — —

| Bayes }
J

— — — — — — —

__

15

I Post-Processing Optimization

Not Necessary Step

Two Post-Processing Tools

Monotonic Constraint

Edit shape functions according to prior knowledge

Purpose: For automatic model adjustment

Counterfactual Explanation

Find smaller feature value change

Purpose: For guided model adjustment

Post-Processing Stage

Ly

e
3

1001 g8

T ﬁT.T"
200- off 11h :':?'lllr 1311

L'yl R

e Origin
Monotonic

Instanc& A

== Decision
Boundary

® CF1 (Feature X: 2> 3)

CF2 (Feature X: 2 > 4,
Feature Y: 8 » 6)

16

I Case Studies

. @ Intr. abstraction @ Encoding .
LC=true if(ret==slow) o bandwidth
ret=read(..,LC) failover() - | LWMinstr | Abstractedinst. | One-hot |
! failover() 0 %8=x0ri32 %7, %4 VAR =xori32 VAR, VAR [1,0,0,..] \
1 %9 = add i32 %8, -2 VAR = add i32 VAR, INT [0,1,0,..] bit rate
revoke : 2 e _I__’—_
\ T L
. . _ _ — —— """ " Hidden state FC Predicted buffer
subm:t ‘ ‘ . — e instr W
v ® <l - .
@ G- T network and video measurements
LSTM prediction

LinnOS [0SDI 20] Clara [SOSP 21] Pensieve [SIGCOMM “17]

Flash Storage |/0
DNN

SmartNIC Offloading Video Streaming
LSTM, GBDT, SVM RL
Offline Online

o - - - ———
| T S ——————

LinnOS with Primo

LinnOS (31 Input Features)

L, % 3 neurons
lnput ~ Lri---Les %@)@% 3x4 neurons

Ta... T %%mq neurons

Model 8706 parameters

Output Fast Slow

Primo (3 Input Features)
L, Current queue length
L,; |Queue length of the third recent /O
T Latency of the first recent I/O

ves

1
1
| 2

1

1

1

1 1

L.=335 { O Slow ‘l

ves

Ho

(Lc < 19.5) (Lc < 150.5)

no _14’2.8 no
Yy Y
(’m < 1340) (L,3 < 31@
_]"ES Ho _14’2.9 Hno
Y
T, <1348
_ves no

4 layers with 7 leaves

18

LinnOS: Performance Analysis

100 ————==~ ’gmoo_ 1010.7
 Overall Performance S " 5 746.1
c (]
2 80 —_— Pri © i
Average /O latency: 5 N\ Better —- PR R P
C (@)
. . — - Base ©
2.5x reduction compared to LinnOS 604 , , o O_.
0 10 15 < (O . 05 agse
Latency (ms) PO e 82
(a) (b)
: =@— Primo
 Tail Performance 309 4 Linnos ‘/‘/’:
—%- Base g "

Tail I/O latency:

Latency (ms)
N
o

-
o
1

2.2~7.9x reduction compared to LinnOS

0' T T T
p90 p95 p99 p99.9 p99.99

19

I LinnOS: Effectiveness Analysis

* |[nference overhead

|
) | LinnOS
. Median |
LinnOS: Data Preprocess + DNN Inference (Busy) ! ¢
|
8 us (|d|e) 33 us (busy) Minimum | o Linn0S :
IdI
. . . () : SSD Access
Primo: 4 if-else Condition Tests , , , , | , ,
0 5 10 15 20 25 30 35
: Lat
<1 us (idle) 2 us (busy) atency (us)
* Quantization 1009 Griginal 301 .) ongna
g 7.51A1. Quantized ‘ 204 . £ Perturbed
No degradation and higher accuracy § 50l o
@ J H 101
T 2.5
« Robustness 0.0 L o | | =
' Primo LinnOS Primo LinnOS Primo LinnOS
_ Inaccuracy False Submit False Revoke
More stable to the perturbed inputs Q) ()

20

More Evaluations

Score

—e—(Origin
- = Monotonic

-4 : : :
0 10 20 30

R,. Bins

Monotonic Constraint

Clara

Pensieve Bitrate Selection (kbps)
Actor Network

Y

300 750 1200 1850 2850 4300

]
]
i
i
]
i
]

]

