
This paper is included in the Proceedings of the
2022 USENIX Annual Technical Conference.

July 11–13, 2022 • Carlsbad, CA, USA
978-1-939133-29-8

Open access to the Proceedings of the
2022 USENIX Annual Technical Conference

is sponsored by

Building a High-performance Fine-grained
Deduplication Framework for Backup Storage

with High Deduplication Ratio
Xiangyu Zou and Wen Xia, Harbin Institute of Technology, Shenzhen; Philip Shilane, Dell
Technologies; Haijun Zhang and Xuan Wang, Harbin Institute of Technology, Shenzhen

https://www.usenix.org/conference/atc22/presentation/zou

Building a High-performance Fine-grained Deduplication Framework
for Backup Storage with High Deduplication Ratio

Xiangyu Zou†, Wen Xia†, Philip Shilane∗, Haijun Zhang†, and Xuan Wang†

† Harbin Institute of Technology, Shenzhen ∗ Dell Technologies
Corresponding author: xiawen@hit.edu.cn

Abstract
Fine-grained deduplication, which first removes identical

chunks and then eliminates redundancies between similar
but non-identical chunks (i.e., delta compression), could ex-
ploit workloads’ compressibility to achieve a very high dedu-
plication ratio but suffers from poor backup/restore perfor-
mance. This makes it not as popular as chunk-level dedupli-
cation thus far. This is because allowing workloads to share
more references among similar chunks further reduces spa-
tial/temporal locality, causes more I/O overhead, and leads to
worse backup/restore performance.

In this paper, we address issues for different forms of
poor locality with several techniques, and propose MeGA,
which achieves backup and restore speed close to chunk-
level deduplication while preserving fine-grained deduplica-
tion’s significant deduplication ratio advantage. Specifically,
MeGA applies 1© a backup-workflow-oriented delta selector
to address poor locality when reading base chunks, and 2© a
delta-friendly data layout and “Always-Forward-Reference”
traversing in the restore workflow to deal with the poor spa-
tial/temporal locality of deduplicated data.

Evaluations on four datasets show that MeGA achieves a
better performance than other fine-grained deduplication ap-
proaches. In particular, compared with the traditional greedy
approach, MeGA achieves a 4.47–34.45× higher backup per-
formance and a 30–105× higher restore performance while
maintaining a very high deduplication ratio.

1 Introduction
Chunk-level deduplication [2, 7, 18, 20, 27, 28, 40, 45, 54] has
been widely used in backup storage systems to reduce stor-
age costs, but it is limited by its coarse-grained processing
granularity (i.e., file/chunk level) and can not completely ex-
ploit data workloads’ compressibility. To achieve a higher
deduplication ratio, fine-grained deduplication [22, 38, 47] is
proposed.

Fine-grained deduplication, sometimes previously called
"delta compression," not only focuses on duplicate chunks
but also removes sub-chunk-level redundancies existing in

 0

 600

 1200

 1800

 0 30 60 90 120 150 180

2.0X

88.5X

B
a
c
k
u
p
/R

e
s
to

re
S

p
e
e
d
 (

M
B

/s
)

DedupRatio

MeGA FGDedup CLDedup MFDedup

Figure 1: Performance of MeGA (our approach), FGDedup
(a typical fine-grained deduplication approach similar to
SDC [53]), CLDedup (a typical chunk-level deduplication
approach [23]), and MFDedup (a special chunk-level dedupli-
cation approach [58]) on a website snapshot dataset.

similar but non-identical chunks, and it has been studied in
several use cases [15,37,38,51]. Typically, fine-grained dedu-
plication first deduplicates identical chunks, then finds similar
base chunks (among non-duplicates), and finally runs delta
encoding between the new and base chunks to only store their
differences (a.k.a., delta chunks) for space-saving. As a result,
fine-grained deduplication could achieve a much higher dedu-
plication ratio than chunk-level deduplication [37]. We use
the term fine-grained deduplication, though some previous lit-
erature uses the term delta compression to refer to this entire
process.

However, fine-grained deduplication’s performance is usu-
ally much worse than that of chunk-level deduplication be-
cause of further reducing data locality. Chunk-level dedu-
plication usually suffers from the poor locality of dedupli-
cated data, which has been mentioned in several previous
works [12, 23, 58]. For example, when deduplicating a work-
load, we only store unique chunks and “share” chunks that
appear in stored workloads as duplicates. Because chunks are
stored in chronological order, this kind of “sharing” results in
duplicate chunks and other unique chunks of this workload
being scattered across the storage media, which leads to poor
performance when restoring this workload. This problem is
aggravated by fine-grained deduplication. It is because fine-
grained deduplication introduces delta compression to exploit
more compressibility among workloads, so workloads “share”

USENIX Association 2022 USENIX Annual Technical Conference 19

more data, decreasing locality, increasing I/O overheads, and
leading to worse backup/restore performance.

Generally, different forms of the poor locality caused by
delta compression impact backup and restore workflows. In
the backup workflow, reading base chunks for delta encoding
suffers from poor locality of base chunks (denoted by Read-
ing Base Issue). Specifically, this issue is related to local com-
pression, since consecutive chunks are compressed and must
be decompressed together, which makes the compression unit
become the I/O unit [6, 25, 44]. Thus, we have to read a com-
pression unit even when only one or a few base chunks are
needed, which leads to huge I/O amplification. In the restore
workflow, the Fragmentation Issue [12,23,53] (that also ex-
ists in chunk-level deduplication) is exacerbated by the more
complex dependencies in fine-grained deduplicated data. It is
caused by a new kind of reference relationship between delta
and base chunks, and this new kind of reference relationship
further breaks spatial locality in fine-grained deduplicated
data. Meanwhile, additional reference relationships between
delta and base chunks also lead to a poor temporal locality in
fine-grained deduplicated data. During delta decoding, base
chunks and delta chunks must both be read, unlike restoring
deduplicated data that only requires a single I/O read for a
needed chunk, which makes the restore workflow repeatedly
access containers to gather delta-base pairs (denoted by the
Repeatedly Accessing Issue).

In this paper, we aim to improve these locality issues based
on several observations and techniques.

For the Reading Base Issue, we apply a backup-workflow-
oriented delta selector to improve the efficiency of reading
base chunks in the backup workflow. It is based on an obser-
vation that most base chunks are located in a few containers
(e.g., 64.1% containers only include 8.31% of the base chunks
when running a backup workflow in a studied dataset). Ac-
cording to this observation, our delta selector skips delta com-
pression when base chunks are located in those “base-sparse
containers”. Without reading these “inefficient” containers,
the efficiency of reading base chunks will be improved.

For the Fragmentation Issue, we propose a delta-friendly
data layout, which covers the two-level reference relationships
in fine-grained deduplicated data: the chunks–workloads ref-
erence relationship (also exists in chunk-level deduplication)
and the additional delta–base reference relationship (caused
by delta compression). The delta-friendly data layout handles
the new dependencies and improves the spatial locality in
fine-grained deduplicated data.

For the Repeatedly Accessing Issue, we observe the ex-
istence of “Always-Forward-Reference” traversing. It is a
special path to traverse restore-involved containers, in which
delta chunks always appear before their base chunks. By
using this feature and exploiting the asymmetry of the I/O
characteristics of storage media, we design a delta prewrit-
ing mechanism to deal with the poor temporal locality in
deduplicated data, which first prewrites delta chunks to their

location in the to-be-restored workload and then reloads them
for decoding when later accessing their base chunks.

We propose MeGA, a fine-grained deduplication frame-
work, by using the above techniques to address the Reading
Base Issue, Fragmentation Issue, and Repeatedly Accessing
Issue. As shown in Fig. 1, MeGA achieves performance close
to chunk-level deduplication while preserving fine-grained
deduplication’s significant deduplication ratio advantage. The
contributions of this paper are threefold:

• We analyzed several forms of poor locality caused by
fine-grained deduplication, which leads to additional I/O
overhead and poor backup/restore performance.

• We proposed techniques (i.e., the backup-workflow-
oriented delta selector, the delta-friendly data layout,
the “Always-Forward-Reference” traversing, and delta
prewriting) to deal with these different issues caused by
the poor locality.

• We proposed MeGA with these techniques to achieve
performance close to chunk-level deduplication while
preserving fine-grained deduplication’s significant dedu-
plication ratio advantage. Especially, compared with
the traditional greedy approach [53], MeGA achieves
a 4.47–34.45× higher backup performance and a 30–
105× higher restore performance, while maintaining a
very high deduplication ratio.

2 Background and Related Works
2.1 Fine-grained Deduplication
Fine-grained deduplication [10, 15, 37, 38, 44, 51] could
achieve a much higher deduplication ratio than deduplication
alone [9, 11, 17, 19, 21, 32–34, 39]. It focuses on redundancies
not only between duplicate chunks but also between similar
but non-identical chunks, and finally achieves sub-chunk-level
detection as well as byte/string-level elimination.

However, fine-grained deduplication achieves a higher
deduplication ratio while introducing additional computa-
tion and I/O overhead when applying delta compression be-
tween similar chunks. To address these challenges, many
previous works have been proposed, and the additional com-
putation overhead has been hugely reduced. For example,
Zhang et al. [52] and Zou et al. [57] proposed much faster
sketch methods by exploiting the locality in backup streams
and content-based sampling, respectively. MacDonald [26]
proposed Xdelta for fast delta encoding. Xia et al. [48, 49]
and Tan et al. [41] presented chunking-inspired methods to
further improve delta encoding/decoding speeds. Zhang et
al. [53] extended the rewriting techniques [12,23] from chunk-
level deduplication to fine-grained deduplication to reduce the
additional I/O overhead only in fine-grained deduplication’s
restore workflow.

Fine-grained deduplication has been employed in many
other works. Xu et al. [50] introduced fine-grained dedupli-
cation for databases to reduce storage cost. Jain et al. [16]
applied the idea of fine-grained deduplication in replica syn-

20 2022 USENIX Annual Technical Conference USENIX Association

… …
Backup Stream

Step A: Eliminating
Duplicate Chunks

Step B: Similarity-
based Matching

Backup Space (HDD)

Cache (Memory)

Step C: Delta
Encoding

Step D: Storing
Deduplicated Data

and RecipeReading Base Chunks

Recipe

Figure 2: The backup workflow of fine-grained deduplication.

chronization. Pucha et al. [35], Mogul et al. [30], and Zhou
et al. [55] designed a detection mechanism for p2p system,
which finds both identical and similar sources to accelerate
downloads.

