
RRC: Responsive Replicated Containers

Diyu Zhou*

UCLA and EPFL

1

Yuval Tamir

UCLA

*Looking for a faculty job

Server Applications Need Responsive Fault Tolerance

Server Applications:

• Low latency

• High throughput

• High reliability

2

Server Applications Need Responsive Fault Tolerance

Server Applications:

• Low latency

• High throughput

→Multithreading

High reliability

→ Fault Tolerance

2

Server Applications Need Responsive Fault Tolerance

Server Applications:

• Low latency

• High throughput

→Multithreading

High reliability

→ Fault Tolerance

Fault Tolerance Mechanism
Requirements

• Low latency overhead

• Maintain high throughput

‒ Low throughput overhead

‒ Support multithreading

2

Server Applications Need Responsive Fault Tolerance

Server Applications:

• Low latency

• High throughput

→Multithreading

High reliability

→ Fault Tolerance

Fault Tolerance Mechanism
Requirements

• Low latency overhead

• Maintain high throughput

‒ Low throughput overhead

‒ Support multithreading

• Minimize development cost

‒ No code modification

‒ Compatibility with existing clients

2

→ Application Transparency

Replication → Application-Transparent Fault Tolerance

3

Client

Primary host

Backup host

Server
App

Replication
Runtime

Server
App

Replication
Runtime

Replication → Application-Transparent Fault Tolerance

3

Client

Primary host

Backup host

Sync

Server
App

Replication
Runtime

Server
App

Replication
Runtime

Replication → Application-Transparent Fault Tolerance

3

Client

Primary host

Backup host

Failure

Sync

Server
App

Replication
Runtime

Server
App

Replication
Runtime

Replication → Application-Transparent Fault Tolerance

3

Client

Primary host

Backup host

Failure

Server
App

Replication
Runtime

Server
App

Replication
Runtime

Replication is Old News

Bell Systems
No. 1 ESS (1964)

Remus: Virtual Machine Replication (2008)

Stratus/32
multiprocessor
node (1983)

IBM G5/G6 Processing Unit (1999)
4

What is Missing in Existing Replication Schemes?

5

• Many older schemes:

‒ Require customized hardware

‒ No support for multithreaded applications

What is Missing in Existing Replication Schemes?

5

• Many older schemes:

‒ Require customized hardware

‒ No support for multithreaded applications

• Schemes based on checkpointing to a passive backup

‒ Unacceptable high latency overhead

What is Missing in Existing Replication Schemes?

5

• Many older schemes:

‒ Require customized hardware

‒ No support for multithreaded applications

• Schemes based on checkpointing to a passive backup

‒ Unacceptable high latency overhead

• Schemes based on active replication

‒ Untracked nondeterministic events (e.g., data races)

Unpredictable slowdown during normal operation (with some schemes)

Recovery failure (with some schemes)

‒ Performance limited by tight coupling among replicas.

What is Missing in Existing Replication Schemes?

5

• Many older schemes:

‒ Require customized hardware

‒ No support for multithreaded applications

• Schemes based on checkpointing to a passive backup

‒ Unacceptable high latency overhead

• Schemes based on active replication

‒ Untracked nondeterministic events (e.g., data races)

Unpredictable slowdown during normal operation (with some schemes)

Recovery failure (with some schemes)

‒ Performance limited by tight coupling among replicas.

RRC overcomes limitations by decoupling
replication-related operations from normal operations