1
===,

(X—;. fo.lz)(s < 1.49)(2“7.5 020)(B <242)(X: s 017)(B <369)

ves 70 ves 710 "EW ves no

Distill Engine

Pensieve

21

Summary

More Details in Our Paper

ARTIFACT ARTIFACT ARTIFACT
EVALUATED EVALUATED EVALUATED
u
€

PRIMO: Practical Learning-Augmented Systems with Interpretable Models

Qinghao Hu'2 Harsha Nori* Peng Sun* Yonggang Wen' Tianwei Zhang'

! Nanyang Technological Universiry 2S-Lab, NTU IMicrosoft *SenseTime Research

Abstract

While machine learning has demonstrated remarkable perfor-
mance in various computer systems, some substantial flaws
can prohibit its deployment in practice, including opaque
decision p poor ization and robustness, as
well as exorbitant training and inference overhead. Motivated
by these deficiencies, we introduce PRIMO, a unified frame-
work for developers to design practical learning-augmented
systems. Specifically, (1) PRIMO provides two interpretable
models (PraM and PrDT), as well as a Distill Engine, 1o sup-
port different system scenarios and deployment requirements.
(2) Tt adopts Bayes Optimization to automatically identify the
optimal model pruning strategy and hyperparameter configu-
ration. (3) It also implements two tools, Menotonic Constraint
and Counterfactual Explanation, 1o achieve transparent de-
bugging and guided model adjustment. PRIMO can be applied
to different types of learning-augmented systems. Evaluations
on three state-of-the-art systems show that PRIMO can pro-
vide clear model interpretations, better system performance,
and lower deployment costs.

1 Introduction

Over the years, machine learning (ML) has been widely
adopted to optimize systems across many fields, e.g., stor-
age [29.82,85], network [66,77,95], security [24,28,74], com-
piler optimization [8,93,94] and cluster scheduling [65.89.92].
These learning-augmented systems demonstrate marvelous
performance compared with conventional heuristic or mathe-
matical optimized systems.

However, most of these applied models are very complex
and treated as black-boxes to developers, which brings sig-
nificant gaps in deploying them in practice. First, building
a production-level learning-augmented system can incur
huge costs. From the experience at Microsoft [42], the model
training process could take days to weeks with massive data.
Some systems require frequent model updates to adapt to
dvnamic environment chanees. whose cost often exceeds en-

systems which have high real-time requirements [43,81,82],
which can significantly restrict parallel capabilities and affect
scalability in practice.

Second, the prediction process of these black-box mod-
els are unintelligible to humans. Developers lack under-
standing and trust of the model’s behavior [19,53,91], which
makes it difficult for them to perform model adjustments and
ad hoc debugging in practical scenarios. Some efforts have
been made to improve system transparency through interpret-
ing black-box models [26,27,55]. They typically build surro-
gare models to obtain explanations for individual predictions,
thus validating model behaviors and diagnosing system mis-
takes. However, they cannot provide an interpretation fidelity
guarantee, and therefore the corresponding explanations are
unreliable and potentially misleading [58,70]. In addition,
they cannot address the aforementioned system cost issue.

In this paper, we aim to resolve the above challenges and
facilitate transparent, accurate and lightweight system de-
ployment in practice. We introduce PRiMO (Prior-based
interpretable model optimization), the firss unified frame-
work that assists developers to design and optimize learning-
augmented systems with interpretable models. The design
of PRIMO is based on two key insights. First, simple inrer-
pretable models have the capabiliry of handling complex sys-
tem problems. Interpretable models do not sacrifice prediction
accuracy [35,62,72], and simple model structures with low re-
source overhead are very suitable for real-time systems. Their
effectiveness is often underestimated [70]. Second, prior expe-
rience and domain k Ige can be I 1 by develop
to further optimize the interpretable models [20,76], which is
hard to achieve for black-box models.

PRIMO makes several innovations to enhance learning-
augmented systems. First, to provide comprehensive support
for different systems, PRIMO introduces two interpretable
model algorithms: PraM is designed for better prediction accu-
racy and PrDT applies to systems with strict latency or compu-
tation constraints. PRIMO can help developers select a suitable

22

ISummary

* Non-trivial to deploy learning-augmented systems in practice
Training cost Inference overhead Data insufficiency

Opaque decision Hard to adjust ...

« Simple interpretable models are excellent choices

We demonstrate they can outperform original black-box models in LinnOS, Clara and Pensieve

» Operators need automatic and guided model optimization

Our Code is Open Source:

@ https://qgithub.com/S-Lab-System-Group/Primo

23

https://github.com/S-Lab-System-Group/Primo