Fig. 2 shows a standard workflow for fine-grained dedu-
plication: 1© Split backup streams into chunks and calculate
a fingerprint for each chunk. 2© Check and eliminate dupli-
cate chunks using the fingerprint index. 3© Calculate each
unique chunk’s sketches. Super Feature [5,22,24,37] is a typ-
ical kind of sketch. It first generates multiple local-sensitive
hashes with rolling hashes and linear transformations, and
then packs these local-sensitive hashes together into fewer
Super Features to detect highly similar chunks. 4© Find sim-
ilar candidates for unique chunks using a sketch index or
cache. 5© If a similar candidate exists, read it as a base chunk,
and delta encode the incoming chunk relative to the base,
often generating a much smaller delta chunk. 6© All dedu-
plicated chunks are stored in containers in order, and then
each container will be compressed. 7© Generate a recipe for a
backup stream by recording fingerprints of all needed chunks,
including indirectly referenced base chunks.

2.2 Backup Workloads
In backup storage systems [29], workloads usually are a series
of backups (i.e., successive snapshots of the primary data),
and consecutive backups are usually similar, which has been
reported and exploited in many existing studies [13, 47, 52].
Thus, due to the highly redundant nature of the data, backup
storage often leverages data deduplication to greatly reduce
the size of backups and save hardware costs.

Deduplicated data (i.e., chunks) are usually locally com-
pressed and stored in immutable and fixed-size containers
(e.g., 4MB). Containers are compatible with striping across
multiple drives in a RAID configuration, and writing in large
units achieves the maximum sequential throughput [23].

3 Observation and Motivation
3.1 Challenges
Fine-grained deduplication obtains a higher deduplication
ratio than chunk-level deduplication with much worse
backup/restore performance, but further fragments data lo-
cality. As mentioned in several previous works [12, 23, 58],
chunk-level deduplication usually suffers from poor locality
because chunks from a workload that are logically consecu-

To-be-restored Workload

Container n

FP1:cid1

FP2:cid2

FP3:cid3

FP4:cid4

…

1. Traversing Recipe

2. Reading required container
 to cache for delta chunk

(Container-based I/O)

Container n-1

5. Writing to its offset

3. Requiring another container for
the base chunk

Container n-1 Container n+1

Container n+1

 Cache(Memory)

Recipe

4. Decoding the delta
chunk with the base chunk

Backup Space (HDD)

User Space (SSD)

Figure 3: Restoring a delta chunk in the restore workflow of
fine-grained deduplication.

0%

20%

40%

60%

80%

100%

1 20 40 60 80 100

P
ro

p
o
rt

io
n
 o

f
S

to
ra

g
e
 I
/O

 i
n
 B

a
c
k
u
p

#-th of Backups

WriteDeduplicated
ReadBase

(a) I/O in Backup workflow

0%

20%

40%

60%

80%

100%

1 20 40 60 80 100

P
ro

p
o
rt

io
n
 o

f
S

to
ra

g
e
 I
/O

 i
n
 R

e
s
to

re

#-th of Backups

NeededChunks
Fragmentation

RepeatedlyAccess

(b) I/O in Restore workflow

Figure 4: I/O overheads in backup and restore workflow.

tive may refer to previously written chunks scattered across
the disks. However, fine-grained deduplication has more se-
rious locality issues. Specifically, fine-grained deduplication
eliminates redundancies among similar chunks by creating
more references to previously written chunks, which increases
fragmentation. Meanwhile, this observation also means that
as more space is saved, locality becomes worse. Poor locality
harms both backup and restore performance.

Fig. 2 demonstrates the poor locality involved in reading
base chunks for fine-grainded deduplication. Specifically, this
issue is related to the local compression, since consecutive
chunks must be decompressed entirely according to the com-
pression unit (that also becomes the I/O unit) [6,25,44], which
could be containers or compression regions (i.e., containers’
sub-unit). Therefore, reading a compression unit when only
one or a few base chunks are needed leads to I/O amplifica-
tion. Generally, a larger I/O unit (e.g., containers) may cause
a larger I/O amplification, but it also could opportunistically
prefetch more base chunks and reduce costly random accesses
on HDDs (due to locality of backup stream [38, 52]). Even
with a smaller I/O unit (e.g., 128KB container regions), read-
ing bases remains a bottleneck [38]. Though it may cause less
I/O amplification, reading some base chunks having locality
with a small I/O unit can be disrupted by write tasks and
result in more random seeks, because the backup workflow
of fine-grained deduplication mixes reads and writes (i.e.,
reading base chunks and writing deduplicated data). Thus,
we learn Challenge 1: Poor locality in the backup workflow
causes inefficient I/O when reading base chunks.

In the restore workflow (like Fig. 3), there are two chal-
lenges. The first challenge in the restore workflow is the frag-
mentation problem, which is caused by poor spatial locality in

USENIX Association 2022 USENIX Annual Technical Conference 21

deduplicated data. It also exists in chunk-level deduplication,
but it becomes more serious in fine-grained deduplication.
It is because fine-grained deduplication allows workloads to
share more similar chunks, but it also produces more refer-
ences to previously written chunks. Therefore, fine-grained
deduplication introduces another kind of reference relation-
ship (i.e., between the base and delta chunks) and no longer
only has one kind of reference relationship (i.e., between
chunks and workloads). This makes the fragmentation prob-
lem more complex since the dependencies of each workload
are distributed more widely. Thus, there exists Challenge 2:
Delta-base relationships lead to more complex fragmentation
problems than deduplication alone. The restore workflow
also has Challenge 3: Delta-base dependencies cause poor
temporal locality during delta decoding and causes repeated
container reads. Without fine-grained deduplication, individ-
ual chunks can be read as needed to restore a file, but for fine-
grained deduplication, base chunks and delta chunks must
both be read. When chunks in a container are used (for unique
or base chunks) across long time intervals, the restore work-
flow needs to alternately and repeatedly access containers to
gather delta-base pairs for delta decoding.

Finally, Fig. 4 suggests the seriousness of these challenges.
It studies the I/O overheads of a basic fine-grained deduplica-
tion system with container I/O when backing up and restoring
backup workloads from a WEB dataset (detailed in §5.1),
which consists of 100 snapshots of a website. “WriteDedu-
plicatedData” means I/O for writing deduplicated data in
the backup workflow, and “NeededChunks” means I/O for
reading needed chunks. “ReadBase”, “Fragmentation”, and
“RepeatedlyAccess” map to the above three challenges, re-
spectively. We learn that these three challenges cause huge
I/O overheads, and even “WriteDeduplicated” and “Needed-
Chunks” only take about 0.3% and 1.12% of the total I/O in
backup and restore workflows.

3.2 Selective Delta Compression
As Challenge 1 mentioned, poor locality in reading base
chunks causes large I/O overheads in the backup workflow.

To this end, we studied datasets and observed that base
chunks are not distributed evenly. For example, Fig. 5 gives
the distribution of base chunks when backing up the 100th

backup in the WEB dataset. Fig. 5(a) suggests that 64.1% of
containers include fewer than 30 base chunks, and Fig. 5(b)
demonstrates that these containers only hold 8.31% of the
total base chunks. We call these containers “base-sparse con-
tainers”. Though there are only a few base chunks in these
base-sparse containers, when requiring base chunks in one
of them, we have to load the whole container from the disk,
which causes a significant read amplification.

Thus, these observations motivate us to design a backup-
workflow-oriented delta selector, which skips delta com-
pression whose base chunks are located in “base-sparse con-
tainers” to avoid reading these “inefficient” containers. Thus,

0%

20%

40%

60%

80%

100%

1 20 40 60 80 100

(30, 64.1%)

C
D

F
 o

f
C

o
n
ta

in
e
rs

Amount of Base Chunks in Containers

(a) 64.1% of containers contain only
∼30 base chunks.

0%

10%

20%

30%

40%

1 20 40 60 80 100

(30, 8.31%)

C
D

F
 o

f
B

a
s
e
 C

h
u
n
k
s

Amount of Base Chunks in Containers

(b) These 64.1% containers only in-
cludes 8.31% of the total base chunks.

Figure 5: Base chunks are not distributed evenly.
the 1st backup stream

the 2nd backup stream

the 3rd backup stream

A B C D E F G

A B' C' H I F' G

A J C H' I F' G'

(a) An example of three backup streams before deduplication.

A B C D E F G Δ(B') Δ(C')

H I Δ(F') J Δ(H') Δ(G')

Container 1 Container 2 Container 3

Container 4 Container 5

(b) The order-based data layout after fine-grained deduplicated.

D E B FCA G

Δ(F')IH

Δ(G')Δ(H') J

Δ(B') Δ(C')

Cat.(1,1) Cat.(1,2) Cat.(1,3)

Cat.(2,2) Cat.(2,3)

Cat.(3,3)

(c) The delta-friendly data layout for fine-grained deduplication.

Figure 6: An example of the order-based data layout versus
the delta-friendly data layout.

it could reduce the I/O overheads in the backup workflow,
and finally greatly improve the backup speed in fine-grained
deduplication, which will be evaluated in §5.2.

3.3 Delta-friendly Data Layout
For Challenge 2, we use the example in Fig. 6 to discuss
the fragmentation problem in fine-grained deduplicated data.
Fig. 6(a) lists three backup streams, and Fig. 6(b) suggests the
order-based data layout after fine-grained deduplicating these
three backup streams. The order-based data layout allocates
chunks in containers according to their written order and is
widely used in previous works [12,23,37,52]. When restoring
a backup, the needed and unneeded chunks are always mixed
in this data layout. Consider Container 2 in Fig. 6(b) for
example: when restoring the 3rd backup, chunk F is needed
while chunks D and E are unneeded, but all of them will be
read as a whole container due to container I/O, which causes
extra I/O overheads.

Rewriting-like defragmentation approaches could be ex-
tended to fine-grained deduplication to alleviate the fragmen-
tation problem [53]. Their mechanisms can be summarised as
skipping deduplicating chunks already in sparse containers,
but this cannot stop the locality of deduplicated data becoming
increasingly poorer as the number of backups increases, which
thus makes the restore speed continually decrease [13,23,53].

22 2022 USENIX Annual Technical Conference USENIX Association

MFDedup [58] introduces a lifecycle-based data layout and
eliminates the fragmentation problem in chunk-level dedu-
plication. The lifecycle-based data layout classifies chunks
into categories according to whether they are always refer-
enced by the same set of consecutive backup workloads (i.e.,
lifecycles), and stores chunks in the same category together.
Lifecycle-based classification of chunks ensures whichever
backup workload is to be restored, chunks in any categories
are always either all needed together or all not needed together.
Thus, reading needed chunks in the unit of categories will
never cause unneeded chunks to be read. Generally, MFD-
edup only considers one-level simple reference relationships
(between chunks and backup workloads), which is the only
type of reference relationship in chunk-level deduplication.