Talk Outline

• Preface

• Motivation

• RRC overview

• Overcoming design and implementation challenges

• Evaluation

6

Passive Backup: Checkpointing-Based Mechanisms

7

Wait
for ACK

Send
state

Release
output

Application Execute

Epoch 1

Pause

Epoch 0

Execute Pause

Application
Backup

Host

Check
point

Primary

Client

Passive Backup: Checkpointing-Based Mechanisms

7

Wait
for ACK

Send
state

Release
output

Application Execute

Epoch 1

Pause

Epoch 0

Execute Pause

Application
Backup

Host

Check
point

Primary

Client

Passive Backup: Checkpointing-Based Mechanisms

7

Wait
for ACK

Send
state

Release
output

Application Execute

Epoch 1

Pause

Epoch 0

Execute Pause

Application
Backup

Host

Check
point

Buffer

External
Output

Primary 1

Client

Passive Backup: Checkpointing-Based Mechanisms

7

Wait
for ACK

Send
state

Release
output

Application Execute

Epoch 1

Pause

Epoch 0

Execute Pause

Application
Backup

Host

Check
point

Buffer

External
Output

Primary 1

Client

Passive Backup: Checkpointing-Based Mechanisms

7

Wait
for ACK

Send
state

Release
output

Application Execute

Epoch 1

Pause

Epoch 0

Execute Pause

Application
Backup

Host

Check
point

Buffer

External
Output

Primary 1

Checkpoint2

Client

Passive Backup: Checkpointing-Based Mechanisms

7

Wait
for ACK

Send
state

Release
output

Application Execute

Epoch 1

Pause

Epoch 0

Execute Pause

Application
Backup

Host

Check
point

Buffer

Ack
External
Output

Primary 1

Checkpoint2

3

Client

Passive Backup: Checkpointing-Based Mechanisms

7

Wait
for ACK

Send
state

Release
output

Application Execute

Epoch 1

Pause

Epoch 0

Execute Pause

Application
Backup

Host

Check
point

Buffer

Ack
External
Output

Primary 1

Checkpoint2

3

Release4 Client

Passive Backup: Checkpointing-Based Mechanisms

7

Wait
for ACK

Send
state

Release
output

Application Execute

Epoch 1

Pause

Epoch 0

Execute Pause

Application
Backup

Host

Check
point

Buffer

Ack
External
Output

Primary 1

Checkpoint2

3

Release4

Why delayed output:
Backup needs to restore state consistent with clients

Client

Checkpointing-Based Mechanisms → High latency Overhead

• Output delay = remaining execute time in Epoch 0 + time up to receipt of ACK in Epoch 1

8

Wait
for ACK

Send
state

Release
output

Application Execute

Epoch 1

Pause

Epoch 0

Execute Pause

Check
point

Output delay

Checkpointing-Based Mechanisms → High latency Overhead

• Output delay = remaining execute time in Epoch 0 + time up to receipt of ACK in Epoch 1

• Checkpointing is expensive → Critical checkpointing (epoch) interval tradeoff

‒ Short interval → High throughput overhead, low latency overhead

‒ Long interval → Low throughput overhead, high latency overhead

8

Wait
for ACK

Send
state

Release
output

Application Execute

Epoch 1

Pause

Epoch 0

Execute Pause

Check
point

Output delay

Checkpointing-Based Mechanisms → High latency Overhead

• Output delay = remaining execute time in Epoch 0 + time up to receipt of ACK in Epoch 1

• Checkpointing is expensive → Critical checkpointing (epoch) interval tradeoff

‒ Short interval → High throughput overhead, low latency overhead

‒ Long interval → Low throughput overhead, high latency overhead

In practice: 10s of milliseconds interval → 10s of milliseconds latency

→ Unacceptably high latency overhead
8

Wait
for ACK

Send
state

Release
output

Application Execute

Epoch 1

Pause

Epoch 0

Execute Pause

Check
point

Output delay

Active Backup: Mechanisms based on Active Replication

9

Application

Primary

Application

Backup

• Primary and backup execute application code

Active Backup: Mechanisms based on Active Replication

9

Application

Nondeterministic
event log

Primary

Application

Backup

2

• Primary and backup execute application code
• Primary sends outcomes of nondeterministic events to backup

Active Backup: Mechanisms based on Active Replication

9

Application

Nondeterministic
event log

Primary

Application

Backup

2 Replay3

• Primary and backup execute application code
• Primary sends outcomes of nondeterministic events to backup
• Backup enforces outcome of nondeterministic events to match execution

Disadvantages of Active Backup Mechanisms

Backup execution must be consistent with primary:

10

Application

Nondeterministic
event log

Primary

Application

Backup

2 Replay3

Disadvantages of Active Backup Mechanisms

Backup execution must be consistent with primary:

→ Consequences of untracked nondeterministic events (e.g., data races):

ꟷUnpredictable slowdowns during normal operation (for some mechanisms)

ꟷRecovery failure (for some mechanisms)

10

Application

Nondeterministic
event log

Primary

Application

Backup

2 Replay3

Disadvantages of Active Backup Mechanisms

Backup execution must be consistent with primary:

→ Consequences of untracked nondeterministic events (e.g., data races):

