
This paper is included in the Proceedings of the
2022 USENIX Annual Technical Conference.

July 11–13, 2022 • Carlsbad, CA, USA
978-1-939133-29-8

Open access to the Proceedings of the
2022 USENIX Annual Technical Conference

is sponsored by

Vinter: Automatic Non-Volatile Memory Crash
Consistency Testing for Full Systems

Samuel Kalbfleisch, Lukas Werling, and Frank Bellosa, Karlsruhe Institute of Technology

https://www.usenix.org/conference/atc22/presentation/werling

VINTER: Automatic Non-Volatile Memory Crash Consistency Testing
for Full Systems

Samuel Kalbfleisch
Karlsruhe Institute of Technology

Lukas Werling
Karlsruhe Institute of Technology

Frank Bellosa
Karlsruhe Institute of Technology

Abstract
Non-volatile memory (NVM) is a new byte-addressable stor-
age technology that is part of the processor’s memory hierar-
chy. NVM is often exposed to applications via an in-kernel
file system. To prevent data loss in the case of crashes, the file
system implementation needs to be crash-consistent. Achiev-
ing crash consistency is difficult however, as special primitives
need to be inserted at appropriate places in the program to
ensure persistency in the presence of volatile caches.

We introduce VINTER, a new approach to automated NVM
crash consistency testing designed for full systems, including
unmodified kernel software such as file systems. By tracing
NVM accesses of a full system via dynamic binary transla-
tion, we capture interactions between user and kernel space
code. With such traces, our system efficiently generates rel-
evant crash states using a heuristic that determines NVM
locations significant for crash consistency. Finally, it extracts
the semantic representation of each crash state. This makes
the automatic detection of operation-spanning violations of
crash consistency properties such as atomicity feasible. Our
approach further aids in fixing detected bugs by represent-
ing how bugs originate from simulated crashes which are
annotated by trace metadata.

Our evaluation on NVM file systems uncovers several pre-
viously unknown bugs, including bugs in the state-of-the-art
file systems NOVA and NOVA-Fortis that lead to atomicity
violations and data loss.

1 Introduction

Non-volatile memory (NVM) is a new storage technology that
is byte-addressable and integrated in the processor’s memory
system. Applications can obtain a virtual memory mapping
to access non-volatile memory pages directly with load and
store instructions [40, 41, 52]. Such direct access enables per-
sistency without a serialization step, but requires extensive
reworking of the applications to ensure crash consistency:
Modifications need to be flushed from volatile caches, and

developers need to employ memory fences to enforce persis-
tency ordering. Thus, programming for NVM has turned out
to be difficult in practice [39].

As an alternative, unmodified applications can benefit from
high-speed NVM by running on NVM file systems [5, 23,
26, 45, 48–51, 54, 56] which implement common user space
interfaces such as POSIX [15]. Internally, these file systems
store metadata and file data directly on NVM, which means
that the same challenges for achieving crash consistency apply
to these file systems as well.

Recent research has produced many approaches to detect-
ing crash consistency bugs [8, 11, 27–30, 33]. However, we
find that most of these approaches cannot easily be applied
to file systems. Kernel software is often not supported at all
or requires extensive code modification. In particular, static
code analysis [11] and symbolic execution [33] are difficult
to apply to full systems where a variety of user and kernel
space code may interact. It is possible in theory to adapt a
kernel file system to user space in order to apply a testing tool
designed for user space software. However, this approach is
likely to distort results, as the interaction between user and
kernel space code can be a source of consistency bugs. For ex-
ample, the NOVA file system [49] relies on memory barriers
being performed when returning to user space.

We introduce VINTER, the virtualization-based NVM
tester, a novel approach for testing crash consistency that sup-
ports full systems. Using binary translation, we trace relevant
instructions such as load-store instructions or barriers in a vir-
tual machine running unmodified kernel and user space code.
From that trace, we generate crash images which represent
possible NVM contents after a crash. We reduce the expo-
nential search space by identifying NVM locations where the
recovery code reads from the crash image. By extracting the
semantic state of each crash image (e.g., a listing of all files
in a file system), we can finally automatically verify crash
consistency properties such as atomicity.

We use our prototype to test the NVM file systems
NOVA [49], NOVA-Fortis [50] and PMFS [10] for crash con-
sistency bugs. We find several new bugs in these file systems

USENIX Association 2022 USENIX Annual Technical Conference 933

ranging from atomicity violations to data loss and broken
file system states. One specific bug we find in NOVA high-
lights the importance of testing unmodified software instead
of higher-level methods such as manual code annotation: A
generic Linux helper function for an uncached memory copy
has an optimized assembly implementation for x86 that leaves
unaligned data in the cache. NOVA uses this function to copy
file data to NVM and is thus susceptible to data loss.

We identify the following major contributions of our work:
• Our solution traces NVM accesses using full system em-

ulation with dynamic binary translation. It thus supports
unmodified user and kernel space software.

• We apply heuristics to achieve efficient exploration of
crash states, avoiding combinatorial state explosion.

• Through grouping simulated crashes by their seman-
tic state, we introduce automatic testing of operation-
spanning crash consistency properties such as atomicity.