However, directly applying this lifecycle-based data layout
to fine-grained deduplication is not feasible since fine-grained
deduplication introduces an additional kind of reference re-
lationship between delta and base chunks and causes new
fragmentation. In the 2nd backup stream, there are two-level
reference relationships:

• Between workloads and chunks.
i.e., the 2nd backup stream⇔ {A, B’, C’, H, I, F’, G}

• Between base chunks and delta chunks.
i.e., B⇔ ∆(B); C⇔ ∆(C); F⇔ ∆(F)

Therefore, we need a new data layout that considers both
kinds of reference relationships to eliminate the fragmentation
problem in fine-grained deduplicated data.

We first need a new way to describe chunks’ lifecycles with
the additional introduced reference relationship’s impacts.
Here we define the Necessary Chunks (denoted by NC) of a
backup workload as the combination of its directly referenced
chunks (i.e., the 1st level) and its indirectly referenced chunks
(i.e., the 2nd level). Accordingly, we redefine a chunk’s lifecy-
cle in fine-grained deduplication as which backup workloads’
NCs refer to this chunk, which could cover the two-level ref-
erence relationships. In Fig. 6, we can list the NCs for the
three backups:

• NC_Backup1: A, B, C, D, E, F, G
• NC_Backup2: A, B, ∆(B’), C, ∆(C’), H, I, F, ∆(F’), G
• NC_Backup3: A, J, C, H, ∆(H’), I, F, ∆(F’), G, ∆(G’)

In this example, the lifecycle of chunk G is from NC_Backup1
to NC_Backup3, since G is used as a unique chunk for
NC_Backup1 & NC_Backup2 and then as a base for
NC_Backup3.

After that, we could build a delta-friendly data layout by
integrating the second level of reference relationship into the
lifecycle management as well. As shown in Fig. 6(c), the delta-
friendly data layout consists of categories, which includes
several chunks. To clearly present them, we use Cat.(X,Y) to
indicate the category, which includes all chunks whose lifecy-
cles are only from NC_BackupX to NC_BackupY. All dedupli-
cated data are classified and sequentially stored in categories
according to their lifecycles, which hugely benefits the re-
store workflow. In this example, NC_Backup1 is composed of

Traversing Assumption: Always first meeting
delta chunks then meeting their base chunks. Backup Space (HDD)

User Space

(SSD) To-be-restored Workload

2. When meeting its base chunk,
reloading the delta chunk from

User Space.

3.Decoding them and writing back

1.Prewriting a delta chunk

Figure 7: The delta prewriting mechanism. Here the half
shaded chunk is a delta chunk.

Cat.(1,1), Cat.(1,2) and Cat.(1,3); NC_Backup2 is composed
of Cat.(1,2), Cat.(2,2), Cat.(1,3) and Cat.(2,3); NC_Backup3
is composed of Cat.(1,3), Cat.(2,3) and Cat.(3,3). When
restoring any of these three backups, we can select categories
according to the above lists, and all chunks in selected cate-
gories are all needed. In this way, the restore workflow never
needs to read any unneeded chunks, and the Fragmentation
Issue in Challenge 2 could be eliminated.

To simplify the implementation of the delta-friendly data
layout, we only deduplicate redundancies between adjacent
backups to ensure that chunks’ lifecycles are always consec-
utive (composed of successive backup streams’ Necessary
Chunks), similar to the approach in MFDedup [58]. This strat-
egy may reduce the total deduplication ratio, but it will not be
significant according to several previous works [38, 44, 58],
which will be also further studied in §5.4.

3.4 Forward Reference and Delta Prewriting
For Challenge 3, we design a delta prewriting mechanism. It
relies on two things: 1© The storage media’s I/O characteris-
tics between User Space and Backup Space are asymmetric.
Backup Space usually uses HDDs as storage media due to its
lower price, while User Space usually uses SSDs or NVMs
since better I/O performance is essential for business [58]. 2©
When performing a restore, delta-encoded chunks are always
accessed before their base chunks, which we call “Forward
Reference.”

Fig. 7 shows the basic idea of the delta prewriting mecha-
nism. For each delta chunk, the prewriting mechanism will
prewrite it to the offset where it should be after delta decoding
in the to-be-restored backup workload (in User Space). And
then, when meeting its base chunk later, the prewriting mech-
anism will read the delta chunk from the prewritten position,
decode the delta chunk with the base, and finally write back
the decoded chunk to its offset. Through this mechanism, we
ensure that when restoring, all restore-involved containers
only need to be read only once, which hugely reduces the I/O
overheads on Backup Space.

The next issue is how to make the assumption always
hold. By studying the data layout proposed in §3.3, we
find it is possible to design a special path for traversing
restore-involved containers when restoring, in which delta
chunks always appear in front of their base chunks. We call
it “Always-Forward-Reference” traversing (shortened to

USENIX Association 2022 USENIX Annual Technical Conference 23

AFR traversing), whose details will be introduced in §4.4.
Due to improved spatial locality (delta-friendly data layout

in §3.3) and temporal locality (the AFR traversing and delta
prewriting in §3.4) in deduplicated data, the I/O overheads in
the restore workflow are hugely reduced. Meanwhile, there
exists only sequential I/O to the Backup Space when restoring,
which is optimized for HDDs. Finally, the restore speed could
be greatly improved, which we evaluate in §5.3.

4 Design and Implementation
4.1 General Description
The overall framework of MeGA is shown in Fig. 8. In gen-
eral, 1© For the backup workflow, MeGA first runs Chunk-
level Deduplication to remove duplicate chunks according
to Local-based FP Index, and then, it finds similar matches
for unique chunks according to Local-based Sketch Index and
selectively applies delta compression using Delta Selector. 2©
For the storage organization, MeGA stores and manages the
deduplicated and delta compressed data in the Delta-Friendly
Data Layout. 3© For the restore workflow, MeGA generates an
Offset Hash Table according to the recipe of a to-be-restored
workload; then, MeGA accesses all restore-involved contain-
ers with AFR Traversing and Delta Prewriting.

Specifically, there are several modules in MeGA:
• Local-based FP Index and Local-based Sketch Index

maintain fingerprints and sketches of each backup work-
load’s chunks in separate hash tables per backup. They
only retain the current and last backup’s tables (simi-
lar to some previous works [44, 58]), because MeGA
only deduplicates a backup within itself and the previous
backup (mentioned in §3.3).

• Chunk-level Deduplication first splits the backup stream
into chunks with Content-Defined Chunking [31, 46]
and then calculates a fingerprint (i.e., SHA1 digest) for
each chunk. After that, it detects and eliminates identical
chunks with a Local-based FP index.

• Delta Selector first generates sketches with the resem-
blance detection approaches [4, 5, 37, 52, 57] for unique
chunks and identifies similar candidates according to
the Local-based Sketch index for further delta compres-
sion. Then, it delta-encodes chunks unless the referenced
bases are in base-sparse containers.

• Base Cache holds cached containers to provide base
chunks for delta compression in the backup workflow.

• Delta-Friendly data layout manages fine-grained dedu-
plicated chunks according to their lifecycles, reflecting
which backup workloads require these chunks. As a re-
sult, the delta-friendly data layout promises to eliminate
the fragmentation problem in fine-grained deduplicated
data and reduce I/O overheads in the restore workflow.

• AFR Traversing applies “Always-Forward-Reference”
traversing on fine-grained deduplicated data in a restore
workflow, which guarantees that delta chunks are always
accessed before their base chunks and provides the pre-

Backup SpaceUser Space

Workload

Chunk-level
Deduplication

Local-based
FP Index

Local-based
Sketch index

Delta-Friendly
Data Layout

Delta
Selector

AFR
Traversing

Offset Hash
Table

Delta
Prewriting

Recipes

Memory

Restored
Workload

B
ac

k
u

p
W

o
rk

fl
o

w
R

es
to

re
W

o
rk

fl
o

w

Base
Cache

Figure 8: An overview of MeGA framework.

condition for Delta Prewriting.
• Delta Prewriting transfers the random operations from

Backup Space to User Space, exploiting the asymmetry
of storage media characteristics between the two spaces.
This also avoids repeatedly accessing containers when
restoring files.

• Offset Hash Table is built according to a to-be-restored
backup workload’s recipe and provides offsets of chunks
(three kinds of chunks: unique, base, and delta) in the
to-be-restored backup workload.

Details of each workflow using our proposed key tech-
niques will be introduced in the following §4.2–§4.4.

4.2 Backup Workflow
The backup workflow runs Chunk-level Deduplication and
Delta Selector to eliminate duplicate chunks and redundancies
among similar chunks, respectively.

Chunk-level Deduplication. The chunk-level deduplica-
tion step splits the backup stream into chunks with Content-
Defined Chunking [31, 46] and then calculates a fingerprint
(i.e., SHA1 digest) for each chunk. After that, MeGA detects
and removes duplicate chunks according to the Local-based
FP Index, as we introduced in §4.1.

Delta Selector. Then, the backup workflow runs Delta Se-
lector with the following steps. 1© Delta Selector first com-
bines several successive chunks (from Chunk-level Dedu-
plication) into fix-sized segments (e.g., 20MB). 2© In each
segment, Delta Selector generates sketches (i.e., Super Fea-
tures [22]) for each (unique) chunk, and then tries to find for
each chunk a similar chunk as its base chunk with the Local-
based Sketch Index. 3© For chunks that have a potential base
chunk, Delta Selector records their base chunk’s container ID
in a ‘selector table’, which counts the times each container is
referenced for base chunks within a segment. 4© Then, Delta
Selector observes which containers are rarely referenced (with
a threshold) in the ‘selector table’ and considers these con-
tainers as ‘sparse-base containers’, which are inefficient to
read for base chunks. 5© Finally, for chunks having a similar
chunk that is not in sparse-base containers, Delta Selector will
run delta compression to calculate and store their differences
(i.e., delta chunk) for saving space; For the remaining chunks,
they will be directly stored as unique chunks. Base chunks in
delta compression are acquired from the base cache, and if a
cache miss occurs, the base cache will read related containers

24 2022 USENIX Annual Technical Conference USENIX Association

Cat.(1,1) Cat.(1,2) Cat.(1,3)

Cat.(2,2) Cat.(2,3)

Cat.(3,3)Migrating chunks which are
referenced by the next backup

Column 1 Column 2 Column 3

R
o
w

 1
R

o
w

 2
R

o
w

 3

Duplicate

Base

Delta

Unique

Figure 9: An example of maintaining data layout after storing
the 3rdbackup. Chunks, which are duplicate to the 3rd backup
and referenced as base chunks in the 3rd backup, will be
migrated to new categories. Cat(1,3) and Cat.(2,3) do not
exist before migrations.

from disks and add them to the cache.
As a result, Delta Selector could improve the efficiency of

reading base chunks and then accelerate the backup workflow.
Next, we will introduce how to store these deduplicated data.