ꟷUnpredictable slowdowns during normal operation (for some mechanisms)

ꟷRecovery failure (for some mechanisms)

• Performance limited by tight coupling between replicas

• Resource overhead lower bound = 100%
10

Application

Nondeterministic
event log

Primary

Application

Backup

2 Replay3

Root cause: couplings between replication-based ops and normal ops

Undesirable Couplings in Current Mechanisms

11

Root cause: couplings between replication-based ops and normal ops

• Passive backup mechanisms:

‒ Checkpoint interval delay in releasing outputs

‒ Time to take a checkpoint service interruption

Undesirable Couplings in Current Mechanisms

11

Root cause: couplings between replication-based ops and normal ops

• Passive backup mechanisms:

‒ Checkpoint interval delay in releasing outputs

‒ Time to take a checkpoint service interruption

• Active backup mechanisms:

‒ Untracked nondeterminism service interruption

‒ Performance on the primary performance on the backup

Undesirable Couplings in Current Mechanisms

11

Root cause: couplings between replication-based ops and normal ops

• Passive backup mechanisms:

‒ Checkpoint interval delay in releasing outputs

‒ Time to take a checkpoint service interruption

• Active backup mechanisms:

‒ Untracked nondeterminism service interruption

‒ Performance on the primary performance on the backup

Undesirable Couplings in Current Mechanisms

11

RRC breaks these couplings

Talk Outline

12

• Preface

• Motivation

• RRC overview

• Overcoming design and implementation challenges

• Evaluation

Passive Backup as the Starting Point

13

Primary

Passive Backup Active Backup

BackupPrimary Backup

Passive Backup as the Starting Point

• Avoid vulnerability to nondeterminism

• Avoid coupling performance of primary with backup

• Reduce resource overhead
13

Primary

Passive Backup Active Backup

BackupPrimary Backup

Decoupling Latency Overhead from Checkpoint Interval
Using hybrid replication

Passive backup mechanisms: High latency overhead (10s of milliseconds)

Root cause: Coupling of latency overhead and checkpointing interval

14

Decoupling Latency Overhead from Checkpoint Interval
Using hybrid replication

Passive backup mechanisms: High latency overhead (10s of milliseconds)

Root cause: Coupling of latency overhead and checkpointing interval

Solution: Hybrid replication – combine checkpointing with execution replay

• Outputs release decoupled from checkpoint commitment

14

Decoupling Latency Overhead from Checkpoint Interval
Using hybrid replication

Passive backup mechanisms: High latency overhead (10s of milliseconds)

Root cause: Coupling of latency overhead and checkpointing interval

Solution: Hybrid replication – combine checkpointing with execution replay

• Outputs release decoupled from checkpoint commitment

• On primary failure
ꟷRestore the last checkpoint on backup
ꟷBackup replays primary execution up to the last released outputs