• To help developers fix uncovered bugs, we introduce
a representation of semantic crash states and their ori-
gins in simulated crashes which are annotated by trace
metadata.

• Using our solution, we provide the first comprehensive
analysis of NVM file systems for crash consistency.

2 Background and Related Work

In this section, we introduce the memory persistency model
that VINTER builds upon and the crash consistency properties
it can verify automatically. Then, we discuss related work.

2.1 Memory Persistency Models
Applications that access NVM need to pay close attention
to the memory persistency model which codifies the archi-
tecture’s guarantees about persistency. Multiple models have
been proposed [5, 12, 18, 35]. We implement VINTER for the
x86 architecture [17, 37] whose persistency model is based
on persistency epochs [20]. The epoch model divides thread
execution into persist epochs and guarantees that stores be-
tween epochs are strictly ordered, but not within the same
epoch [5, 35]. Stores are buffered in x86 and need to be
flushed from volatile caches with instructions such as clwb
to be persisted [22, 37]. Alternatively, non-temporal stores
bypass the caches. Memory barriers in the form of fence
instructions provide ordering points that divide the epochs. In
the following, we refer to all instructions that are relevant for
the persistency model as persistency primitives.

2.2 NVM Crash Consistency
Crash consistency as a property of stateful applications is
often only informally specified. Throughout this work, we
use the following definitions and assumptions about the tested
applications.

NVM

caches

crash images

semantic states1 2

time

Figure 1: An atomic operation: All crash images (partially
shown) recover to one of two semantic states.

We assume that the application keeps its persistent state
in NVM. Depending on the access method, modifications
may go through a volatile cache or may be reordered. After a
crash, these modifications may be partially lost. Consequently,
the NVM then contains all fully-persisted data (e.g., through
cache flush instructions and memory fences) with a subset of
the in-flight modifications applied. We call this a crash image.

The period during which a crash may occur is called the
pre-failure execution [29]. When restarting the application
from a crash image, its post-failure recovery code will read the
data to recover its semantic state. By comparing all possible
recovered states that can arise from crashes, we can describe
the following crash consistency properties. An operation with
all-or-nothing semantics fulfills atomicity. More formally, all
crash images possible during an atomic operation result in
one of two states: either the initial or the final state. Figure 1
illustrates such an atomic operation. From left to right, an
application is modifying NVM contents step-by-step. As long
as the modifications are not flushed from the caches, crash
images with partial cache contents are possible. However,
all but the final crash image recover to an identical semantic
state. We can observe patterns like this when techniques such
as journaling are in use. The final writes (green) mark the
previous modifications as valid.

For non-atomic operations, in Section 3.4.1 we define a
second, weaker property Single Final State: at the end of
an operation, all possible crash images recover to the same
semantic state. Either of these properties may be violated by
different kinds of bugs. For example, a missing memory fence
at the end of an operation may violate Single Final State:
the CPU could reorder cache flushes, which results in crash
images that miss some modifications.

Multiple methods exist that help applications to achieve
crash consistency, including logging [46, 47], log structur-
ing [4, 14, 24, 49, 55], and shadow paging [31, 34].

2.3 NVM Crash Consistency Testing

Since making NVM programs crash-consistent is difficult for
developers, multiple testing approaches have been proposed

934 2022 USENIX Annual Technical Conference USENIX Association

with varying degrees of automation. Many of the previous
approaches rely on user-provided code annotations [29, 30],
do not automatically confirm bug candidates [8, 29, 30, 33],
and are limited to user space applications [11, 29, 33] or
would need additional effort like kernel modification [8, 28,
30]. VINTER is free from these limitations.

Lantz et al.’s Yat [27] traces its target in a hardware-assisted
hypervisor, constructs all possible crash images by brute force,
and tests these by running an integrity checker such as fsck.
It is able to test kernel space applications, but it relies on
code modifications to trap persistency primitives due to lim-
its of hardware-assisted virtualization. Due to its exhaustive
crash image exploration, some test cases would take years to
complete. Furthermore, Yat can only detect inconsistencies
discovered by an integrity checker, and is not able to consider
consistency across entire operations.

Liu et al.’s PMTest [30] requires that developers annotate
their source code with persistency assertions. Their correct-
ness is then evaluated at runtime. The obvious drawback is
that the approach entirely depends on the quantity and quality
of annotations which need considerable effort by developers.

XFDetector by Liu et al. [29] applies heuristics to detect
a typical bug pattern. During runtime, it looks for read op-
erations during post-failure recovery whose corresponding
stores from pre-failure execution have not been explicitly per-
sisted. To avoid false positive bugs, they require manual code
annotations. Still, the bug candidates need manual screening.

Neal et al.’s Agamotto [33] applies symbolic execution to
NVM user space programs. This allows arguing over many
possible execution paths at once and can work with sym-
bolic NVM. It only detects some bug patterns like unpersisted
NVM locations after program termination. Thus, false posi-
tives can occur and manual vetting is required.