4.3 Maintaining Delta-Friendly Data Layout
In this subsection, we will introduce how to locate the dedu-
plicated data in the delta-friendly data layout. There are two
steps: 1© Store the incoming deduplicated data of a new
backup in the delta-friendly data layout. 2© Process the in-
coming and previous backups’ deduplicated data to ensure
each chunk’s location is consistent with the principle of our
delta-friendly data layout.

Storing New Fine-grained Deduplicated Data and Data
Organization. For storing fine-grained deduplicated data, we
first consider their lifecycles. After running the backup work-
flow (introduced in §4.2), the fine-grained deduplicated data
consists of the latest backup workload’s unique and delta
chunks. Since these chunks are only referenced by the lat-
est backup, they should have the same lifecycle, and their
lifecycle should be different from previously stored chunks.

Then, considering the definition of the lifecycle and the
naming style of categories (shorten to Cat.) introduced
in §3.3, these chunks (assuming they are from the nth Backup)
should be classified into a new category Cat.(n,n).

Considering the sizes of categories are usually variable, we
design a two-level storage organization: fix-sized Containers
(e.g., 4MB) and variable-sized Categories. Containers directly
hold chunks, and categories hold containers whose chunks
have the same lifecycle. For example, Cat.(1,2) could include
one or several containers, and each container holds chunks
whose lifecycle is from NC_Backup1 to NC_Backup2.

Data Migration. After storing fine-grained deduplicated
data of the latest backup workload, we should consider up-
dating the data layout to handle the issue that some chunks’
lifecycles are changed. In general, storing a new backup in the
delta-friendly data layout only changes the lifecycles of its ad-
jacent backups’ chunks, because MeGA only allows adjacent
backups to share common chunks (i.e., MeGA deduplicates
a backup within itself and its previous backup). Therefore,

these shared chunks’ lifecycles should be extended to the
latest backup. Thus, we need to migrate these shared chunks
into new categories to match their updated lifecycles, and we
call these migrations the maintenance workflow.

An example of the maintenance workflow is shown in
Fig. 9. It shows a situation that the 1st and 2nd backups have
been stored in the data layout, and the 3rd backup is the latest
one, whose fine-grained deduplicated data have been stored
in Cat.(3,3), as discussed earlier in this subsection. At this
time, some chunks located in Cat.(1,2) and Cat.(2,2) are ref-
erenced by the 3rd backup (as duplicate or base chunks).
Thus, these chunks’ lifecycles newly include NC_Backup3
and they should be migrated into new categories. In this exam-
ple, chunks in Cat.(1,2) and Cat.(2,2) will be traversed, and
duplicate/base chunks will be migrated into new categories
Cat.(1,3) and Cat.(2,3), respectively.

Note that the maintenance workflow (i.e., data migra-
tion) only works on related categories and does not in-
volve all categories.. As the example in Fig. 9 shows, a main-
tenance workflow after storing the 3rd backup only impacts
Column 2. Similarly, the maintenance workflow always runs
on one column, and its overhead is also limited (will be stud-
ied in §5.6). With support of the maintenance workflow, the
delta-friendly data layout is preserved, which benefits restore
performance.

Features in Migration. There exist two interesting fea-
tures when the maintenance workflow involves delta and base
chunks. For clarity, here we say Cat.(X,Y) is in Row X, and
Column Y, as shown in Fig. 9.

Feature 1: base chunks are always in the same or an
earlier Row than their delta chunks. It could be easily ex-
plained by the example in Fig. 9. For delta chunks of the 3rd

backup (must be in Cat.(3,3)), their base chunks can only be
from two sources: 1© from the 3rd backup itself. In this case,
the bases are also in Cat.(3,3), the same Row as the delta. 2©
from the 2nd backup. In this case, the bases must be migrated
into Cat.(1,3) or Cat.(2,3), the earlier Row than the delta.

Feature 2: base chunks are always in the same or a later
Column than their delta chunks. Here we also take Fig. 9 as
an example: When the duplicate chunks in Fig. 9 contain base
or delta chunks, there are two cases: 1©If a delta chunk is a
duplicate of another delta chunk (i.e., its “original” chunk is
a duplicate of delta-encoded chunk) to the 3rd backup and
should be migrated, its base must be also migrated as the
delta’s dependency, since both of them should be included in
NC_Backup3. Therefore, in this case, they will be migrated
into the same Column (Column 3). 2©If a base chunk is dupli-
cate (i.e., is itself a duplicate) to the 3rd backup and should be
migrated, its delta will not be migrated, since the 3rd backup
does not require this delta chunk. In this case, the base (mi-
grated to Column 3) will be in a later Column than the delta
(left in Column 2).

These two features will help to achieve “Always-Forward-
Reference” traversing, which will be further used in §4.4.

USENIX Association 2022 USENIX Annual Technical Conference 25

Table 1: Possible category locations of the corresponding base
chunks for the delta chunks in the 2nd backup.

Delta Chunks’ Positions Corresponding Base Chunks’
Possible Positions

Cat.(1,2) ⇒ Cat.(1,2), Cat.(1,3)
Cat.(2,2) ⇒ Cat.(1,2), Cat.(2,2), Cat.(1,3), Cat.(2,3)
Cat.(1,3) ⇒ Cat.(1,3)
Cat.(2,3) ⇒ Cat.(1,3), Cat.(2,3)

4.4 Restore Workflow
As introduced in §4.1, the restore workflow of MeGA relies
on AFR traversing and Delta Prewriting. In the beginning,
the restore workflow needs to determine which containers are
needed for restoring the required backup workload.

Identifying All Required Containers. All the required con-
tainers could be simply calculated in a delta-friendly data
layout. For example, there are n backup workloads stored,
and we want to restore a backup Bk. According to the naming
style of categories (mentioned in §3.3), all categories whose
lifecycles include NC_Backupk are required, and they are
∪n

j=k ∪
j
i=1 Cat.(i, j),where 1 ≤ i ≤ k ≤ j ≤ n. For example,

when restoring the 2nd backup in Fig. 9, Cat.(1,2), Cat.(2,2),
Cat.(1,3), Cat.(2,3) are required.

Then all containers in these categories are the restore-
required ones. Benefiting from the delta-friendly data layout,
all chunks in these containers are exactly what we need, which
avoids reading unneeded chunks when restoring. Next, we
present how to traverse them for restoring a workload.

AFR Traversing. As mentioned in §4.1, AFR traversing
promises that when traversing the restore-involved contain-
ers, delta chunks always appear in front of their base chunks.
For the example in Fig. 6(c), when restoring the 2nd backup,
restore-involved categories are Cat.(1,2), Cat.(2,2), Cat.(1,3)
and Cat.(2,3) (according to “Identifying All Required Con-
tainers”). In this case, we can achieve AFR traversing with
the following order: Cat.(2,2) ⇒ Cat.(1,2) ⇒ Cat.(2,3) ⇒
Cat.(1,3), in which we always meet the delta chunks before
their base chunks.

Next, we explore how and why MeGA can achieve AFR
traversing, also with the example of restoring the 2nd backup
in Fig. 6(c). Consider the two key Features about the rela-
tive positional relationship (i.e., the located categories’ Rows
and Columns) between the delta and base chunks (learned
from §4.3). We can get Table 1, listing all possible positions
(i.e., located categories) of delta and based chunks of the 2nd

backup. To achieve AFR traversing (accessing delta chunks
and then their bases), Cat.(2,2) must be first accessed, which
is because the base chunks of Cat.(2,2)’s delta chunks could
be in all four categories as shown in Table 1. With similar anal-
ysis, we could finally get the previous example path: Cat.(2,2)
⇒ Cat.(1,2) ⇒ Cat.(2,3) ⇒ Cat.(1,3). Additionally, AFR
traversing should go through chunks and also containers of
each category in reverse order in case there are delta and
base chunks in the same category or container, since the delta

User Space

(SSD) To-be-restored Workload (Bk)

Base

Chunk?

Loading

Delta

Prewriting Delta

or Writing Unique

Decoding

& Writing

Yes

No

Bk's
Recipe

Container n-1 Container n Container n+1

Always-forward-reference traversing
Backup Space (HDD)

FP1 FP2 FP3

Offset1 Offset2 Offset7

Offset9

Offset8

Offset7
Offset Hash
Table of Bk

(Memory)

T
ra

v
er

si
n
g

Figure 10: An example of the restore workflow.

must be generated and then appear after its base in the backup
workflow.

To this end, we can summarize three rules to achieve
AFR traversing on our delta-friendly data layout in general
cases:

• Between columns, access columns in positive order. This
is deduced from Feature 2 (in Section 4.3).

• In the same column, access categories in reverse order.
This follows from Feature 1 (in Section 4.3).

• In a category, access containers in each category and
chunks in each container in reverse order. This is because
delta chunks can only reference earlier chunks by design.

Delta Prewriting. As shown in Fig. 10, Delta Prewriting
requires an Offset Hash Table, which is generated accord-
ing to the to-be-restored backup’s recipe. The Offset Hash
Table records key/value pairs: each chunk’s offset (in the
to-be-restored backup) and whether it is a base chunk (i.e.,
<offset, base tag>). For unique chunks in the recipe, we only
insert its offset into its FP’s entry list and tag this record as
not a base (e.g., <offsetUniqueK, false>). For a delta chunk
in the recipe, we first process it as a unique chunk (e.g., insert
<offsetDeltaN, false> in its FP’s entry list) and then addition-
ally insert a record into the entry list of its base’s FP and tag
this record as a base chunk (e.g., <offsetDeltaN, true>).

Then, we apply AFR traversing on restore-involved con-
tainers. For each chunk, we acquire its entry list according to
its fingerprint. We check each record in the entry list: If it is
not a base chunk record, we directly write the chunk (it may
be a delta or unique chunk) to the offset in the record; If it is
a base chunk, we read the delta chunk from the offset in the
record (the delta should already be written before), decode
the delta chunk with the base chunk, and then write back the
decoded chunk to the offset in the record.