14

Choice of Granularity of Replication

15

OS

Process

VMM

Virtual machine

OS

Process

Namespace

Container

OS

Process

Process

Choice of Granularity of Replication

Tracking OS

nondeterministic events

15

High runtime overheads

OS

Process

VMM

Virtual machine

OS

Process

Namespace

Container

OS

Process

Process

Choice of Granularity of Replication

Tracking OS

nondeterministic events

15

High runtime overheads Naming conflicts

e.g., process ID

OS

Process

VMM

Virtual machine

OS

Process

Namespace

Container

OS

Process

Process

Choice of Granularity of Replication

Tracking OS

nondeterministic events

15

High runtime overheads Naming conflicts

e.g., process ID

Resolves limitations

of processes/ VMs

OS

Process

VMM

Virtual machine

OS

Process

Namespace

Container

OS

Process

Process

Normal operation

16

Primary Backup

Application

Container

Send
state

ExecuteStopExecute

Check
point

Epoch 1Epoch 0

Normal operation

16

Primary Backup

Application

Container

Send
state

ExecuteStopExecute

Check
point

Epoch 1Epoch 0

Normal operation

16

Primary Backup

Application

Container

Send
state

ExecuteStopExecute

Check
point

Epoch 1Epoch 0

Normal operation

16

Primary Backup

Request

Record2
Application

PackRec

1

Container

Send
state

ExecuteStopExecute

Check
point

Epoch 1Epoch 0

Normal operation

16

Primary Backup

Request

Record2
Application

PackRec

1

Container

Send
state

ExecuteStopExecute

Check
point

Epoch 1Epoch 0

Normal operation

16

Primary Backup

Request

Record2

Reply3

Application

PackRec

1

PackGate

Container

Send
state

ExecuteStopExecute

Check
point

Epoch 1Epoch 0

Normal operation

16

Primary Backup

Request

ND Log

Record2

Reply3

Application

PackRec

1

PackGate

RRC
Agent

4

Container

Send
state

ExecuteStopExecute

Check
point

Epoch 1Epoch 0

Normal operation

16

R
el

e
as

e

Primary Backup

Request

ND Log

5

Record2

Reply3

Application

PackRec

1

PackGate

RRC
Agent

4

Container

Send
state

ExecuteStopExecute

Check
point

Epoch 1Epoch 0

Normal operation

16

R
el

e
as

e

Primary Backup

Request

ND Log

5

Reply6

Record2

Reply3

Application

PackRec

1

PackGate

RRC
Agent

4

Container

Send
state

ExecuteStopExecute

Check
point

Epoch 1Epoch 0

Normal operation

16

R
el

e
as

eCheckpoint

Primary Backup

Request

ND Log

5

Reply6

Record2

Reply3

Application

PackRec

1

PackGate

RRC
Agent

4

Container

Send
state

ExecuteStopExecute

Check
point

Epoch 1Epoch 0

Handling Primary Failure

17

Primary Backup

Application

PackRec

RRC
Agent

Container

Handling Primary Failure

17

Primary Backup

Application

PackRec

RRC
Agent

Container

Handling Primary Failure

17

Primary Backup

Application

PackRec

RRC
Agent

Container

Restore

Application

1

Handling Primary Failure

17

Primary Backup

Application

PackRec

RRC
Agent

Container

Restore

Application

Recorded
inputs2

1 ND Log2

Handling Primary Failure

17

Primary Backup

Application

PackRec

RRC
Agent

Container

Restore

Application

Recorded
inputs2

1 ND Log2

ApplicationReplay3

Handling Primary Failure

17

Primary Backup

Application

PackRec

RRC
Agent

Container

Restore

Application

Recorded
inputs2

1 ND Log2

ApplicationReplay3

Reply4

Request4

RRC: Backup Failure

18

Primary Backup

RequestReply

Reply

Application

PackRec

PackGate

RRC
Agent

Container

Request

RRC: Backup Failure

18

Primary Backup

RequestReply

Reply

Application

PackRec

PackGate

RRC
Agent

Container

Request

RRC: Backup Failure

18

Primary Backup

RequestReply

Reply

Application

PackRec

PackGate

RRC
Agent

Container

Service IP

Request

1

RRC: Backup Failure

18

Primary Backup

Reply

Reply

Application

PackRec

PackGate

RRC
Agent

Container

Service IP

Request

1

2

RRC: Backup Failure

18

Primary Backup

Application

PackRec

PackGate

RRC
Agent

Container

Service IP

Request Reply

1

2
3

Talk Outline

19

• Preface

• Motivation

• RRC overview

• Overcoming design and implementation challenges

• Evaluation

Key Design and Implementation Challenges

• Minimizing pause time during checkpointing

• Handling untracked nondeterministic events

• Robust integration of asynchronous checkpointing and recording of
nondeterministic events

• Minimizing the overhead for collection and transfer of nondeterministic
event logs

• Integration of TCP failover with replay during recovery

20

Key Design and Implementation Challenges

• Minimizing pause time during checkpointing

• Handling untracked nondeterministic events

• Robust integration of asynchronous checkpointing and recording of
nondeterministic events

• Minimizing the overhead for collection and transfer of nondeterministic
event logs

