

Primo: Practical Learning-Augmented Systems with Interpretable Models

Qinghao Hu¹, Harsha Nori², Peng Sun³, Yonggang Wen¹, Tianwei Zhang¹

Machine Learning in Systems

Learning-Augmented System is an emerging research topic

ML Brings Awesome System Improvement!

Challenges in Practical Deployment

Challenges in Practical Deployment

High Training and Tuning Cost

- Continuous Model Fine-tuning / Retraining is Necessary
 - 1) System environment change: scale up f / down \downarrow over time

2) Workload change: distribution drift

- Microsoft Operation Experience [AutoSys, ATC '20]
 - 1) Cost often exceed enterprise expectation
 - 2) Performance in testbed might not match the production environment

2 Strict Inference Overhead Requirement

High Data Collection Cost Sensitive / Privacy-rela

gh Data Collection Cost Sensitive / Privacy-related Data

Data Augmentation and Synthesis Techniques

 \rightarrow Possible induce bias and distribution drift

 \rightarrow Not work in practice

4 Opaque Decision Process

Many Learning-Augmented Systems Rely on Black-Box Models

How the model make decision?

Should I trust the prediction?

7

Interpretability is Important But Often Ignored

Operators need sufficient confidences to deploy learning-augmented systems

5 Hard to Adjust

Improper Modifications → Severe Performance Degradation

Operators need guided or automatic model adjustment

1 Cost

2 Overhead

3 Data How to address these issues?

4 Opacity

5 Adjustment

Existing Solution

Interpreting Black-box Models

LEMNA [CCS '18] Security: DeepAid [CCS '21]

Network: Metis [SIGCOMM '20] _

Create another surrogate model to explain the original model

Limitations

	Interpretation		Training	Inference	Insufficient	
	Individual	Entire	Fidelity	Cost	Overhead	Data
Interpreting Black-box	\checkmark	X	×	×	X	×

Any solution that can solve all challenges?

Interpreting Black-box Models

Adopt and Optimize Interpretable Models Directly

Linear Regression Logistic Regression Decision Tree ...

Benefits

Inherently Intelligible

Simple & Lightweight

	Interpretation		Training	Inference	Insufficient	
	Individual	Entire	Fidelity	Cost	Overhead	Data
Interpreting Black-box	✓	X	×	×	X	×
Interpretable Model	✓	\checkmark	✓	✓	\checkmark	\checkmark

Why Interpretable Models Work

Major Concern --- Is there a trade-off between model accuracy and interpretability? 😲

Key Observations

1. Input feature 2. Model Scale = ResNet-18 11M params Al Apps: Word Embeddings Al Apps: Image Pixels BERT-Base 110M params ML-Svs: RL-Svs <10K neurons¹ ML-Sys: System States Workload Features Meaningful and Lower Dimensional Smaller Scale and Latency Sensitive Interpretable Models have Comparable Performance and Less Overhead [1]: whiRL [SIGCOMM '21]

Primo Design

Primo (<u>Pr</u>ior-based interpretable model optimization) Objective --- Transparent, Accurate and Lightweight Learning-Augmented Systems

Different System Requirements

1 Online Systems

Real-time Response Performance-Latency Trade-off 2 Offline Systems

No Latency Requirement

Focus on Performance

Primo support various interpretable models

Main Modules

Interpretable Models Training

Post-Processing Optimization

Interpretable Models Training

Two Interpretable Models

PrAM: Addictive Model based Method

Summation of univariate or bivariant shape functions

Purpose: For better prediction accuracy

PrDT: Decision Tree based Method

Each decision can be clear visualized

Purpose: For strict latency and computation resource

Interpretable Models Training

Bayes Optimization

Efficient search for the optimal model configuration **Purpose:** For accurate and succinct model

• Distill Engine

Mimic the behavior of the original model **Purpose:** For RL-based system support

Post-Processing Optimization

- Not Necessary Step
- Two Post-Processing Tools

Monotonic Constraint

Edit shape functions according to prior knowledge

Purpose: For automatic model adjustment

Counterfactual Explanation

Find smaller feature value change

Purpose: For guided model adjustment

Case Studies

SmartNIC Offloading LSTM, GBDT, SVM Offline

Pensieve [SIGCOMM '17]

Video Streaming RL Online

LinnOS with Primo

LinnOS (31 Input Features)

4 layers with 7 leaves

LinnOS: Performance Analysis

Overall Performance

Average I/O latency:

2.5x reduction compared to LinnOS

• Tail Performance

Tail I/O latency:

2.2~7.9x reduction compared to LinnOS

LinnOS: Effectiveness Analysis

- Inference overhead
 - LinnOS: Data Preprocess + DNN Inference

8 us (idle) 33 us (busy)

Primo: 4 if-else Condition Tests

<1 us (idle) 2 us (busy)

Quantization

No degradation and higher accuracy

Robustness

More stable to the perturbed inputs

More Evaluations

Monotonic Constraint

Clara

Distill Engine Pensieve

Summary

More Details in Our Paper

ARTIFACT EVALUATED	ARTIFACT EVALUATED	ARTIFACT EVALUATED
Cusenix ADD CLATTON		Cusenix ACCOUNTION
AVAILABLE	FUNCTIONAL	REPRODUCED

PRIMO: Practical Learning-Augmented Systems with Interpretable Models

Qinghao Hu ^{1,2}	Harsha Nori ³	Peng Sun ⁴	Yonggang Wen ¹	Tianwei Zhang ¹
¹ Nanyang Technolog	gical University	² S-Lab, NTU	³ Microsoft	⁴ SenseTime Research

Abstract

While machine learning has demonstrated remarkable performance in various computer systems, some substantial flaws can prohibit its deployment in practice, including opaque decision processes, poor generalization and robustness, as well as exorbitant training and inference overhead. Motivated by these deficiencies, we introduce PRIMO, a unified framework for developers to design practical learning-augmented systems. Specifically, (1) PRIMO provides two interpretable models (PrAM and PrDT), as well as a Distill Engine, to support different system scenarios and deployment requirements. (2) It adopts Bayes Optimization to automatically identify the optimal model pruning strategy and hyperparameter configuration. (3) It also implements two tools, Monotonic Constraint and Counterfactual Explanation, to achieve transparent debugging and guided model adjustment. PRIMO can be applied to different types of learning-augmented systems. Evaluations on three state-of-the-art systems show that PRIMO can provide clear model interpretations, better system performance, and lower deployment costs.

1 Introduction

Over the years, machine learning (ML) has been widely adopted to optimize systems across many fields, e.g., storage [29, 82, 83], network [66, 77, 95], security [24, 28, 74], compiler optimization [8, 93, 94] and cluster scheduling [65, 89, 92]. These learning-augmented systems demonstrate marvelous performance compared with conventional heuristic or mathematical optimized systems.

However, most of these applied models are very complex and treated as black-boxes to developers, which brings significant gaps in deploying them in practice. First, building a production-level learning-augmented system can incur huge costs. From the experience at Microsoft [42], the model training process could take days to weeks with massive data. Some systems require frequent model updates to adapt to dynamic environment channes. whose cost often exceeds ensystems which have high real-time requirements [43, 81, 82], which can significantly restrict parallel capabilities and affect scalability in practice.

Second, the prediction process of these black-box models are unintelligible to humans. Developers lack understanding and trust of the model's behavior [19,53,91], which makes it difficult for them to perform model adjustments and ad hoc debugging in practical scenarios. Some efforts have been made to improve system transparency through interpreting black-box models [26,27,55]. They typically build surrogate models to obtain explanations for individual predictions, thus validating model behaviors and diagnosing system mistakes. However, they cannot provide an interpretation fidelity guarantee, and therefore the corresponding explanations are unreliable and potentially misleading [58,70]. In addition, they cannot address the aforementioned system cost issue.

In this paper, we aim to resolve the above challenges and facilitate transparent, accurate and lightweight system deployment in practice. We introduce PRIMO (Prior-based interpretable model optimization), the first unified framework that assists developers to design and optimize learningaugmented systems with interpretable models. The design of PRIMO is based on two key insights. First, simple interpretable models have the capability of handling complex system problems. Interpretable models do not sacrifice prediction accuracy [35, 62, 72], and simple model structures with low resource overhead are very suitable for real-time systems. Their effectiveness is often underestimated [70]. Second, prior experience and domain knowledge can be leveraged by developers to further optimize the interpretable models [20, 76], which is hard to achieve for black-box models.

PRIMO makes several innovations to enhance learningaugmented systems. First, to provide comprehensive support for different systems, PRIMO introduces two interpretable model algorithms: PrAM is designed for better prediction accuracy and PrDT applies to systems with strict latency or computation constraints. PRIMO can help developer select a suitable

Summary

• Non-trivial to deploy learning-augmented systems in practice

Training costInference overheadData insufficiencyOpaque decisionHard to adjust ...

• Simple interpretable models are excellent choices

We demonstrate they can outperform original black-box models in LinnOS, Clara and Pensieve

• Operators need automatic and guided model optimization

Our Code is Open Source:

https://github.com/S-Lab-System-Group/Primo