Finally, MeGA could achieve a much higher restore speed
with the benefits of the delta-friendly data layout, AFR travers-
ing and delta prewriting, since it no longer reads unneeded
chunks and repeatedly accesses restore-involved containers.

4.5 Discussion
In this subsection, we discuss several features and issues.

26 2022 USENIX Annual Technical Conference USENIX Association

Deletion. Different from the order-based data layout, the
delta-friendly data layout supports direct deletions without
GC. Because MeGA allows workloads to share chunks as
duplicate chunks or base chunks, deleting the nth backup only
needs to remove its unique chunks. According to the category
naming rule, Cat.(n,n) only contains chunks unique to backup
n. Thus, deleting the nth backup could be achieved by directly
removing this category, instead of the way in the order-based
data layout, which first runs logical deletion and later runs
garbage collection to reclaim storage space [3, 9, 14].

Delta Prewriting. This mechanism introduces additional
I/O on User Space, including prewriting and reading delta
chunks. Our observations suggest these issues cause about
5%-10% additional I/O overheads on User Space. Moreover,
since delta chunks are usually much smaller than unique ones,
we could also introduce a delta cache in memory and prewrite
delta chunks into the cache as an alternative solution.

Memory Overhead. Since the size of the base chunk cache
(in a backup workflow) is configurable, the other memory
overhead of MeGA is mainly from the local-based indexes
(in backup workflow) and the offset hash table (in restore
workflow). 1© Instead of putting the whole index in memory,
MeGA only maintains the index of the last two backups and
thus costs less memory, which is similar to some previous
work [44, 58]. Moreover, a stream-informed index [56] could
also be applied to our local-based index to further reduce
memory overhead. 2© The overhead of the offset hash table
is related to the number of chunks in a single backup. Some
previous works [1, 43] suggest that the majority of single
backups were 4–128GB, and for these cases, RAM usage
for the Offset Hash Table could be 12.9–445.6MB, which
is feasible for a server. To reduce this RAM usage for large
backups, we could keep the offset hash table in an on-disk
key-value store, but it would require indexing time.

Maintenance’s (i.e., Migrations) Overheads. The Mainte-
nance process in MeGA replaces Garbage Collection (GC)
in previous works, and its overhead could be offset since
both techniques are offline processes, which will be evalu-
ated in §5.6. Through the Maintenance process, MeGA could
achieve direct deletion (to immediately reclaim storage space)
instead of logical deletion followed by GC. Besides, the Main-
tenance process also addresses two interesting issues [36]:
knowing how much space will be freed after deletion and
estimating the remaining logical space of a fine-grained dedu-
plication system.

Incremental Backups. Although MeGA focuses on full
backups (i.e., a full snapshot of primary storage), we present
a plan to support incremental backups by generating “virtual”
full backups.

When handling an incremental backups, we generate a
“virtual” full backup according to the previous full backup’s
recipe, and then process the “differences” included in the
incremental backup. Specifically, 1© non-modified (i.e., not
listed in the incremental backup) parts of the “virtual” full

backup are duplicates, and we can directly copy correspond-
ing records from the previous full backup’s recipe to the
“virtual” full backup’s recipe; 2© modified (i.e., listed in the
incremental backup) parts have potentially new content, and
we need to apply fine-grained deduplication. Chunk bound-
aries need to be recalculated due to the modified data regions,
so we could combine the new data with their surrounding
duplicate chunks to make up a local stream and run content-
defined chunking on this stream to determine new chunks.
Then, MeGA could process these chunks normally, and finally
record these “modifications” in the “virtual” full backup’s
recipe.

5 Evaluation
5.1 Configuration
We perform our experiments on a workstation running Ubuntu
18.04 with an Intel Core i7-8700 @ 3.2GHz CPU, 64GB
memory, and a 7200rpm HDD. To better evaluate MeGA, the
following five approaches are considered:

• Greedy: applying the greedy strategy for fine-grained
deduplication, often evaluated as the baseline [44, 53].

• FGD: Fine-Grained Deduplication with the Capping
rewriting technique [23], which skips some deduplica-
tion and delta compression whose duplicate chunks or
base chunks are located in a few referenced containers.
This is similar to a recent work called SDC [53].

• CLD: Chunk-Level Deduplication with the Capping
rewriting technique [23], considered as a typical ap-
proach of chunk-level deduplication defragmentation.

• MFD: Chunk-level deduplication with the previous
lifecycle-based data layout, which only deduplicates
chunks between adjacent backups [58].

These approaches are implemented according to related
papers, and they all follow these common configurations:

• Chunking backups uses FastCDC [46] with the mini-
mum, average, and maximum chunk sizes set to 2KB,
8KB, and 64KB; SHA1 is used for chunk identification.

• Their resemblance detection generates 12 features and
3 super-features as sketches for each unique chunk, as
suggested in previous works [22, 24, 37].

• Consecutive chunks are compressed together with ZSTD
and stored in containers.

• The delta encoding stage uses Xdelta to calculate differ-
ences between unique chunks and its similar candidates,
as configuration in previous works [52, 57].

• MeGA only requires a container cache in the backup
workflow, and the other four non-trivial approaches re-
quire two container caches in both backup and restore
workflows. The cache of each workflow totals 512MB.
When loading base chunks into the cache, all approaches
apply container I/O for fair comparison.

To focus on testing the performance of the deduplica-
tion storage side (i.e., running deduplication on HDD me-
dia), tested datasets are backed up from User Space (i.e., a

USENIX Association 2022 USENIX Annual Technical Conference 27

 0

 500

 1000

 1500

1 20 40 60 80 100

B
a

c
k
u

p
 S

p
e

e
d

 (
M

B
/s

)

#-th of Backups

CLD
MFD

Greedy

FGD20
FGD40
FGD80

MG0
MG20
MG40

(a) WEB Dataset

 0

 100

 200

 300

 400

 500

1 20 40 60 80 100B
a

c
k
u

p
 S

p
e

e
d

 (
M

B
/s

)

#-th of Backups

CLD
MFD

Greedy

FGD10
FGD20
FGD40

MG0
MG30
MG60

(b) CHM Dataset

 0

 1000

 2000

 3000

1 40 80 120 160 200

B
a

c
k
u

p
 S

p
e

e
d

 (
M

B
/s

)

#-th of Backups

CLD
MFD

Greedy

FGD10
FGD20
FGD40

MG0
MG3
MG5

(c) SYN Dataset

 0

 500

 1000

 1500

 2000

 2500

 3000

1 20 40 60 80 100

B
a

c
k
u

p
 S

p
e

e
d

 (
M

B
/s

)

#-th of Backups

CLD
MFD

Greedy

FGD20
FGD40
FGD80

MG0
MG20
MG40

(d) VMS Dataset
Figure 11: Backup speed of five deduplication approaches on four datasets.

0
200
400
600
800

1000
1200
2200
2400

M
G
0

M
G
30

M
G
60

FG
D
10

FG
D
20

FG
D
40

30k

40k

50k

60k

70k

A
v
g
.
D

is
k
 A

c
c
e
s
s
 T

im
e
s

A
v
g
.
A

c
c
e
s
s
 T

im
e
 C

o
s
t
(u

s
)

Approaches

Avg.Times
Avg.TimeCost

(a) WEB Dataset

0
200
400
600
800

1000
1600
1800
2000

M
G
0

M
G
30

M
G
60

FG
D
10

FG
D
20

FG
D
40

50k

60k

70k

80k

90k

A
v
g
.
D

is
k
 A

c
c
e
s
s
 T

im
e
s

A
v
g
.
A

c
c
e
s
s
 T

im
e
 C

o
s
t
(u

s
)

Approaches

Avg.Times
Avg.TimeCost

(b) CHM Dataset

Figure 12: Disk access times and time cost in MeGA and
FGD. We only show WEB and CHM due to the space limit.

Table 2: Four backup datasets used in evaluation.
Name Original Size Versions Workload Descriptions

WEB 269 GB 100 Backups of website: news.sina.com,
captured from Jun. to Sep. in 2016.

CHM 279 GB 100 Source codes of Chromium project
from v82.0.4066 to v85.0.4165

SYN 1.38 TB 200 Synthetic backups by simulating file
create/delete/modify operations [42]

VMS 1.55 TB 100 Backups of an Ubuntu 12.04
Virtual Machine

RamDisk) to Backup Space (i.e., a 7200rpm HDD) one by one
while the restore runs in the reverse direction. For speed of
backup and restore in our evaluation, we present the average
results of five runs.

Four backup datasets are used for evaluation, as shown
in Table 2. These datasets represent various typical backup
workloads, including website snapshots, an open-source code
project, virtual machine images, and a synthetic dataset. They
have been used in several deduplication studies [8, 46, 53].

5.2 Backup Speed
The backup speed of five approaches are evaluated and shown
in Fig. 11, and the results vary by 5.2% on average in mul-
tiple runs. FGD# and MG# represent FGD and MeGA with
different parameters (the capping level in FGD and the delta
selector threshold in MeGA). The capping level L indicates
that when processing a backup stream segment, containers
will be considered as sparse containers except for the L most
referenced (for duplicate or base chunks). Chunks in the seg-
ment, whose duplicate or base chunks are in sparse containers,
will be processed as unique chunks. A delta selector thresh-
old T means that when processing a backup stream segment,
containers, which are referenced for base chunks less than
T times, will be considered as base-sparse containers. Delta
compression in the segment, whose base chunks are in base-
sparse containers, will be skipped. Considering that datasets

have different characteristics and require different parameters,
we optimized the parameters for each dataset. The backup
speed is calculated by T he−Size−o f−Backup−or−Restore−Workload

Backup−or−Restore−Time−Cost .
Because deduplicated and compressed data is much smaller
than their original size and writing to disk takes less time, the
backup speed could exceed the disk speed.

With the benefits of the delta selector, MeGA outperforms
other fine-grained deduplication approaches (i.e., Greedy
and FGD). On the SYN dataset, MeGA reads increasingly
fewer containers when processing later backups, which makes
MeGA’s backup speed increase. VMS is a virtual machine
dataset and its modification style (i.e., trending to change
the same region in each backup) makes distribution of base
chunks uneven, which makes MeGA0’s performance jittery.
Generally, MeGA achieves a 4.47–34.45× higher backup
speed than Greedy.