WITCHER by Fu et al. [11] focuses on testing user space
key-value stores. The authors propose a testing pipeline that
automatically confirms bugs. It uses heuristics based on dy-
namic and static analysis to choose interesting crash states
and thus avoids exhaustive search. Use of static analysis and
need for recompilation makes it difficult to apply to full sys-
tems, so we propose a new crash image generation heuristic
solely based on dynamic analysis. WITCHER automatically
detects violations of the atomicity of operations [18] by in-
troducing “output equivalence checking” that compares with
oracle states obtained before and after an operation. Our work
extends upon this by also testing for a relaxation of atom-
icity. Furthermore, VINTER outputs a representation of all
encountered semantic crash states for easy manual sighting
when strong properties such as atomicity do not apply. VIN-
TER also passes metadata through its testing pipeline in order
to facilitate debugging and root cause analysis of uncovered
bugs.

PMFuzz by Liu et al. [28] uses fuzzing for test case gen-
eration and is orthogonal to our work. PMDebugger by Di
et al. [8] focuses on efficiently processing memory traces.

Formal verification of NVM programs has been proposed [7,
13, 18].

2.4 File System Crash Consistency
The need for file systems to tolerate crashes is not new. Nu-
merous works have proposed methods for checking crash
consistency properties in file systems [19, 21, 25, 32, 36, 53].
Most of these approaches rely on instrumentation at the block
layer and thus cannot be applied to NVM file systems. How-
ever, we see opportunities to adopt specific techniques to an
NVM context. CrashMonkey [32] automatically generates
test cases for a crash consistency checker. Our evaluation re-
lies on manually written tests, but could be extended with a
similar technique. Jaffer et al. [19] evaluate how file systems
react to media errors common on solid state drives. Our ap-
proach could be extended in this direction, however, there is
currently limited information on specific NVM media errors.

File system semantics. A common issue with file system
crash consistency checking is that consistency semantics vary
from file system to file system and are often only loosely
specified. The POSIX standard [15], whose API most Unix
file systems implement, does not define crash consistency
semantics at all. Bornholt et al. [3] improve on this situation
by creating crash consistency models for a few commonly
used file systems. Rebello et al. [38] specifically look at error
handling by file systems and applications for the fsync sys-
tem call. These issues also apply to NVM file systems. For
our analysis, NOVA [49], NOVA-Fortis [50] and PMFS [10]
give strong atomicity guarantees for all metadata and file data
operations, so complex models were not required.

3 Approach

We introduce a novel crash consistency testing approach to au-
tomatically finding bugs that violate crash consistency proper-
ties in unmodified NVM applications, including kernel space
software. The key requirements for our solution are:

• To support kernel software such as file systems, it should
work with full systems and should not be limited to user
space software.

• It should not require manual development effort. In par-
ticular, no code annotations should be needed. Our solu-
tion even works with unmodified kernel and user space
binaries without needing source code access.

• Reported crash consistency bugs should be automatically
confirmed, and not be based on heuristics that allow for
false positives.

• For good performance, it should avoid exhaustive search
over all possible crash states, and only consider crash
states that are likely to exhibit crash consistency bugs.

• It should not only look for single crash states that are
obviously broken, but also consider semantic, operation-
spanning crash consistency such as atomicity. For ex-

USENIX Association 2022 USENIX Annual Technical Conference 935

crash images

pre-failure
program

Crash Image
Generator

trace
Tester

bugs

Tracer

NVM Simulator

post-failure
program

1
Tracer 2

3

Figure 2: Overview of the testing pipeline. Components are
in boxes; arrows are labeled with inputs or produced
artifacts.

ample, this allows to determine whether a file system
operation is atomic or has invalid intermediate crash
states.

3.1 Overview
VINTER dynamically analyzes the execution of a system that
interacts with NVM. The goal is to simulate crashes that
may occur during a recorded pre-failure execution and find
inconsistent states. The proposed framework consists of a
testing pipeline made up of multiple components which we
depict in Figure 2.

The pipeline’s initial input is an operating system image,
which includes all kernel and user space binaries, as well as a
sequence of operations that specifies the program’s pre-failure
execution during which crashes should be simulated. Each
step of the pipeline outputs an artifact that is fed to the next
stage of the pipeline. In the final step, uncovered crash con-
sistency bugs and a representation of encountered semantic
crash states are output. The entire pipeline may be run multi-
ple times with different test cases. Achieving comprehensive
results depends on the quality and quantity of these cases
being run in the system. Finding these is orthogonal to our
work (e.g., PMFuzz [28]).

VINTER’s Tracer makes use of full system emulation with
dynamic binary translation to trace NVM operations per-
formed by a system (§3.2). The resulting trace is fed into
our Crash Image Generator. To be able to reconstruct arbi-
trary crash states, the Crash Image Generator uses an NVM
simulation of a given memory persistency model to replay
the trace on it (§3.3). At each ordering point (e.g., memory
barrier), crash images are chosen by a heuristic that only con-
siders in-flight stores at memory locations likely to be read
by the recovery (post-failure) code, which avoids exhaustive
exploration of crash states. The latter are determined by run-
ning the post-failure code on special crash images, hence the
Crash Image Generator uses its own Tracer instance.