• Integration of TCP failover with replay during recovery

21

Service Pause during Container Checkpointing

Checkpointing requires saving a consistent state

→ Execution must pause during checkpointing

→ Service pause time during checkpointing

22

Service Pause during Container Checkpointing

Checkpointing requires saving a consistent state

→ Execution must pause during checkpointing

→ Service pause time during checkpointing

Container: tight state coupling with the underlying kernel

→ Significant in-kernel container state must be checkpointed

→ Retrieving the in-kernel container state is slow: thousands of syscalls

22

Service Pause during Container Checkpointing

Checkpointing requires saving a consistent state

→ Execution must pause during checkpointing

→ Service pause time during checkpointing

Container: tight state coupling with the underlying kernel

→ Significant in-kernel container state must be checkpointed

→ Retrieving the in-kernel container state is slow: thousands of syscalls

Checkpointing a container is slow

22

Service Pause during Container Checkpointing

Checkpointing requires saving a consistent state

→ Execution must pause during checkpointing

→ Service pause time during checkpointing

Container: tight state coupling with the underlying kernel

→ Significant in-kernel container state must be checkpointed

→ Retrieving the in-kernel container state is slow: thousands of syscalls

Checkpointing a container is slow

Challenge: minimize the pause time despite slow checkpointing

22

Minimizing Service Pause Using Container Fork

Key Idea: Decouple retrieval of in-kernel container state

from container execution

23

Minimizing Service Pause Using Container Fork

Key Idea: Decouple retrieval of in-kernel container state

from container execution

Design: New kernel primitive – Container fork

23

Minimizing Service Pause Using Container Fork

Key Idea: Decouple retrieval of in-kernel container state

from container execution

Design: New kernel primitive – Container fork

23

Application
Container

Primary Host

Minimizing Service Pause Using Container Fork

Key Idea: Decouple retrieval of in-kernel container state

from container execution

Design: New kernel primitive – Container fork

23

Application
Container

Pause1

Primary Host

Minimizing Service Pause Using Container Fork

Key Idea: Decouple retrieval of in-kernel container state

from container execution

Design: New kernel primitive – Container fork

23

Application
Container

Pause1
Fork 2 Shadow

Container

Primary Host

Minimizing Service Pause Using Container Fork

Key Idea: Decouple retrieval of in-kernel container state

from container execution

Design: New kernel primitive – Container fork

23

Application
Container

Fork 2 Shadow
Container

Resume3 Application
Container

Primary Host

Minimizing Service Pause Using Container Fork

Key Idea: Decouple retrieval of in-kernel container state

from container execution

Design: New kernel primitive – Container fork

23

Application
Container

Fork 2 Shadow
Container

Resume3 Application
Container

Checkpoint 4

Primary Host

Minimizing Service Pause Using Container Fork

Key Idea: Decouple retrieval of in-kernel container state

from container execution

Design: New kernel primitive – Container fork

Result: Service Pause time [5.9ms - 42.9ms] → [0.5ms - 3.2ms]

23

Application
Container

Fork 2 Shadow
Container

Resume3 Application
Container

Checkpoint 4

Primary Host

Nondeterministic events and the Challenge of Data Races

RRC – Hybrid replication:
Execution replay only during recovery
→ Vulnerability only to nondeterministic events occurring during

the epoch of failure

24

Nondeterministic events and the Challenge of Data Races

RRC – Hybrid replication:
Execution replay only during recovery
→ Vulnerability only to nondeterministic events occurring during

the epoch of failure

RRC's handling of nondeterministic events:

• Replay nondeterministic event logs

24

Nondeterministic events and the Challenge of Data Races

RRC – Hybrid replication:
Execution replay only during recovery
→ Vulnerability only to nondeterministic events occurring during

the epoch of failure

RRC's handling of nondeterministic events:

• Replay nondeterministic event logs

Multithreading: memory access ordering is nondeterministic

Solution:

• Record the order of all memory accesses

→ Unacceptably high overhead

24

Nondeterministic events and the Challenge of Data Races

RRC – Hybrid replication:
Execution replay only during recovery
→ Vulnerability only to nondeterministic events occurring during

the epoch of failure

RRC's handling of nondeterministic events:

• Replay nondeterministic event logs

Multithreading: memory access ordering is nondeterministic

Solution:

• Record the order of all memory accesses

→ Unacceptably high overhead

• Record the outcomes of synchronization operations

→ Challenge: data races – unsynchronized memory accesses
24

Data Race Considerations

• Data races are bugs

• Impossible to eliminate all data races with languages like C/C++

25

Data Race Considerations

• Data races are bugs

• Impossible to eliminate all data races with languages like C/C++

• Existing tools can effectively detect frequently-manifested data races

• Deployed server applications go through testing / debugging

25

Data Race Considerations

• Data races are bugs

• Impossible to eliminate all data races with languages like C/C++

• Existing tools can effectively detect frequently-manifested data races

• Deployed server applications go through testing / debugging

→ RRC focuses on infrequently-manifested data races

25

The Potential Impact of Data Races

• During replay on the backup, most of system calls not actually executed
→ Significantly different timing of thread execution

