

High Throughput Replication with Integrated Membership Management

Pedro Fouto, Nuno Preguiça, João Leitão

USENIX ATC 2022

Outline

- Motivation and Related Work
- ChainPaxos
 - \circ Writing
 - o Local Linearizable Reads
 - o Reconfiguration
- Evaluation

Pedro Fouto

Outline

- Motivation and Related Work
- ChainPaxos
 - Writing
 - o Local Linearizable Reads
 - Reconfiguration
- Evaluation

Pedro Fouto

- Building blocks of numerous practical replication systems
- Their performance is critical

JOVALINCS

• Many alternatives have been designed

- Building blocks of numerous practical replication systems
- Their performance is critical
- Many alternatives have been designed
- Two very relevant ones:

JOVALINCS

- o (Multi-)Paxos
- o Chain Replication

- Building blocks of numerous practical replication systems
- Their performance is critical
- Many alternatives have been designed
- Two very relevant ones:

JOVALINCS

- o (Multi-)Paxos
- o Chain Replication

Pedro Fouto

Pedro Fouto

Pedro Fouto

Skipping the first phase

Pedro Fouto

Pedro Fouto

- Building blocks of numerous practical replication systems
- Their performance is critical
- Many alternatives have been designed
- Two very relevant ones:

JOVALINCS

- o (Multi-)Paxos
- Chain Replication

Pedro Fouto

Pedro Fouto

Pedro Fouto

Pedro Fouto

Image: Constraint of the second se

Pedro Fouto

- Message complexity:
 - All replicas: O(1)

• Message complexity:

NOVALINCS

• All replicas: O(1)

However, it has its limitations...

Pedro Fouto

- Building blocks of numerous practical replication systems
- Their performance is critical
- Many alternatives have been designed
- Two very relevant ones:

JOVALINCS

- o (Multi-)Paxos
- Chain Replication

- Building blocks of numerous practical replication systems
- Their performance is critical
- Many alternatives have been designed
- Two very relevant ones:

JOVALINCS

- o (Multi-)**Paxos**
- Chain Replication
- Two aspects are often overlooked:
 - Performant linearizable reads
 - Membership management and reconfiguration

- Building blocks of numerous practical replication systems
- Their performance is critical
- Many alternatives have been designed
- Two very relevant ones:

JOVALINCS

- o (Multi-)**Paxos**
- Chain Replication
- Two aspects are often overlooked:
 - Performant linearizable reads
 - Membership management and reconfiguration

• Some existing solutions assume a **synchronous** model (e.g. Chain Replication)

- Dealing with asynchrony is complicated. One can:
 - **Relax consistency** (e.g. ZooKeeper)
 - Add **extra (costly) steps** to write operations
 - **Synchronize** with other replicas when reading

Pedro Fouto

Pedro Fouto

• Some existing solutions assume a **synchronous** model

- Dealing with asynchrony is complicated. One can:
 - **Relax consistency** (e.g. ZooKeeper)
 - Add **extra (costly) steps** to write operations
 - **Synchronize** with other replicas when reading

Motivation: Consensus and SMR

- Building blocks of numerous practical replication systems
- Their performance is critical
- Many alternatives have been designed
- Two very relevant ones:

JOVALINCS

- o (Multi-)Paxos
- o Chain Replication
- Two aspects are often overlooked:
 - Performant linearizable reads
 - Membership management and reconfiguration

- Most consensus solutions overlook membership management.
- Often assume that using an external coordinator service (e.g. ZooKeeper) is trivial and the best solution

OVALINCS

- Most consensus solutions overlook membership management
- Often assume that using an external coordinator service (e.g. ZooKeeper) is trivial and the best solution
- This is not the case:

OVALINCS

- Most consensus solutions overlook membership management
- Often assume that using an external coordinator service (e.g. ZooKeeper) is trivial and the best solution
- This is not the case:

OVALINCS

• **Fault-tolerance** becomes complex

- Your consensus solution:
 - Fault-tolerance: 2

Pedro Fouto

Pedro Fouto

Pedro Fouto

Pedro Fouto

- Most consensus solutions overlook membership management
- Often assume that using an external coordinator service (e.g. ZooKeeper) is trivial and the best solution
- This is not the case:

OVALINCS

• **Fault-tolerance** becomes complex

- Most consensus solutions overlook membership management
- Often assume that using an external coordinator service (e.g. ZooKeeper) is trivial and the best solution
- This is not the case:

OVALINCS

- **Fault-tolerance** becomes complex
- **Complex (and redundant) integration** with consensus

Pedro Fouto

Pedro Fouto

Pedro Fouto

Pedro Fouto

Pedro Fouto

Another (redundant)

consensus round is required

Pedro Fouto

- Most consensus solutions overlook membership management
- Often assume that using an external coordinator service (e.g. ZooKeeper) is trivial and the best solution
- This is not the case:

OVALINCS

- **Fault-tolerance** becomes complex
- **Complex (and redundant) integration** with consensus

- Most consensus solutions overlook membership management
- Often assume that using an external coordinator service (e.g. ZooKeeper) is trivial and the best solution
- This is not the case:

VALINCS

- **Fault-tolerance** becomes complex
- **Complex (and redundant) integration** with consensus
- More vulnerable to partial network partitions¹

¹Alfatafta, Mohammed, et al. "Toward a generic fault tolerance technique for partial network partitioning." OSDI 2020.