The Tester component finally takes crash images and ex-
tracts their semantic (crash) states (§3.4). Each of the pre-
failure operations is then analyzed for violations of crash con-
sistency properties such as atomicity. For example, if during
an operation three different semantic crash states are observed,

the operation has been shown not to be atomic. Uncovered
bugs are finally output to the user of the framework, together
with a representation of encountered semantic crash states
and how they originate from the simulated crashes (§3.5).

The workflow of our testing pipeline is similar to the one in
the WITCHER framework proposed by Fu et al. [11]. However,
our crash image generation algorithm additionally makes use
of the Tracer as part of our heuristic for choosing crash images
(we further compare our solution in §2.3).

3.2 Tracer
The Tracer is a full system emulator and is used in the testing
pipeline for the following purposes:

• During pre-failure execution, we trace writes to NVM
as well as invocation of persistency primitives, as this al-
lows reconstruction of arbitrary NVM crash states (§3.3).

• Further, we trace reads to NVM during post-failure exe-
cutions as part of our crash image generation heuristic
described in Section 3.3.

• Optionally, the Tracer may be used by the Tester compo-
nent for running the post-failure recovery on the gener-
ated crash images to extract their semantic states (§3.4).
Tracing NVM accesses may be disabled, but hypercalls
can be used (see below).

In common architectures, NVM is accessed directly via
load and store instructions to virtual memory that is backed
by NVM. Further, persistency primitives (such as cache line
flushes and memory fences) are usually implemented as ded-
icated instructions. To intercept these events, we base the
Tracer’s processor emulation on dynamic binary transla-
tion [43]. This allows full control over the emulated system,
and is transparent to the tested program stack, thus binaries
may remain unmodified. In contrast, hardware-assisted virtu-
alization (as used by Yat [27]) is faster, but does usually not
provide hooks for all events that are of interest (Yat requires
recompilation).

During the translation of basic blocks from the emulated
architecture to the host architecture, the Tracer adds instru-
mentation code for persistency primitives to the translated
code. Further, the memory abstraction layer of the emulator
intercepts memory writes and reads to address ranges backed
by simulated NVM. The intercepted events are then output
in a trace log with associated data. Data includes instruction
operands (e.g., cache flush addresses) or memory contents
updated by a store to NVM.

Hypercalls. We allow the emulated system to signal the
following events as hypercalls to the testing framework, which
are additionally recorded in the trace log:

• Checkpoint hypercalls during pre-failure execution sep-
arate semantic operations. We remind that input to the
testing framework is a sequence of operations that will
each be separately tested for operation-spanning crash
consistency. In practice, this may be in form of a sim-

936 2022 USENIX Annual Technical Conference USENIX Association

ple user space executable that calls the tested program’s
operations and emits hypercalls in between.

• Success indication hypercalls may occur during post-
failure recovery. If none is emitted, it is assumed that
recovery from the specific crash image has failed.

The use of hypercalls is not mandatory for the approach,
but it improves the testing workflow for example by allowing
separation of operations during pre-failure execution.

Metadata. During pre-failure execution, we log metadata
about traced events (such as NVM stores), particularly their
location in form of a call stack as traced by the emulator. Al-
though not required to detect crash consistency bugs, it helps
a developer to investigate uncovered crash consistency bugs.
We retain this metadata when generating crash images later
in the pipeline as a way to understand how a crash needs to
occur to lead to a certain invalid semantic crash state. Further,
additional events helpful for debugging may be traced and
logged, such as system calls.

3.3 Crash Image Generator

The Crash Image Generator component takes a pre-failure
trace as its input, and it outputs crash images to be passed
into the Tester (§3.4). A crash image is a string that describes
the binary contents of the NVM in a single crash state that
can occur according to the memory persistency model at an
arbitrary point of program execution.

Motivation and challenges. In memory persistency mod-
els that are based on persistency epochs [5, 35] (including
x86 [20]), the set of all possible crash images can be con-
structed as follows. At each ordering point (usually memory
fences), apply any possible subset of potentially unpersisted
in-flight stores on top of the memory contents that are already
guaranteed to be persisted [8, 11, 27–30, 33]. This works
because stores can only become irreversably persistent at
ordering points. Not all subsets may be allowed and order
of stores can be relevant depending on the specific memory
model [35, 37, 42], such as x86 with intra-cache-line ordering.

Although considering any possible crash state would be
comprehensive, it is impractical. Yat by Lantz et al. [27] does
so, but the authors find that some test cases would take several
years to complete due to exponential explosion in number of
crash images. Thus, many other approaches do not actually
generate and test crash images, but only apply heuristics on the
observed program execution to detect typical bug patterns [8,
29, 30, 33]—this either allows false positives to occur or
requires extensive manual code annotations.

Solving this problem requires reducing the number of
tested crash images. The chosen subset of crash images should
ideally not hide bugs. Accordingly, the chosen crash images
should have some properties that makes them relatively likely
to exhibit bugs. The recent WITCHER framework proposed by
Fu et al. [11] aims to solve this challenge for user space key-
value stores: From a mix of static and dynamic analysis, they

infer likely invariants regarding the persistency of program
data that have presumably been intended by the programmer.
Then, they choose crash images that violate these invariants
and test if these indeed violate crash consistency. This ap-
proach works well for key-value stores, but particularly the
reliance on static analysis makes it difficult to apply to full
systems, where a variety of user and kernel space code may
interact.