26

Record Run

Syscall1

Thread1

Syscall2

Thread2

Replay Run

Syscall1

Thread1

Syscall2

Thread2

The Potential Impact of Data Races

• During replay on the backup, most of system calls not actually executed
→ Significantly different timing of thread execution

→ Outcomes of data races

→ Different outcomes of replay
26

Record Run

Syscall1

Thread1

Syscall2

Thread2

Store X
Load X

Replay Run

Syscall1

Thread1

Syscall2

Thread2

Store X

Load X

RRC’s Mitigation of the Impact of Data Races

• Record time intervals between system call returns on the primary

27

Record Run

Syscall1

Thread1

Syscall2

Thread2

Store X
Load X

Replay Run

Syscall1

Thread1 Thread2

Store X

Syscall2

Load X
Record

Time Diff

RRC’s Mitigation of the Impact of Data Races

• Record time intervals between system call returns on the primary

27

Record Run

Syscall1

Thread1

Syscall2

Thread2

Store X
Load X

Replay Run

Syscall1

Thread1 Thread2

Store X
Syscall2

Load X

Record
Time Diff

Replay
Time Diff

Replay
Time Diff

RRC’s Mitigation of the Impact of Data Races

• Record time intervals between system call returns on the primary

27

Record Run

Syscall1

Thread1

Syscall2

Thread2

Store X
Load X

Replay Run

Syscall1

Thread1 Thread2

Store X

Record
Time Diff

Syscall2

Load X

Replay
Time Diff

RRC’s Mitigation of the Impact of Data Races

• Record time intervals between system call returns on the primary

• Enforce inter-syscall interval during replay recorded interval

27

Record Run

Syscall1

Thread1

Syscall2

Thread2

Store X
Load X

Replay Run

Syscall1

Thread1 Thread2

Store X

Record
Time Diff

Syscall2

Load X

Replay
Time Diff

RRC’s Mitigation of the Impact of Data Races

• Record time intervals between system call returns on the primary

• Enforce inter-syscall interval during replay recorded interval

27

Record Run

Syscall1

Thread1

Syscall2

Thread2

Store X
Load X

Replay Run

Syscall1

Thread1 Thread2

Store X

Record
Time Diff

Recovery success rate with infrequent data races: {35%, 51%} →> 99%

Syscall2

Load X

Talk Outline

• Preface

• Motivation

• RRC overview

• Overcoming design and implementation challenges

• Evaluation

28

Key design and implementation challenges

• Latency overhead

• Throughput overhead

• Recovery success rate

• Impact of data races

• CPU utilization overhead

• Pause time

• Recovery latency

• Impact of checkpoint interval

• Impact of workload footprint size and working set size

• Comparison with custom application-specific mechanisms
29

Key design and implementation challenges

• Latency overhead

• Throughput overhead

• Recovery success rate

• Impact of data races

• CPU utilization overhead

• Pause time

• Recovery latency

• Impact of checkpoint interval

• Impact of workload footprint size and working set size

• Comparison with custom application-specific mechanisms
30

Evaluation Setup

• Baseline:
NiLiCon: Container replication, checkpointing to a passive backup

31

Evaluation Setup

• Baseline:
NiLiCon: Container replication, checkpointing to a passive backup

• Workloads:

‒ In-memory databases: Redis, Tarantool, SSDB, Memcached, Aerospike

‒ Webserver: Lighttpd

31

Evaluation Setup

• Baseline:
NiLiCon: Container replication, checkpointing to a passive backup

• Workloads:

‒ In-memory databases: Redis, Tarantool, SSDB, Memcached, Aerospike

‒ Webserver: Lighttpd

• RRC configuration:

‒ 100ms checkpointing interval

31

Latency Overhead: RRC vs. NiLiCon

Lig Redis Taran SSDB Mem$ Aero

RRC 144μs 198μs 211μs 263μs 169μs 290μs

NiLiCon 37ms 41ms 41ms 44ms 44ms 50ms

32

Average Latency Overhead

Latency Overhead: RRC vs. NiLiCon

Lig Redis Taran SSDB Mem$ Aero

RRC 144μs 198μs 211μs 263μs 169μs 290μs

NiLiCon 37ms 41ms 41ms 44ms 44ms 50ms

32

Average Latency Overhead

Average: RRC: 144us – 290µs NiLiCon: 37ms – 50ms

Latency Overhead: RRC vs. NiLiCon

Lig Redis Taran SSDB Mem$ Aero

RRC 144μs 198μs 211μs 263μs 169μs 290μs

NiLiCon 37ms 41ms 41ms 44ms 44ms 50ms

32

Average Latency Overhead

Average: RRC: 144us – 290µs NiLiCon: 37ms – 50ms
99th% : RRC: 235µs – 959µs NiLiCon: 39ms – 63ms

Latency Overhead: RRC vs. NiLiCon

Lig Redis Taran SSDB Mem$ Aero

RRC 144μs 198μs 211μs 263μs 169μs 290μs

NiLiCon 37ms 41ms 41ms 44ms 44ms 50ms

32

Average Latency Overhead

Average: RRC: 144us – 290µs NiLiCon: 37ms – 50ms
99th% : RRC: 235µs – 959µs NiLiCon: 39ms – 63ms

RRC: Hybrid replication + Container fork →
two orders of magnitude lower latency overhead

Throughput Overhead: RRC vs. NiLiCon

Overhead (lower is better)

0% 20% 40% 60% 80% 100% 120% 140%

RRC
NILI

RRC
NILI

RRC
NILI

RRC
NILI

RRC
NILI

RRC
NILI

62%

56%
46%

37%

62%

128%
35%

139%
85%

52%

Lig

Redis

Taran

SSDB

Mem$

Aero

Record ND events

Pause for checkpointing

Copy on write & Page Fault

25%
18%

Throughput Overhead: RRC vs. NiLiCon

Overhead (lower is better)

0% 20% 40% 60% 80% 100% 120% 140%

RRC
NILI

RRC
NILI

RRC
NILI

RRC
NILI

RRC
NILI

RRC
NILI

62%

56%
46%

37%

62%

128%
35%

139%
85%

52%

Lig

Redis

Taran

SSDB

Mem$

Aero

Record ND events

Pause for checkpointing

Copy on write & Page Fault

25%
18%

Throughput Overhead: RRC vs. NiLiCon

Overhead (lower is better)

0% 20% 40% 60% 80% 100% 120% 140%

RRC
NILI

RRC
NILI

RRC
NILI

RRC
NILI

RRC
NILI

RRC
NILI

62%

56%
46%

37%

62%

128%
35%

139%
85%

52%

Lig

Redis

Taran

SSDB

Mem$

Aero

Record ND events

Pause for checkpointing

Copy on write & Page Fault

25%
18%

Throughput Overhead: RRC vs. NiLiCon

Overhead (lower is better)

0% 20% 40% 60% 80% 100% 120% 140%

RRC
NILI

RRC
NILI

RRC
NILI

RRC
NILI

RRC
NILI

RRC
NILI

62%

56%
46%

37%

62%

128%
35%

139%
85%

52%

Lig

Redis

Taran

SSDB

Mem$

Aero

Record ND events

Pause for checkpointing

Copy on write & Page Fault

25%
18%

Throughput Overhead: RRC vs. NiLiCon

Overhead (lower is better)

0% 20% 40% 60% 80% 100% 120% 140%

RRC
NILI

RRC
NILI

RRC
NILI

RRC
NILI

RRC
NILI

RRC
NILI

62%

56%
46%

37%

62%

128%
35%

139%
85%

52%

Lig

Redis

Taran

SSDB

Mem$

Aero

Record ND events

Pause for checkpointing

Copy on write & Page Fault

25%
18%

Throughput Overhead: RRC vs. NiLiCon

Overhead (lower is better)