Fig. 11 also suggests a stricter (smaller) capping level
in FGD and a stricter (bigger) delta selector threshold in
MeGA both accelerate backup speed, due to skipping some
potential delta compression and the need to read more base
chunks. Note that if delta selector threshold and capping level
were strict enough, all delta compression would be skipped.
Though the delta selector and the capping rewriting have sim-
ilar mechanisms, their results are much different due to their
different views on container utilization. The capping rewrit-
ing is restore-workflow-oriented and focuses on how many
needed chunks (all kinds of chunks) are in containers. But the
delta selector is backup-workflow-oriented, and only concerns
how many base chunks are in containers.

Fig. 12 further studies why MeGA could achieve a much
higher backup speed than FGD, which lists the disk access
times for acquiring base chunks (within the unit of containers)
and average access time cost when storing backup. On the one
hand, MeGA has much lower disk access time due to skipping
reading “inefficient” containers. On the other hand, MeGA
has a lower average access time cost, since it only finds base
chunks in adjacent backups and its accessed containers will
be located closer. These two efforts ensures MeGA’s better
performance.

Note that MeGA achieves similar results with chunk-level
deduplication approaches (CLD and MFD) on most datasets.
It is because the additional I/O and computation overhead both
have been hugely limited by our delta selector and previous
computation optimization works, respectively. Besides, SYN
is a synthetic dataset and its modified parts are distributed ran-

28 2022 USENIX Annual Technical Conference USENIX Association

 0

 300

 600

 900

 1200

 1500

 1800

1 20 40 60 80 100

R
e

s
to

re
 S

p
e

e
d

 (
M

B
/s

)

#-th of Backups

CLD
MFD

Greedy

FGC20
FGC40
FGC80

MG0
MG20
MG40

(a) WEB Dataset

 0

 100

 200

 300

 400

 500

 600

 700

1 20 40 60 80 100

R
e

s
to

re
 S

p
e

e
d

 (
M

B
/s

)

#-th of Backups

CLD
MFD

Greedy

FGC10
FGC20
FGC40

MG0
MG30
MG60

(b) CHM Dataset

 0

 50

 100

 150

 200

 250

 300

1 40 80 120 160 200

R
e

s
to

re
 S

p
e

e
d

 (
M

B
/s

)

#-th of Backups

CLD
MFD

Greedy

FGC10
FGC20
FGC40

MG0
MG3
MG5

(c) SYN Dataset

 0

 100

 200

 300

 400

 500

1 20 40 60 80 100

R
e

s
to

re
 S

p
e

e
d

 (
M

B
/s

)

#-th of Backups

CLD
MFD

Greedy

FGC10
FGC20
FGC40

MG0
MG20
MG40

(d) VMS Dataset
Figure 13: Restore speed of five deduplication approaches on four datasets.

0
200
400
600
800

6600
6800

18000
18200

M
G
0

M
G
30

M
G
60

FG
D
10

FG
D
20

FG
D
40

C
LD

N
u
m

b
e
r

o
f
C

o
n
ta

in
e
rs Avg.Involved

Avg.Read

(a) WEB Dataset

0
200
400
600
800

1000
1200
4200
4400

M
G
0

M
G
30

M
G
60

FG
C
10

FG
C
20

FG
C
40

C
LD

N
u
m

b
e
r

o
f
C

o
n
ta

in
e
rs Avg.Involved

Avg.Read

(b) CHM Dataset

Figure 14: Number of restore-involved containers and actually
read containers in MeGA, FGD and CLD. Only WEB and
CHM are shown due to the space limit.

domly instead of having more typical locality, which makes
MeGA slightly slower than CLD and MFD.

5.3 Restore Speed
Fig. 13 shows the restore speed of all five approaches, and
the results vary by 2.6% on average in multiple runs. Among
all approaches, MeGA consistently achieves a better restore
performance than other approaches, which reflects MeGA’s
restore techniques (i.e., the delta-friendly data layout, delta
prewriting and AFR traversing). MeGA solves the Fragmen-
tation Issue and Repeatedly Accessing Issue and improves
the spatial and temporal locality in fine-grained deduplicated
data. It also ensures that MeGA’s restore performance is more
consistent, while FGD, CLD and Greedy all have a decreasing
restore speed. Note that the local compression ratio increases
when storing more backups on SYN, which makes the restore
speed faster. Generally, MeGA achieves a 30–105× higher
restore speed than Greedy.

Fig. 14 shows the number of restore-involved containers
(i.e., containers with restore-required chunks) and contain-
ers read from disk during restore of MeGA, FGD, and CLD.
These two metrics reflect the seriousness of the Fragmentation
Issue and Repeatedly Accessing Issue, respectively. Compared
with FGD and CLD, MeGA has lower results on both of the
metrics due to applying our data layout and AFT traversing
with delta prewriting. Consequently, MeGA achieves a much
higher restore performance, as shown in Fig. 13.

5.4 Deduplication Ratio
Fig. 15 studies deduplication ratios of five approaches with
different parameters mentioned in the above subsections. All
three fine-grained deduplication approaches (i.e., Greedy,
FGD, and MeGA) have higher deduplication ratios than
chunk-level deduplication approaches (i.e., CLD and MFD),
since they can exploit compressibillity among similar chunks.

Greedy always achieves the highest deduplication ratio, and
MeGA achieves similar results. For FGD and MeGA, a stricter
capping level in FGD or threshold in MeGA will lower the
deduplication ratio but lead to a better backup or restore speed,
as reported in the above subsections.

MeGA’s advantage is relatively smaller on the VMS and
SYN datasets. For VMS, its modification style (i.e., trending
to change the same region in each backup) leads to fewer
similar chunks, which limits the benefits of fine-grained dedu-
plication, regardless of the approach. For SYN, its modifica-
tions are completely random because it is a synthetic dataset,
and the locality of base chunks is not as strong as that of
other datasets. Therefore, MeGA’s delta selector causes more
reduction in the compression ratio.

Generally, MeGA preserves fine-grained deduplication’s
significant advantage by achieving a 1.18–8.73× higher dedu-
plication ratio than chunk-level approaches.

5.5 Overall Performance
The three metrics discussed above are of the most interest to
users. Fig. 16 shows the overall performance with different
parameters (used in Fig. 11 and 13) from the above section. It
is obvious that MeGA significantly improves over other fine-
grained deduplication approaches (i.e., FGD and Greedy) on
both backup and restore speed while preserving the deduplica-
tion ratio advantage of fine-grained deduplication. It reflects
the performance improvement that our proposed technology
brings. MeGA’s advantage is relatively smaller on SYN and
VMS datasets. As we mentioned in § 5.4, it is because VMS
does not have many similar chunks, and SYN lacks natural
locality, which is unfriendly for our delta selector.

5.6 I/O Overhead in Maintaining Data Layout
In this subsection, we evaluate I/O overheads of maintaining
the delta-friendly data layout (shortened to "Maintenance")
compared with traditional garbage collection (GC).

Our experiments are based on MeGA and FGD using the
median parameters as in Fig. 11 and 13, and MeGA runs main-
tenance while FGD runs GC. For GC, a container liveness
threshold is usually considered to make a tradeoff between
more storage space cost and more GC overheads. Here we
use three liveness thresholds: 0%, 25%, and 50%, mapping
to toleration up to 0%, 25%, 50% invalid chunks in each
container, respectively. In order to make the results among
different datasets comparable, we measure their time costs.
Both approaches retain the last 20 backups; thus GC would

USENIX Association 2022 USENIX Annual Technical Conference 29

Local CompressionChunk-level Deduplication Delta Compression

 0

 50

 100

 150

 200

C
LD

M
FD

G
reedy

FG
D
20

FG
D
40

FG
D
80

M
G
0

M
G
20

M
G
40

D
e

d
u

p
 R

a
ti
o

(a) WEB Dataset

 0

 20

 40

 60

 80

 100

C
LD

M
FD

G
reedy

FG
D
10

FG
D
20

FG
D
40

M
G
0

M
G
30

M
G
60

D
e

d
u

p
 R

a
ti
o

(b) CHM Dataset

 0

 50

 100

 150

 200

C
LD

M
FD

G
reedy

FG
D
20

FG
D
40

FG
D
80

M
G
0

M
G
20

M
G
40

D
e

d
u

p
 R

a
ti
o

(c) SYN Dataset

 0

 30

 60

 90

 120

C
LD

M
FD

G
reedy

FG
D
20

FG
D
40

FG
D
80

M
G
0

M
G
20

M
G
40

D
e

d
u

p
 R

a
ti
o

(d) VMS Dataset
Figure 15: Deduplication ratio achieved by the ten approaches on four datasets.

MFDCLD Greedy FGD# MeGA#

 0 200 400 600 800 1000
400

800
1200

50

100

150

BackupSpeed (MB/s) RestoreSpeed

 (M

B/s)

D
ed

up
R

at
io

(a) WEB

 0 100 200 300 400

200
400

60025

50

75

100

BackupSpeed (MB/s) RestoreSpeed

 (M

B/s)

D
ed

up
R

at
io

(b) CHM

 0
 500

 1000
 1500

 2000
100

200
300

50
100
150
200

BackupSpeed
(MB/s)

RestoreSpeed

 (M
B/s)

D
ed

up
R

at
io

(c) SYN

 0
 500

 1000
 1500

 2000
 2500

100
200

300
400

25
50
75

100

BackupSpeed
(MB/s)

RestoreSpeed

 (M
B/s)

D
ed

up
R

at
io

(d) VMS

Figure 16: A general view of five approaches. MeGA and FGD use three different parameters as used in Fig. 11, 13 and 15. The
results of backup and restore speed are from the average performance on each dataset’s last 10 backups.

Maintaince GC:0% GC:25% GC:50%

 0

 4

 8

 12

 16

 20

1 20 40 60 80 100

G
C

/M
a

in
ta

in
in

g
T

im
e

 C
o

s
t

(s
)

#-th of Versions

(a) WEB Dataset

 0

 8

 16

 24

 32

 40

1 20 40 60 80 100

G
C

/M
a

in
ta

in
in

g
T

im
e

 C
o

s
t

(s
)

#-th of Versions

(b) CHM Dataset

 0

 30

 60

 90

 120

 150

1 40 80 120 160 200

G
C

/M
a

in
ta

in
in

g
T

im
e

 C
o

s
t

(s
)

#-th of Versions

(c) SYN Dataset

 0

 50

 100

 150

 200

1 20 40 60 80 100

G
C

/M
a

in
ta

in
in

g
T

im
e

 C
o

s
t

(s
)

#-th of Versions

(d) VMS Dataset

Figure 17: The delta-friendly data layout’s maintenance vs. the order-based data layout’s garbage collection.

not run for the first 20 backups, though the maintenance does.
Fig. 17 compares time cost of maintenance and GC. For

GC, a bigger threshold does not always lead to a lower I/O
overhead, since tolerating invalid chunks will make the next
GC need to clean more containers, which causes additional
I/Os. In general, maintenance and GC have similar I/O over-
heads, and compared with the best version of GC (“GC:25%”),
maintenance costs about 0.32–1.92× the GC I/O overheads,
which suggests maintenance and GC’s overhead have differ-
ent characteristics and have an overall similar impact.