Proposed crash image generation heuristic. In contrast,
our heuristic only relies on dynamic analysis. For determin-
ing crash consistency, only the semantic state as recovered
by the application in post-failure recovery is relevant (§3.4).
Conversely, the semantic crash state can only have been in-
fluenced by memory locations from which the post-failure
execution has read. Our crash image generation heuristic is
based on this idea. When choosing subsets of in-flight stores
during crash image generation, our heuristic only considers
stores likely to be read by the post-failure recovery. Other
stores may be ignored.

We observe that techniques such as journaling and log
structuring, both common in file systems, cause the following
access pattern: The program writes a journal entry, flushes it
completely to NVM and only marks it valid after a store fence.
The journal entry may have an arbitrary size, resulting in a
large number of in-flight stores. However, considering subsets
of these stores for crash image generation is not useful. After
a failure, the recovery would only read a journal entry that is
marked valid.

According to this observation, we base the decision on
whether a store is likely to be read in post-failure recovery
on the following assumption: If an NVM location is not read
during the post-failure stage on the image where all unper-
sisted stores are applied, the post-failure stage will likely also
not read this location when an arbitrary subset of in-flight
stores is applied. Therefore, the heuristic limits the gener-
ated crash images to variations of stores that are likely to be
read during the post-failure stage’s execution. As with any
heuristic, the assumption may not always hold. We evaluate
its effectiveness in Section 6.2.

For the heuristic to capture all relevant NVM locations,
the post-failure recovery should read all relevant state, for
example by running code that serializes all state (as in the
state extractor to be introduced in Section 3.4).

The heuristic’s underlying idea of observing interactions
between pre- and post-failure executions is based on Liu et
al.’s XFDetector framework [29]. However, XFDetector uses
these observations directly to detect bug patterns, but does
not automatically confirm bug candidates. It further requires
developers to manually annotate their code to mark mem-
ory belonging to commit variables; it is further not directly
compatible with checksumming mechanisms as used by file
systems.

NVM simulation. To be able to replay the trace and
reconstruct the possible NVM crash states, we assume a simu-

USENIX Association 2022 USENIX Annual Technical Conference 937

lator of the architecture’s memory persistency model. It holds
the guaranteed persisted memory content as a binary string,
and further a list of in-flight stores that have not yet been
explicitly persisted. Each of these stores further retains as-
sociated metadata from the trace. It further needs to provide
functions for applying stores and persistency primitives (e.g.,
cache line flushes and ordering points). An efficient data struc-
ture and algorithm for processing in-flight stores have been
proposed by Di et al. [8].

Resulting algorithm. The algorithm processes the pre-
failure trace from beginning to end and replays each NVM
write operation and persistency primitive invocation on the
NVM simulation. At each ordering point, it generates crash
images in the following way:

1. Obtain a copy of the current NVM’s guaranteed persisted
memory, and apply all stores on it. We obtain NVMfull.

2. Instantiate the Tracer with NVMfull as initial NVM con-
tents. Execute and trace the post-failure recovery.

3. Look for “read” operations in that post-failure trace to
NVM addresses that have overlapping in-flight stores.

4. Consider all subsets of these cross-failure read in-flight
stores, and apply each subset to the guaranteed persisted
memory and emit the resulting crash images.

5. Continue with replaying the pre-failure trace.

As an optimization, we ignore ordering points if no stores
to NVM have occurred before the last one. Further, if there
would be too many subsets of cross-failure read in-flight stores
according to a configurable threshold, we choose a random
selection of these subsets.

Metadata. It is possible for the same crash image (merely
a binary string) to be emitted multiple times, but at different
ordering points and with different subsets of stores applied.
We deduplicate crash images and attach metadata to each
image that describes all its origins. Each origin includes the
(un)persisted in-flight stores’ metadata (containing the stack
trace that led to a store), the last ordering point’s ID, and the
last checkpoint’s ID. Crash images are further grouped by
checkpoint (i.e., the semantic operation they occur during).

3.4 Tester

In the previous step of VINTER’s testing pipeline, we have
generated crash images that simulate crashes at multiple
points during the traced pre-failure program execution. In this
final step, the Tester component analyzes each operation’s
crash images for the occurrence of crash consistency bugs.
We begin by defining crash consistency properties (§3.4.1)
and then describe how the Tester component discovers vio-
lations of the properties from a set of crash images (§3.4.2).
Our testing approach is an extension of Fu et al.’s “output
equivalence checking” [11].

3.4.1 Crash Consistency Definitions

The central idea is that an NVM image can be mapped to an
application-specific well-defined semantic state that describes
the intended meaning of the persisted data. The same semantic
state can possibly be encoded by different NVM images. We
use S to describe the set of semantic states, and ⊥ (⊥ 6∈ S) to
denote that an NVM image is not recoverable from because it
is faulty. The state extractor function E maps NVM images to
semantic states, for which we use the notation E : {0,1}∗→
S ∪{⊥}.