0% 20% 40% 60% 80% 100% 120% 140%

RRC
NILI

RRC
NILI

RRC
NILI

RRC
NILI

RRC
NILI

RRC
NILI

62%

56%
46%

37%

62%

128%
35%

139%
85%

52%

Lig

Redis

Taran

SSDB

Mem$

Aero

Record ND events

Pause for checkpointing

Copy on write & Page Fault

25%
18%

Throughput Overhead: RRC vs. NiLiCon

34

Recording overhead: RRC: 14% - 47% NiLiCon: 0%
0% 20% 40% 60% 80% 100% 120% 140%

RRC
NILI

RRC
NILI

RRC
NILI

RRC
NILI

RRC
NILI

RRC
NILI

62%

56%
46%

37%

62%

128%
35%

139%
85%

52%

Lig

Redis

Taran

SSDB

Mem$

Aero

Record ND events

Pause for checkpointing

Copy-on-write & Page Fault

25%
18%

Pause overhead: RRC: 1% - 3% NiLiCon: 17% -
130%

Throughput Overhead: RRC vs. NiLiCon

34

Recording overhead: RRC: 14% - 47% NiLiCon: 0%
Pause overhead: RRC: 1% - 3% NiLiCon: 17% - 130%

0% 20% 40% 60% 80% 100% 120% 140%

RRC
NILI

RRC
NILI

RRC
NILI

RRC
NILI

RRC
NILI

RRC
NILI

62%

56%
46%

37%

62%

128%
35%

139%
85%

52%

Lig

Redis

Taran

SSDB

Mem$

Aero

Record ND events

Pause for checkpointing

Copy-on-write & Page Fault

25%
18%

Pause overhead: RRC: 1% - 3% NiLiCon: 17% -
130%

Throughput Overhead: RRC vs. NiLiCon

34

Recording overhead: RRC: 14% - 47% NiLiCon: 0%
Pause overhead: RRC: 1% - 3% NiLiCon: 17% - 130%
Overall: RRC: 18% - 85% NiLiCon: 25% - 139%

0% 20% 40% 60% 80% 100% 120% 140%

RRC
NILI

RRC
NILI

RRC
NILI

RRC
NILI

RRC
NILI

RRC
NILI

62%

56%
46%

37%

62%

128%
35%

139%
85%

52%

Lig

Redis

Taran

SSDB

Mem$

Aero

Record ND events

Pause for checkpointing

Copy-on-write & Page Fault

25%
18%

Recovery Success Rate

Fault injection setups:

• Fail-stop failures

• 1000s of fault injections

• Injection into both the primary and the backup host

35

Recovery Success Rate

Fault injection setups:

• Fail-stop failures

• 1000s of fault injections

• Injection into both the primary and the backup host

Recovery rate:

• >99% with real-world examples of data races

• 100% without data races

35

Summary
• Key goals: Application-transparent fault tolerance for server applications

– Multithreading
– Minimize latency and throughput overhead

36

Summary
• Key goals: Application-transparent fault tolerance for server applications

– Multithreading
– Minimize latency and throughput overhead

• Key insight: decouple replication-related operations from normal operations
– checkpoint interval delay in releasing outputs
– time to take a checkpoint service interruption
– Untracked nondeterminism service interruption

36

Summary
• Key goals: Application-transparent fault tolerance for server applications

– Multithreading
– Minimize latency and throughput overhead

• Key insight: decouple replication-related operations from normal operations
– checkpoint interval delay in releasing outputs
– time to take a checkpoint service interruption
– Untracked nondeterminism service interruption

• Key mechanisms: hybrid replication: checkpointing + deterministic replay
container fork
passive backup
mitigation of the impact of data races

36

Summary
• Key goals: Application-transparent fault tolerance for server applications

– Multithreading
– Minimize latency and throughput overhead

• Key insight: decouple replication-related operations from normal operations
– checkpoint interval delay in releasing outputs
– time to take a checkpoint service interruption
– Untracked nondeterminism service interruption

• Key mechanisms: hybrid replication: checkpointing + deterministic replay
container fork
passive backup
mitigation of the impact of data races

• Key results: average latency overhead < 290us vs. 10s of ms with passive backup
throughput overhead < 85% vs. < 139% with passive backup
recovery rate for fail-stop failures:
– >99% with real-world examples of data races
– 100% without data races

36

37

Support for Deterministic Replay

Requirement:

• Record nondeterministic events on the primary

• Transfer the log to the backup

• Replay the log for recovery on the backup

Nondeterministic events:

• External inputs – e.g., network packets from the clients

• Synchronization operations – e.g., lock acquire/release

• Certain local operations -- e.g., gettimeofday()

38