Pedro Fouto

Partition between coordinator

and consensus replicas

Pedro Fouto

VOVALINCS

VOVALINCS

Pedro Fouto

Motivation: Consensus and SMR

- Building blocks of numerous practical replication systems
- Their performance is critical
- Many alternatives have been designed
- Two very relevant ones:

IOVALINCS

- o (Multi-)Paxos
- Chain Replication
- Two aspects are often overlooked:
 - Performant linearizable reads
 - Membership management and reconfiguration

Proposal: ChainPaxos

Novel consensus algorithm:

- **Combining** the best properties of Multi-Paxos and Chain Replication
 - Correction in an **asynchronous network**
 - Constant message complexity

Proposal: ChainPaxos

Novel consensus algorithm:

- **Combining** the best properties of Multi-Paxos and Chain Replication
 - Correction in an asynchronous network
 - Constant message complexity
- Going beyond existing solutions:
 - **Maximizing throughput** of both read and write operations
 - Providing **local linearizable reads** in any replica
 - Integrated reconfiguration and fault-tolerance

Outline

- Motivation and Related Work
- ChainPaxos
 - \circ Writing
 - o Local Linearizable Reads
 - Reconfiguration
- Evaluation

Pedro Fouto

Outline

- Motivation and Related Work
- ChainPaxos
 - Writing (commits + garbage collection)
 - o Local Linearizable Reads
 - Reconfiguration
- Evaluation

Pedro Fouto

ChainPaxos: Write Path

Pedro Fouto

Leader (regular Multi-Paxos election)

Pedro Fouto

Need to garbage collect +

execute on the first replicas

Pedro Fouto

Pedro Fouto

Outline

- Motivation and Related Work
- ChainPaxos
 - \circ Writing
 - o Local Linearizable Reads
 - Reconfiguration
- Evaluation

Pedro Fouto

Requirements for linearizability:

- The result of a read must contain **all writes that completed** before it started
- The result of a read must contain the result of **all reads that completed** before it started

Requirements for linearizability:

- The result of a read must contain **all writes that completed** before it started
- The result of a read must contain the result of **all reads that completed** before it started

USENIX ATC - July 2022

Challenge:

- Read from any replica
- No extra communication steps

Pedro Fouto

Requirements for linearizability:

- The result of a read must contain **all writes that completed** before it started
- The result of a read must contain the result of **all reads that completed** before it started

Challenge:

- Read from any replica
- No extra communication steps

Pedro Fouto

Pedro Fouto

Pedro Fouto

Pedro Fouto

Pedro Fouto

Local Linearizable Reads

- Contain all completed writes
- Contain all completed reads

Pedro Fouto

- Contain all completed writes
- Contain all completed reads

Pedro Fouto

Response must:

- Contain all completed writes (
- Contain all completed reads

Pedro Fouto

- Contain all completed writes (
)
- Contain all completed reads

Pedro Fouto

Pedro Fouto

Pedro Fouto

Pedro Fouto

We now wait until the green ack goes around the chain

Pedro Fouto

We now wait until the green ack goes around the chain

Pedro Fouto

Pedro Fouto

Pedro Fouto

Pedro Fouto

Pedro Fouto

Response must:

- Contain all completed writes (
- Contain all completed reads

Pedro Fouto

- Contain all completed writes (
)
- Contain all completed reads

Pedro Fouto

- Contain all completed writes (
)
- Contain all completed reads

Pedro Fouto

Pedro Fouto

Pedro Fouto

Pedro Fouto

Pedro Fouto

Response must:

- Contain all completed writes
- Contain all completed reads (
)

Pedro Fouto

Response must:

- Contain all completed writes
- Contain all completed reads (
)

Pedro Fouto

Pedro Fouto

Response must:

- Contain all completed writes
- Contain all completed reads (
)

Pedro Fouto

Response must:

- Contain all completed writes
- Contain all completed reads (
)

Pedro Fouto

Local Linearizable Reads: Summary

- Read is dilated to guarantee linearizability:
 - Ensures all previously **completed reads and writes** are visible
- No additional communication steps are required
 - More **conservative** than required, but **unavoidable without coordination**
- Only possible due to chain topology

OVALINCS

Outline

- Motivation and Related Work
- ChainPaxos
 - \circ Writing
 - Local Linearizable Reads
 - o Reconfiguration
- Evaluation

Pedro Fouto

Pedro Fouto

Pedro Fouto

Pedro Fouto

Pedro Fouto

Removal requests are handled like regular operations

Pedro Fouto

Pedro Fouto

Pedro Fouto

NOVALINCS

Pedro Fouto

NOVALINCS

Pedro Fouto

Pedro Fouto

ChainPaxos: Summary

- Aggregates Multi-Paxos messages for correction
- **Minimizes communication cost** for write operations
- Provides local linearizable reads in any replica
 - o With no additional communication
- Integrated reconfiguration and fault-tolerance
 - o Avoiding external coordination services

Outline

- Motivation and Related Work
- ChainPaxos
 - Writing
 - o Local Linearizable Reads
 - Reconfiguration
- Evaluation

Pedro Fouto

Evaluation: Goals

- How does ChainPaxos' **performance** compare against the state-of-the-art?
- What is the **latency overhead** of the chain?
- How much do local reads improve on the performance?
- Is ChainPaxos adequate to be used in a practical setting?