We recall that we allow traces to be separated by check-
points (c1,c2, . . .) that are signaled by the running program
through hypercalls (§3.2). We define checkpoint intervals
[ci,ci+1]—called operations in the following—that each in-
duce a subsequence of a trace that contains all its recorded
events between checkpoints ci and ci+1. We use checkpoints
to separate different semantic operations during the pre-failure
execution traced in the beginning of our testing pipeline. We
define two crash consistency properties which, depending
on the operation, may be considered a requirement for crash
consistency of the operation.

We propose the following new property:

Definition 1 (Single Final State, SFS). A checkpoint ck is
single-final-state crash-consistent (SFS(ck)) if and only if all
crash images Nk ⊂ {0,1}∗ that can result from crashes in the
trace exactly at checkpoint ck result in the same state 6=⊥, or
formally: ∃s ∈ S : {E(n) | n ∈ Nk}= {s}.

For s ∈ S , we write SFS(ck,s) if ck is single-final-state
crash-consistent and {E(n) | n ∈ Nk} = {s}. Further, an op-
eration [ci,ci+1] is single-final-state crash-consistent if and
only if ci+1 is single-final-state crash-consistent.

SFS is a property that is useful to require even when an
operation is not considered atomic; in that case, intermediate
states are allowed, but as soon as an operation returns, a crash
may not yield any intermediate states anymore.

We further define the well-known atomicity property in our
context:

Definition 2 (Atomicity). An operation [ci,ci+1] is atomic
if and only if ci and ci+1 are both single-final-state crash-
consistent, and all crash images N[i,i+1] ⊂ {0,1}∗ that can
result from crashes anywhere between checkpoints ci and
ci+1 result in either of two states 6=⊥, or formally:

∃sbefore,safter ∈ S :SFS(ci,sbefore)∧SFS(ci+1,safter)

∧{E(n) | n ∈ N[i,i+1]}= {sbefore,safter}.

Atomicity means that operations execute, from the point
of view after crash recovery, in an all-or-nothing fashion:
Either an operation is fully run (safter) or not at all (sbefore).
No intermediate states should occur and all states should be
recoverable. This means that no more than two states may be
observable after recovering from arbitrary crashes between

938 2022 USENIX Annual Technical Conference USENIX Association

crash image 2
001101. . .

crash image 1
001111. . .

state 1

stack trace 1 stack trace 2 . . .

origin 1 metadata
ordering point=37

stores persisted=[7,8]

origin 2 metadata
ordering point=38

origin 3 md.
ord. p.=39

state 2
. . .

Figure 3: Representation of an operation’s semantic states
and their origins’ metadata as output by VINTER.

the two checkpoints of an operation. An atomic operation is
obviously also SFS crash-consistent, but SFS crash-consistent
operations exist that are not atomic.

The state extractor E will usually be implemented by run-
ning the application’s post-failure recovery on the given crash
image including a step that serializes the state. Additional
tests may be run after the recovery to ensure correctness (such
as fsck on file systems). In this case, if a hypercall indicating
success is not issued by the post-failure recovery, the state is
mapped to⊥. The Tracer component can be reused to provide
a virtual environment that implements these hypercalls.

3.4.2 Testing Crash Consistency Properties

VINTER’s Tester component finds crash consistency viola-
tions given a set of crash images from the previous step of
the testing pipeline. As its input, we assume a map of (al-
ready deduplicated) crash images to lists of the metadata that
describe an image’s (possibly multiple) origins (§3.3).

The Tester builds a table Mcp7→states that maps checkpoint
IDs to semantic states which originated from crash images
where the most recent checkpoint hypercall had the corre-
sponding ID. As an image can have multiple origins with
different checkpoint IDs, a semantic state may be mapped
to more than one checkpoint. It also builds another similar
table Mcp 7→fin. states, with the exception that only images are
considered that result from crashing directly at a checkpoint
boundary, thus only considering the “final” states at the end
of an operation.

It is easy to find violations of crash consistency properties
by scanning the tables:

• The Single Final State property of a checkpoint is valid
if and only if Mcp 7→fin. states contains exactly one state for
that checkpoint.

• The Atomicity property of an operation [ci,ci+1] is valid
if and only if ci and ci+1 are SFS crash-consistent (with
Mcp 7→fin. states[ci] = {sbefore} and Mcp 7→fin. states[ci+1] =
{safter}) and Mcp7→states[ci] = {sbefore,safter}.

Violations of these properties are reported by the Tester.

Further, for each operation it outputs a representation of all
encountered semantic crash states with their associated crash
images and the crash images’ origins (Figure 3). This repre-
sentation helps with root cause identification as we cover in
the following section.

3.5 Bug Analysis

The Tester’s output lets developers determine whether crash
consistency bugs have been uncovered. Trivially, if the ex-
tracted semantic states include an unrecoverable state (⊥),
a bug has been uncovered. Otherwise, in the simple case, a
developer specifies that a certain operation should hold one
of the previously covered crash consistency properties, and
then a violation reported by the Tester implies a bug. How-
ever, the crash consistency semantics of an operation may
be more complex or even unclear and may allow multiple
intermediate states. The developer can then manually inspect
the encountered semantic states for their validity (as output in
the maps Mcp7→states and Mcp 7→fin. states). Alternatively, they can
automate the decision by implementing an operation-specific
predicate that validates whether for a set of semantic states
the operation is crash-consistent.

