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Server Applications Need Responsive Fault Tolerance

Server Applications:

• Low latency

• High throughput

→Multithreading

High reliability 

→ Fault Tolerance

Fault Tolerance Mechanism 
Requirements

• Low latency overhead

• Maintain high throughput

‒ Low throughput overhead   

‒ Support multithreading

• Minimize development cost

‒ No code modification 

‒ Compatibility with existing clients
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Replication is Old News

Bell Systems
No. 1 ESS (1964)

Remus: Virtual Machine Replication (2008)

Stratus/32
multiprocessor 
node  (1983)

IBM G5/G6 Processing Unit (1999)
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• Many older schemes:

‒ Require customized hardware

‒ No support for multithreaded applications

• Schemes based on checkpointing to a passive backup

‒ Unacceptable high latency overhead

• Schemes based on active replication

‒ Untracked nondeterministic events (e.g., data races)

Unpredictable slowdown during normal operation (with some schemes)

Recovery failure (with some schemes)

‒ Performance limited by tight coupling among replicas. 

RRC overcomes limitations by decoupling
replication-related operations from normal operations



Talk Outline

• Preface

• Motivation

• RRC overview

• Overcoming design and implementation challenges

• Evaluation
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Passive Backup: Checkpointing-Based Mechanisms
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Checkpointing-Based Mechanisms → High latency Overhead 

• Output delay = remaining execute time in Epoch 0 + time up to receipt of ACK in Epoch 1
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Checkpointing-Based Mechanisms → High latency Overhead 

• Output delay = remaining execute time in Epoch 0 + time up to receipt of ACK in Epoch 1
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Checkpointing-Based Mechanisms → High latency Overhead 

• Output delay = remaining execute time in Epoch 0 + time up to receipt of ACK in Epoch 1

• Checkpointing is expensive → Critical checkpointing (epoch) interval tradeoff

‒ Short interval → High throughput overhead, low latency overhead

‒ Long interval → Low throughput overhead, high latency overhead

In practice: 10s of milliseconds interval → 10s of milliseconds latency

→ Unacceptably high latency overhead
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Active Backup:  Mechanisms based on Active Replication
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Active Backup:  Mechanisms based on Active Replication
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• Primary and backup execute application code
• Primary sends outcomes of nondeterministic events to backup
• Backup enforces outcome of nondeterministic events to match execution
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Disadvantages of Active Backup Mechanisms

Backup execution must be consistent with primary:

→ Consequences of untracked nondeterministic events (e.g., data races):

ꟷUnpredictable slowdowns during normal operation (for some mechanisms)

ꟷRecovery failure (for some mechanisms)

• Performance limited by tight coupling between replicas

• Resource overhead lower bound = 100%
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Root cause: couplings between replication-based ops and normal ops

• Passive backup mechanisms:

‒ Checkpoint interval  delay in releasing outputs

‒ Time to take a checkpoint  service interruption

• Active backup mechanisms:

‒ Untracked nondeterminism  service interruption

‒ Performance on the primary performance on the backup

Undesirable Couplings in Current Mechanisms

11

RRC breaks these couplings



Talk Outline
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• Preface
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• RRC overview

• Overcoming design and implementation challenges
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Passive Backup as the Starting Point 

• Avoid vulnerability to nondeterminism

• Avoid coupling performance of primary with backup

• Reduce resource overhead
13
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Decoupling Latency Overhead from Checkpoint Interval
Using hybrid replication 

Passive backup mechanisms: High latency overhead (10s of milliseconds)
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Decoupling Latency Overhead from Checkpoint Interval
Using hybrid replication 

Passive backup mechanisms: High latency overhead (10s of milliseconds)

Root cause: Coupling of latency overhead and checkpointing interval 

Solution: Hybrid replication – combine checkpointing with execution replay

• Outputs release decoupled from checkpoint commitment

• On primary failure
ꟷRestore the last checkpoint on backup
ꟷBackup replays primary execution up to the last released outputs
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Choice of Granularity of Replication

Tracking OS 

nondeterministic events
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High runtime overheads Naming conflicts

e.g., process ID
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Normal operation
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Key Design and Implementation Challenges

• Minimizing pause time during checkpointing

• Handling untracked nondeterministic events

• Robust integration of asynchronous checkpointing and recording of 
nondeterministic events 

• Minimizing the overhead for collection and transfer of nondeterministic 
event logs

• Integration of TCP failover with replay during recovery
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Service Pause during Container Checkpointing 