Compare with state-of-the-art

Compare with state-of-the-art

- Implemented a replicated key-value store
- Compared ChainPaxos against:
 - **MultiPaxos** (multiple variants)
 - Chain Replication
 - **EPaxos** (with and without conflicts)
 - (U-)RingPaxos

Compare with state-of-the-art

- Implemented a replicated key-value store
- Compared ChainPaxos against:
 - MultiPaxos (multiple variants)
 - Chain Replication
 - **EPaxos** (with and without conflicts)
 - (U-)RingPaxos

Evaluate a more realistic scenario

Pedro Fouto

Compare with state-of-the-art

- Implemented a replicated key-value store
- Compared ChainPaxos against:
 - **MultiPaxos** (multiple variants)
 - Chain Replication
 - **EPaxos** (with and without conflicts)
 - (U-)RingPaxos

Evaluate a more realistic scenario

- Integrated ChainPaxos in Zookeeper
- Replaced ZAB (ZooKeeper's atomic broadcast) with ChainPaxos

Pedro Fouto

Evaluation: Methodology

Using Grid5000 testbed

Emulating clients with YCSB

Evaluation: Methodology

Using Grid5000 testbed

Emulating clients with YCSB

Measured:

- Throughput (operations per second)
- Latency (as perceived by clients)

Evaluation: Methodology

Using Grid5000 testbed

Emulating clients with YCSB

Measured:

- Throughput (operations per second)
- Latency (as perceived by clients)

Varying:

- Number of consensus replicas (3, 5, 7)
- Load on the system (YCSB clients)
- Workload (read/write ratio)

Compare with state-of-the-art

- Implemented a replicated key-value store
- Compared ChainPaxos against:
 - **MultiPaxos** (multiple variants)
 - Chain Replication
 - **EPaxos** (with and without conflicts)
 - (U-)**RingPaxos**

Evaluate a more realistic scenario

- Integrated ChainPaxos in Zookeeper
- Replaced ZAB (ZooKeeper's atomic broadcast) with ChainPaxos

How does ChainPaxos' **performance** compare against the state-of-the-art?

How does ChainPaxos' **performance** compare against the state-of-the-art?

Pedro Fouto

How does ChainPaxos' **performance** compare against the state-of-the-art?

Minimizing the number of messages maximizes throughput

Pedro Fouto

What is the latency overhead of the chain?

What is the latency overhead of the chain?

Pedro Fouto

What is the latency overhead of the chain?

Latency is lower with a small number of replicas

Pedro Fouto

What is the latency overhead of the chain?

Pedro Fouto

How much do local reads improve on the performance?

How much do local reads improve on the performance?

Pedro Fouto

How much do local reads improve on the performance?

Pedro Fouto

How much do local reads improve on the performance?

Pedro Fouto

How much do local reads improve on the performance?

Pedro Fouto

How much do local reads improve on the performance?

Pedro Fouto

How much do local reads improve on the performance?

How much do local reads improve on the performance?

Compare with state-of-the-art

- Implemented a replicated key-value store
- Compared ChainPaxos against:
 - **MultiPaxos** (multiple variants)
 - Chain Replication
 - **EPaxos** (with and without conflicts)
 - (U-)RingPaxos

Evaluate a more realistic scenario

USENIX ATC - July 2022

- Integrated ChainPaxos in Zookeeper
- Replaced ZAB (ZooKeeper's atomic broadcast) with ChainPaxos

Pedro Fouto

Is ChainPaxos adequate to be **used in a practical setting**?

Is ChainPaxos adequate to be used in a practical setting?

Pedro Fouto

Is ChainPaxos adequate to be used in a practical setting?

Pedro Fouto

Is ChainPaxos adequate to be used in a practical setting?

Pedro Fouto

Is ChainPaxos adequate to be used in a practical setting?

Pedro Fouto

Is ChainPaxos adequate to be used in a practical setting?

ChainPaxos' linearizable reads show better performance

Pedro Fouto

Is ChainPaxos adequate to be used in a practical setting?

Pedro Fouto

Is ChainPaxos adequate to be used in a practical setting?

Pedro Fouto

Recap: ChainPaxos

Novel consensus algorithm:

- **Combining** the best properties of Multi-Paxos and Chain Replication
 - Correction in an asynchronous network
 - Constant message complexity
- Going beyond existing solutions:
 - **Maximizing throughput** of both read and write operations
 - Providing **local linearizable reads** in any replica
 - Integrated reconfiguration and fault-tolerance

High Throughput Replication with Integrated Membership Management

Pedro Fouto, Nuno Preguiça, João Leitão

USENIX ATC 2022