Once bugs have been discovered, VINTER aids develop-
ers in understanding their root causes by representing how
crash-consistency-violating semantic states originate from
simulated crashes. As depicted in Figure 3, every semantic
state keeps a link back to the crash images it was extracted
from, and each crash image keeps a link to the simulated
crashes’ states (origins) it was created from. As a crash image
only represents the NVM’s binary contents, multiple different
crash images may lead to the same semantic state (e.g., an
uncommitted journal entry does not contribute to the semantic
state). Further, crashing at different ordering points or with
different subsets of in-flight stores applied, as stored in the
“origin metadata,” may lead to the same crash image.

Each crash image origin includes a list of in-flight stores at
the ordering point (fence) where the crash was simulated, as
well as the subset of in-flight stores applied to obtain the crash
image. Each of the ordering points and their in-flight stores is
annotated with its stack trace (as logged by the Tracer) and
thus maps back to its source code location.

By inspecting the origins of a crash-consistency-violating
semantic state, developers can understand where and how a
crash needs to occur to trigger the bug (as in source code
location and persistency status of NVM data). This eases root
cause identification. For example, if all of an invalid state’s
origins have a strict subset of in-flight stores applied (i.e., the
crash image at the same ordering point with all in-flight stores
applied does not lead to the invalid state), then introducing
more persistency ordering constraints (fences) may likely fix
the bug.

We present two concrete bug analyses in Section 5.3.

USENIX Association 2022 USENIX Annual Technical Conference 939

4 Implementation

We implement a prototype of VINTER for the 64-bit x86
architecture [17]. Its tracer is based on PANDA [9] and Py-
PANDA [6], which provide a platform for dynamic analy-
sis built on QEMU [1]. QEMU is a full system emulator
based on dynamic binary translation. Core parts of our proto-
type are written in Python. Therefore, while its performance
is sufficient for our file system evaluation, considerable im-
provements are likely possible without changing the general
approach. VINTER’s prototype is available and described in
Appendix A.

Our NVM simulator implements x86’s memory persistency
model [17, 37]. By dividing the simulated NVM into segments
of 64 bytes and keeping ordering of in-flight stores within
these lines, VINTER respects intra-cache-line ordering con-
straints. This guarantees ordering even of non-temporal stores,
which is a higher guarantee than the architecture gives. Setting
the segment size to 8 bytes would allow testing reordering
of non-temporal stores, but would also break intra-cache-line
ordering which some NVM file systems rely on [10].

5 File System Crash Consistency

The crash consistency testing tool we have described so far
does not have any parts specific to file systems and could be
applied to arbitrary software running in a virtual machine. In
this section, we describe how to apply it to NVM file systems.
Then, we present the results of our analysis of NOVA [49],
NOVA-Fortis [50] and PMFS [10].

Our testing pipeline requires an application-specific state
extraction procedure for mapping from a crash image to its
semantic state. The Tester component boots a virtual machine
with the crash image, runs the procedure, and records the
output or a failure state ⊥ in case of errors. We implement
file system state extraction as follows:

1. Mount the file system read-only.
2. Traverse the file system and output a serialized represen-

tation of each file.
We need to mount the file system read-only to prevent

inadvertent changes to metadata such as file access times-
tamps. The file systems we target adhere to the POSIX stan-
dard [15], which allows us to build a generic state extractor for
all POSIX-compatible file systems. For each file (including
regular files, directories, symbolic links) we output a serial-
ization of its path, its contents, its type, and most metadata
from the stat structure1.

After the state extraction completes, we verify that the file
system can still be modified. We remount the file system as
writable and run an additional test-case-specific command
that modifies some of the files or directories used in the test.

1We exclude runtime properties such as device IDs and preferred I/O
block size.

If any of these operations fail, we mark the state described by
this crash image as failure state ⊥.

Our notion of consistency only encompasses the file sys-
tem state as visible via the file system API. The underlying
assumption is that if the file system is still properly readable
and writable, its state can be considered consistent without
the need to inspect its internal state.

For testing more traditional file systems that depend on
separate integrity checkers (fsck), these could also be run as
part of the state extraction procedure and map to the failure
state ⊥ if the integrity checker fails.

5.1 File System Setup
For each tested file system, we need a corresponding virtual
machine image. To reduce the time required for tracing, we
hand-craft minimal VM images consisting of a statically-
linked Linux kernel image with a user space based on Busy-
Box [44]. We do not use an init system. Instead, we let the
system spawn a shell that accepts test commands over a virtual
serial console. Consequently, there are no unrelated processes
running in the background during tracing.