Checkpointing requires saving a consistent state

→ Execution must pause during checkpointing

→ Service pause time during checkpointing

Container: tight state coupling with the underlying kernel

→ Significant in-kernel container state must be checkpointed 

→ Retrieving the in-kernel container state is slow: thousands of syscalls

Checkpointing a container is slow

Challenge: minimize the pause time despite slow checkpointing

22
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Minimizing Service Pause Using Container Fork

Key Idea: Decouple retrieval of in-kernel container state 

from container execution

Design: New kernel primitive – Container fork

Result: Service Pause time [5.9ms - 42.9ms] → [0.5ms - 3.2ms]
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Nondeterministic events and the Challenge of Data Races

RRC – Hybrid replication:
Execution replay only during recovery
→ Vulnerability only to nondeterministic events occurring during 

the epoch of failure

RRC's handling of nondeterministic events:

• Replay nondeterministic event logs 

Multithreading: memory access ordering is nondeterministic

Solution: 

• Record the order of all memory accesses  

→ Unacceptably high overhead 

• Record the outcomes of synchronization operations

→ Challenge: data races – unsynchronized memory accesses
24
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Data Race Considerations

• Data races are bugs

• Impossible to eliminate all data races with languages like C/C++

• Existing tools can effectively detect frequently-manifested data races

• Deployed server applications go through testing / debugging 

→ RRC focuses on infrequently-manifested data races

25



The Potential Impact of Data Races

• During replay on the backup, most of system calls not actually executed
→ Significantly different timing of thread execution
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The Potential Impact of Data Races

• During replay on the backup, most of system calls not actually executed
→ Significantly different timing of thread execution

→ Outcomes of data races

→ Different outcomes of replay
26
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RRC’s Mitigation of the Impact of Data Races

• Record time intervals between system call returns on the primary
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RRC’s Mitigation of the Impact of Data Races

• Record time intervals between system call returns on the primary

• Enforce inter-syscall interval during replay  recorded interval
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Replay 
Time Diff

RRC’s Mitigation of the Impact of Data Races

• Record time intervals between system call returns on the primary

• Enforce inter-syscall interval during replay  recorded interval

27
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Recovery success rate with infrequent data races: {35%, 51%} →> 99%
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Key design and implementation challenges

• Latency overhead

• Throughput overhead

• Recovery success rate

• Impact of data races
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• Impact of checkpoint interval

• Impact of workload footprint size and working set size

• Comparison with custom application-specific mechanisms
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Evaluation Setup

• Baseline:
NiLiCon: Container replication, checkpointing to a passive backup

• Workloads:

‒ In-memory databases: Redis, Tarantool, SSDB, Memcached, Aerospike

‒ Webserver: Lighttpd

• RRC configuration:

‒ 100ms checkpointing interval

31
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Lig Redis Taran SSDB Mem$ Aero

RRC 144μs 198μs 211μs 263μs 169μs 290μs

NiLiCon 37ms 41ms 41ms 44ms 44ms 50ms
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Average Latency Overhead

Average:    RRC:  144us – 290µs    NiLiCon:  37ms – 50ms
99th%   :    RRC:  235µs – 959µs    NiLiCon:  39ms – 63ms

RRC: Hybrid replication + Container fork →
two orders of magnitude lower latency overhead



Throughput Overhead: RRC vs. NiLiCon
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Recording overhead:           RRC:  14% - 47%       NiLiCon: 0%
Pause overhead:                  RRC:     1% - 3%       NiLiCon: 17% - 130%
Overall:                                  RRC:   18% - 85%       NiLiCon: 25% - 139%
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Recovery Success Rate

Fault injection setups: 

• Fail-stop failures

• 1000s of fault injections

• Injection into both the primary and the backup host

Recovery rate:

• >99% with real-world examples of data races

• 100% without data races
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Summary
• Key goals:  Application-transparent fault tolerance for server applications

– Multithreading
– Minimize latency and throughput overhead

• Key insight:  decouple replication-related operations from normal operations 
– checkpoint interval  delay in releasing outputs
– time to take a checkpoint  service interruption
– Untracked nondeterminism  service interruption 

• Key mechanisms:  hybrid replication: checkpointing + deterministic replay
container fork
passive backup
mitigation of the impact of data races

• Key results:  average latency overhead < 290us    vs.    10s of ms   with passive backup
throughput overhead < 85%             vs.    < 139%      with passive backup
recovery rate for fail-stop failures:
– >99% with real-world examples of data races
– 100% without data races
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Support for Deterministic Replay

Requirement:  

• Record nondeterministic events on the primary

• Transfer the log to the backup

• Replay the log for recovery on the backup

Nondeterministic events:

• External inputs – e.g., network packets from the clients

• Synchronization operations – e.g., lock acquire/release

• Certain local operations -- e.g., gettimeofday()
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