Note that in maintenance of MeGA, if all chunks in a con-
tainer are needed to be migrated to a new category, we can
directly let this container belong to that new category without
any chunk migration. It is interesting to observe that about
25.13% (WEB), 14.57% (CHM), 59.13% (SYN), and 72.95%
(VMS) of containers do not need chunk migrations.

6 Conclusion
This paper proposes MeGA, a fine-grained deduplication
framework, with three techniques: backup-workflow-oriented
delta selector, delta-friendly data layout, and AFR traversing
with delta prewriting, to address the three issues for different
forms of poor locality caused by the introduction of delta

compression: reading base chunks, fragmentation, and repeat-
edly accessing containers, respectively. Evaluations show that
MeGA achieves performance close to chunk-level deduplica-
tion while preserving fine-grained deduplication’s significant
deduplication ratio advantage.

Acknowledgments

We are grateful to our shepherd and the anonymous re-
viewers for their insightful comments. This work was sup-
ported in part by NSFC under Grant 61972441, 61972112
and 61832004, in part by Shenzhen Science and Tech-
nology Program under Grants RCYX20210609104510007,
JCYJ20210324131203009, JCYJ20200109113427092, and
GXWD20201230155427003-20200821172511002, in part by
Guangdong Basic and Applied Basic Research Foundation un-
der Grant 2021A1515012634, 2021B1515020088 and in part
by the HITSZ-J&A Joint Laboratory of Digital Design and In-
telligent Fabrication under Grant no. HITSZ-J&A-2021A01.

Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the author(s) and
do not necessarily reflect the views of the funding agencies.

30 2022 USENIX Annual Technical Conference USENIX Association

References
[1] George Amvrosiadis and Medha Bhadkamkar. Identi-

fying trends in enterprise data protection systems. In
Proceedings of the 2015 USENIX Annual Technical Con-
ference, 2015.

[2] Erik Bosman, Kaveh Razavi, Herbert Bos, and Cristiano
Giuffrida. Dedup est machina: Memory deduplication
as an advanced exploitation vector. In Proceedings of
the IEEE Symposium on Security and Privacy, 2016.

[3] Fabiano C. Botelho, Philip Shilane, Nitin Garg, and
Windsor Hsu. Memory efficient sanitization of a dedu-
plicated storage system. In Proceedings of the 11th
USENIX conference on File and Storage Technologies,
pages 81–94, 2013.

[4] Andrei Z. Broder. On the resemblance and containment
of documents. In Proceedings of 1997 Compression and
Complexity of SEQUENCES, 1997.

[5] Andrei Z. Broder. Identifying and filtering near-
duplicate documents. In Proceedings of the 11th Com-
binatorial Pattern Matching Annual Symposium, 2000.

[6] Zhichao Cao, Shiyong Liu, Fenggang Wu, Guohua
Wang, Bingzhe Li, and David H. C. Du. Sliding look-
back window assisted data chunk rewriting for improv-
ing deduplication restore performance. In Proceedings
of the 17th USENIX Conference on File and Storage
Technologies, 2019.

[7] Licheng Chen, Zhipeng Wei, Zehan Cui, Mingyu Chen,
Haiyang Pan, and Yungang Bao. CMD: classification-
based memory deduplication through page access char-
acteristics. In Proceedings of the 10th ACM SIG-
PLAN/SIGOPS International Conference on Virtual Ex-
ecution Environments, 2014.

[8] Liangfeng Cheng, Yuchong Hu, Zhaokang Ke, and
Zhongjie Wu. Coupling right-provisioned cold stor-
age data centers with deduplication. In Proceedings
of the the 50th International Conference on Parallel
Processing, 2021.

[9] Fred Douglis, Abhinav Duggal, Philip Shilane, Tony
Wong, Shiqin Yan, and Fabiano C. Botelho. The logic
of physical garbage collection in deduplicating storage.
In Proceedings of the 15th USENIX Conference on File
and Storage Technologies, pages 29–44, 2017.

[10] Idilio Drago, Marco Mellia, Maurizio M. Munafò, Anna
Sperotto, Ramin Sadre, and Aiko Pras. Inside drop-
box: understanding personal cloud storage services. In
Proceedings of the 12th ACM SIGCOMM Internet Mea-
surement Conference, 2012.

[11] Abhinav Duggal, Fani Jenkins, Philip Shilane, Ram-
prasad Chinthekindi, Ritesh Shah, and Mahesh Kamat.
Data domain cloud tier: Backup here, backup there,
deduplicated everywhere! In Proceedings of the 2019
USENIX Annual Technical Conference, 2019.

[12] Min Fu, Dan Feng, Yu Hua, Xubin He, Zuoning Chen,
Jingning Liu, Wen Xia, Fangting Huang, and Qing
Liu. Reducing fragmentation for in-line deduplica-
tion backup storage via exploiting backup history and
cache knowledge. IEEE Trans. Parallel Distributed
Syst., 27(3):855–868, 2016.

[13] Min Fu, Dan Feng, Yu Hua, Xubin He, Zuoning Chen,
Wen Xia, Fangting Huang, and Qing Liu. Accelerating
restore and garbage collection in deduplication-based
backup systems via exploiting historical information.
In Proceedings of the 2014 USENIX Annual Technical
Conference, 2014.

[14] Fanglu Guo and Petros Efstathopoulos. Building a high-
performance deduplication system. In Proceedings of
2011 USENIX Annual Technical Conference, pages 1–
14, 2011.

[15] Diwaker Gupta, Sangmin Lee, Michael Vrable, Stefan
Savage, Alex C. Snoeren, George Varghese, Geoffrey M.
Voelker, and Amin Vahdat. Difference engine: Harness-
ing memory redundancy in virtual machines. In Pro-
ceedings of the 8th USENIX Symposium on Operating
Systems Design and Implementation, 2008.

[16] Navendu Jain, Michael Dahlin, and Renu Tewari. TA-
PER: tiered approach for eliminating redundancy in
replica synchronization. In Proceedings of the 3rd Con-
ference on File and Storage Technologies, 2005.

[17] Keren Jin and Ethan L. Miller. The effectiveness of
deduplication on virtual machine disk images. In Pro-
ceedings of of SYSTOR 2009: The Israeli Experimental
Systems Conference, 2009.

[18] Jonghwa Kim, Choonghyun Lee, Sang Yup Lee, Ikjoon
Son, Jongmoo Choi, Sungroh Yoon, Hu-ung Lee, Sooy-
ong Kang, Youjip Won, and Jaehyuk Cha. Deduplication
in ssds: Model and quantitative analysis. In Proceedings
of the IEEE 28th Symposium on Mass Storage Systems
and Technologies, 2012.

[19] Keonwoo Kim, Jee-hong Kim, Changwoo Min, and
Young Ik Eom. Content-based chunk placement scheme
for decentralized deduplication on distributed file sys-
tems. In Proceedings of the 13th International Confer-
ence on Computational Science and Its Applications,
2013.

USENIX Association 2022 USENIX Annual Technical Conference 31

[20] Ricardo Koller and Raju Rangaswami. I/O deduplica-
tion: Utilizing content similarity to improve I/O perfor-
mance. In Proceedings of the 8th USENIX Conference
on File and Storage Technologies, 2010.

[21] Lucas Kuhring and Zsolt István. Storing parquet tile
by tile: Application-aware storage with deduplication.
In Proceedings of the 29th International Conference on
Field Programmable Logic and Applications, 2019.

[22] Purushottam Kulkarni, Fred Douglis, Jason D. LaVoie,
and John M. Tracey. Redundancy elimination within
large collections of files. In Proceedings of the 2004
USENIX Annual Technical Conference, 2004.

[23] Mark Lillibridge, Kave Eshghi, and Deepavali Bhag-
wat. Improving restore speed for backup systems that
use inline chunk-based deduplication. In Proceedings
of the 11th USENIX conference on File and Storage
Technologies, 2013.

[24] Xing Lin, Guanlin Lu, Fred Douglis, Philip Shilane, and
Grant Wallace. Migratory compression: coarse-grained
data reordering to improve compressibility. In Proceed-
ings of the 12th USENIX conference on File and Storage
Technologies, 2014.

[25] Jian Liu, Yunpeng Chai, Chang Yan, and Xin Wang.
A delayed container organization approach to improve
restore speed for deduplication systems. IEEE Trans.
Parallel Distributed Syst., 27(9):2477–2491, 2016.

[26] Joshua P. MacDonald. File system support for delta
compression, 2000.

[27] Sonam Mandal, Geoff Kuenning, Dongju Ok, Varun
Shastry, Philip Shilane, Sun Zhen, Vasily Tarasov, and
Erez Zadok. Using hints to improve inline block-layer
deduplication. In Proceedings of the 14th USENIX Con-
ference on File and Storage Technologies, 2016.

[28] Dutch T. Meyer and William J. Bolosky. A study of
practical deduplication. ACM Trans. Storage, 7(4):14:1–
14:20, 2012.

[29] Jaehong Min, Daeyoung Yoon, and Youjip Won. Effi-
cient deduplication techniques for modern backup oper-
ation. IEEE Trans. Computers, 60(6):824–840, 2011.

[30] Jeffrey C. Mogul, Fred Douglis, Anja Feldmann, and
Balachander Krishnamurthy. Potential benefits of delta
encoding and data compression for http. SIGCOMM
Comput. Commun. Rev., 27(4):181–194, 1997.

[31] Athicha Muthitacharoen, Benjie Chen, and David Maz-
ières. A low-bandwidth network file system. In Proceed-
ings of the 18th ACM Symposium on Operating System
Principles, 2001.

[32] Mohammad Nasirifar and Angela Demke Brown. Dedu-
plicating future data transfer using data exchanged in
the past to decrease mobile bandwidth usage. In Pro-
ceedings of the 18th Annual International Conference
on Mobile Systems, Applications, and Services, 2020.

[33] Lars Nielsen, Dorian Burihabwa, Valerio Schiavoni, Pas-
cal Felber, and Daniel E. Lucani. Minervafs: A user-
space file system for generalised deduplication: (prac-
tical experience report). In Proceedings of the 40th
International Symposium on Reliable Distributed Sys-
tems, 2021.

[34] Sungbo Park, Ingab Kang, Yaebin Moon, Jung Ho Ahn,
and G. Edward Suh. BCD deduplication: effective mem-
ory compression using partial cache-line deduplication.
In Proceedings of the 26th ACM International Confer-
ence on Architectural Support for Programming Lan-
guages and Operating Systems, 2021.

[35] Himabindu Pucha, David G. Andersen, and Michael
Kaminsky. Exploiting similarity for multi-source down-
loads using file handprints. In Proceedings of the 4th
Symposium on Networked Systems Design and Imple-
mentation, 2007.

[36] Philip Shilane, Ravi Chitloor, and Uday Kiran Jonnala.
99 deduplication problems. In Proceedings of the 8th
USENIX Workshop on Hot Topics in Storage and File
Systems, 2016.

[37] Philip Shilane, Mark Huang, Grant Wallace, and Wind-
sor Hsu. Wan-optimized replication of backup datasets
using stream-informed delta compression. ACM Trans.
Storage, 8(4):13:1–13:26, 2012.

[38] Philip Shilane, Grant Wallace, Mark Huang, and Wind-
sor Hsu. Delta compressed and deduplicated storage
using stream-informed locality. In Proceedings of the
4th USENIX Workshop on Hot Topics in Storage and
File Systems, 2012.

[39] Mark W. Storer, Kevin M. Greenan, Darrell D. E. Long,
and Ethan L. Miller. Secure data deduplication. In
Proceedings of the 2008 ACM Workshop On Storage
Security And Survivability, StorageSS, 2008.

[40] Zhen Jason Sun, Geoff Kuenning, Sonam Mandal, Philip
Shilane, Vasily Tarasov, Nong Xiao, and Erez Zadok.
Cluster and single-node analysis of long-term dedupli-
cation patterns. ACM Trans. Storage, 14(2):13:1–13:27,
2018.

[41] Haoliang Tan, Zhiyuan Zhang, Xiangyu Zou, Qing Liao,
and Wen Xia. Exploring the potential of fast delta en-
coding: Marching to a higher compression ratio. In
Proceedings of the 2020 IEEE International Conference
on Cluster Computing, 2020.

32 2022 USENIX Annual Technical Conference USENIX Association

[42] Vasily Tarasov, Amar Mudrankit, Will Buik, Philip Shi-
lane, Geoff Kuenning, and Erez Zadok. Generating
realistic datasets for deduplication analysis. In Proceed-
ings of the 2012 USENIX Annual Technical Conference,
2012.

[43] Grant Wallace, Fred Douglis, Hangwei Qian, Philip Shi-
lane, Stephen Smaldone, Mark Chamness, and Windsor
Hsu. Characteristics of backup workloads in production
systems. In Proceedings of the 10th USENIX conference
on File and Storage Technologies, 2012.

[44] Chunzhi Wang, Yanlin Fu, Junyi Yan, Xinyun Wu,
Yucheng Zhang, Huiling Xia, and Ye Yuan. A
cost-efficient resemblance detection scheme for post-
deduplication delta compression in backup systems.
Concurrency and Computation: Practice and Experi-
ence, 2021.

[45] Avani Wildani, Ethan L. Miller, and Ohad Rodeh.
HANDS: A heuristically arranged non-backup in-line
deduplication system. In Proceedings of the 29th IEEE
International Conference on Data Engineering, 2013.

[46] Wen Xia, Hong Jiang, Dan Feng, Fred Douglis, Philip
Shilane, Yu Hua, Min Fu, Yucheng Zhang, and Yukun
Zhou. A comprehensive study of the past, present, and
future of data deduplication. Proc. IEEE, 104(9):1681–
1710, 2016.

[47] Wen Xia, Hong Jiang, Dan Feng, and Lei Tian. DARE:
A deduplication-aware resemblance detection and elim-
ination scheme for data reduction with low overheads.
IEEE Trans. Computers, 65(6):1692–1705, 2016.

[48] Wen Xia, Hong Jiang, Dan Feng, Lei Tian, Min Fu, and
Yukun Zhou. Ddelta: A deduplication-inspired fast delta
compression approach. Perform. Evaluation, 79:258–
272, 2014.

[49] Wen Xia, Chunguang Li, Hong Jiang, Dan Feng, Yu Hua,
Leihua Qin, and Yucheng Zhang. Edelta: A word-
enlarging based fast delta compression approach. In
Proceedings of the 7th USENIX Workshop on Hot Top-
ics in Storage and File Systems, 2015.

[50] Lianghong Xu, Andrew Pavlo, Sudipta Sengupta, and
Gregory R. Ganger. Online deduplication for databases.
In Proceedings of the 2017 ACM International Confer-
ence on Management of Data, 2017.

[51] Lianghong Xu, Andrew Pavlo, Sudipta Sengupta, Jin Li,
and Gregory R. Ganger. Reducing replication bandwidth
for distributed document databases. In Proceedings of
the Sixth ACM Symposium on Cloud Computing, 2015.

[52] Yucheng Zhang, Wen Xia, Dan Feng, Hong Jiang,
Yu Hua, and Qiang Wang. Finesse: Fine-grained fea-
ture locality based fast resemblance detection for post-
deduplication delta compression. In Proceedings of the
17th USENIX Conference on File and Storage Technolo-
gies, 2019.

[53] Yucheng Zhang, Ye Yuan, Dan Feng, Chunzhi Wang,
Xinyun Wu, Lingyu Yan, Deng Pan, and Shuanghong
Wang. Improving restore performance for in-line backup
system combining deduplication and delta compression.
IEEE Trans. Parallel Distributed Syst., 31(10):2302–
2314, 2020.

[54] Nannan Zhao, Hadeel Albahar, Subil Abraham, Keren
Chen, Vasily Tarasov, Dimitrios Skourtis, Lukas Rup-
precht, Ali Anwar, and Ali Raza Butt. Duphunter: Flexi-
ble high-performance deduplication for docker registries.
In Proceedings of the 2020 USENIX Annual Technical
Conference, 2020.

[55] Feng Zhou, Li Zhuang, Ben Y. Zhao, Ling Huang, An-
thony D. Joseph, and John Kubiatowicz. Approximate
object location and spam filtering on peer-to-peer sys-
tems. In Proceedings of the 2003 ACM/IFIP/USENIX
International Middleware Conference, 2003.

[56] Benjamin Zhu, Kai Li, and R. Hugo Patterson. Avoiding
the disk bottleneck in the data domain deduplication file
system. In Proceedings of the 6th USENIX Conference
on File and Storage Technologies, 2008.

[57] Xiangyu Zou, Cai Deng, Wen Xia, Philip Shilane, Hao-
liang Tan, Haijun Zhang, and Xuan Wang. Odess: Speed-
ing up resemblance detection for redundancy elimina-
tion by fast content-defined sampling. In Proceedings
of the 37th IEEE International Conference on Data En-
gineering, 2021.

[58] Xiangyu Zou, Jingsong Yuan, Philip Shilane, Wen Xia,
Haijun Zhang, and Xuan Wang. The dilemma between
deduplication and locality: Can both be achieved? In
Proceedings of the 19th USENIX Conference on File
and Storage Technologies, pages 171–185, 2021.

USENIX Association 2022 USENIX Annual Technical Conference 33

A Artifact Appendix

Abstract

The artifact is source code of a prototype deduplication system for backups that
follows the ideas in the paper.

Scope

It could suggest the details and effectiveness of the delta selector, the delta-
friendly data layout, the ”Always-Forward-Reference” traversing, and the delta
prewriting mechanism.

Contents

The artifact is source code of a prototype deduplication system for backups
that follows the ideas in the paper. It mainly supports two main operations:
(1) deduplicating and storing backup workloads and (2) restoring stored backup
workloads.

Detailed manuals are introduced in our GitHub repository. In brief, the ar-
tifact supports the two operations with the following two commands.

===
deduplicating and storing a new backup
./MeGA --ConfigFile=[config file path] --task=write --InputFile=[backup work-
load] --DeltaSelectorThreshold=[Delta Selector Threshold]

restoring a stored backup
./MeGA --ConfigFile=[config file path] --task=restore --RestorePath=[path
to restore] --RestoreRecipe=[which backup to restore (1 ∼ n)]
==

MeGA generates several outputs when executing. Note that:
1○ MeGA includes chunk-level deduplication, delta compression, and local

compression. The “total reduction ratio” suggests the benefits from all these
parts on a single backup.

2○ The “total reduction ratio” simply indicates how many times the size
of a single backup has been reduced. For the entire dataset, the user needs to
add up the original size of all backups in a dataset and divide it by the ”After
Compression” of all backups to get the general ”Dedup ratio” of the dataset,
which is suggested in Figure 15.

3○ The backup speed is related to the results in Figure 11.
4○ The cache misses and average time cost are related to the results in Figure

12.
6○ The arrangement duration is related to the results in Figure 17.
7○ The restore speed is related to the results in Figure 13.

34 2022 USENIX Annual Technical Conference USENIX Association

5○ Figure 16 is just a general view, and it does not have new results.

Hosting

The source cost is available at https://github.com/Borelset/MeGA (the ”Con-
tainerBased” branch).

Requirements

The Artifact has the following requirements.
Hardware Requirement:

• CPUs supporting AVX2 instructions.
• 32GB or larger RAM
• 7200rpm HDD drivers for experiments.
• Another storage device for datasets. (400GB for full evaluations or 100GB
for partly evaluations)

Software Requirement:
• isal crypto [https://github.com/intel/isa-l crypto]
• jemalloc [https://github.com/jemalloc/jemalloc]
• openssl [https://github.com/openssl/openssl]
• zstd [https://github.com/facebook/zstd]
• Reformat your HDD and deploy an XFS file system, as fragmentation of
the file system will affect performance.

USENIX Association 2022 USENIX Annual Technical Conference 35

	MeGA__an_IO_Efficient_Fine_grained_Deduplication_based_Backup_Framework (16).pdf
	Introduction
	Background and Related Works
	Fine-grained Deduplication
	Backup Workloads

	Observation and Motivation
	Challenges
	Selective Delta Compression
	Delta-friendly Data Layout
	Forward Reference and Delta Prewriting

	Design and Implementation
	General Description
	Backup Workflow
	Maintaining Delta-Friendly Data Layout
	Restore Workflow
	Discussion

	Evaluation
	Configuration
	Backup Speed
	Restore Speed
	Deduplication Ratio
	Overall Performance
	I/O Overhead in Maintaining Data Layout

	Conclusion

	MeGA_Artifact_Appendix (1).pdf
	Artifact Appendix