5.2 Test Cases and Results
We manually craft 16 test cases consisting of operation se-
quences which cover most basic file system operations. Fig-
ure 4 shows a summary of the test cases and the results. Most
test cases correspond to basic file system operations given
in monospace font. The “atime” and “[cm]time” test cases
update the corresponding timestamps as side effects of a file
read or directory operations2, whereas “touch” uses a system
call for that purpose. We test three variants of the rename op-
eration: a rename that overwrites an existing file (overwrite),
moving a directory into another (directory), and changing the
file name to a longer one (long name). The “long name” test
case creates a file with a long file name and writes to it. Test
cases with “long” file names use a name that exceeds the
cache line size (which is 64 bytes). Finally, “update” modifies
a small part in the middle of a larger file.

In total, VINTER finds previously unreported bugs in 7 out
of 16 test cases for NOVA. We analyze these bugs manually
and find three root causes. First, we observe missing cache
flushes when NOVA writes unaligned data to NVM which
lead to data loss. This issue manifests in our test cases “write”
and “symlink,” but could also occur in “append” and “update”
(marked with an asterisk) depending on the length of the
written data. The test cases with long filenames (i.e., longer
than cache line size) suffer from the same issue and result
in files where reading the metadata with stat fails. Second,
the rename operation is not atomic. We observe crash states
where the renamed file or directory is completely missing.

2Adding or removing files from a directory updates the directory’s change
and modification timestamps.

940 2022 USENIX Annual Technical Conference USENIX Association

write append atime [cm]time chmod chown link symlink
NOVA 3* 3 3 3 3

NOVA-Fortis 3 3 3

PMFS 3 3 3 () 3 3 3 3

mkdir
rmdir

rename
overwrite

rename
directory

rename
long name touch long name unlink update

NOVA 3 3 3 3*
NOVA-Fortis
PMFS () () 3 3 3 () () 3

data loss crash atomicity violation read/write fails after recovery multiple final states (SFS violation)

Figure 4: Crash consistency bugs discovered by VINTER.

In the following section, we give a detailed analysis of these
two bugs. Third, creating hard links is not completely atomic.
Our tool detects a crash state where the original file’s link
count (st_nlink) is incremented, but the new link does not
yet exist.

As NOVA-Fortis is an extension of NOVA with the addition
of checksumming and parity, it shares most of the issues we
find in NOVA. However, we see three additional failing test
cases. Our tool discovers intermediate crash states where
both data and the checksum over that data are only partially
persisted. This leads to checksum errors during recovery and
errors when trying to read or write the affected files. We
also observe an instance where the additional data integrity
mechanisms help: In the “write” test, NOVA-Fortis does not
suffer from data loss since it can recover the unpersisted data
from parity. However, it appears that NOVA-Fortis does not
protect all data that way: The data loss in the “symlink” test
case shares the same root cause as for “write,” but still occurs
in NOVA-Fortis.

PMFS suffers from fewer failing test cases than the NOVA
variants. We observe a minor atomicity violation in test cases
that remove or overwrite a file. Before the file disappears,
crash states exist where the file has updated change and mod-
ification timestamps. A more serious issue can occur when
removing files in the root directory: Crash states are possible
where mounting the file system results in a failing assertion,
which leads to a crash of the PMFS kernel module.

We reported all NOVA and NOVA-Fortis bugs to the devel-
opers3. We did not report PMFS issues since it is not main-
tained anymore.

5.3 Analysis

VINTER has discovered several previously unreported crash
consistency bugs in the NOVA variants. In the following, we
exemplarily provide a detailed analysis of two of these bugs
that highlights advantages of our crash consistency testing

3Issue IDs 105, 116, 121–125; each accessible at
https://github.com/NVSL/linux-nova/issues/<ID> (also on archive.org)

unpersisted stores call stack of store (metadata)

0x2db008 7→ l __copy_user_nocache

y do_nova_inplace_file_write

y . . .

y vfs_write

y . . .

0x2db009 7→ d

0x2db00a 7→
�

Figure 5: The unpersisted stores after writing HelloWorld
�

to a file in NOVA. The bytes l, d,
�

are the last three
bytes of the string.

event operand instr. (metadata)

syscall sys_write(fd=1, buf=‘HelloWorld\n’, n=11)
.
write (NT) 0x...0 7→ HelloWor movnti qword [rdi], r8
write (T) 0x...8 7→ l mov byte [rdi], al
write (T) 0x...9 7→ d mov byte [rdi], al
write (T) 0x...a 7→

�
mov byte [rdi], al

fence sfence (store fence)

Figure 6: Excerpt of the trace that shows how the file contents
are written to NVM. No flush operations follow on
the cache line belonging to the temporal stores.

approach. Furthermore, the analysis illustrates how VINTER
helps manual analysis with the metadata carried throughout
the testing pipeline and presented as part of the Tester’s report.

5.3.1 Incompletely Persisted Data

We first analyze the data loss bug occurring in the test
case “write” (see Figure 4). The test case creates a file and
writes the string HelloWorld

�
, as in the shell command echo

HelloWorld > /mnt/myfile. Our tool detects a violation
of Single Final State and records partially persisted file con-
tents where up to three bytes at the end are replaced with zero
(e.g., HelloWor 0 0 0 and HelloWorl 0 0).

First, we take a look at the unpersisted stores as reported

USENIX Association 2022 USENIX Annual Technical Conference 941

a bdir. entries b b

file contents x y x yx y

(1) (2) (3)

x y

(4)

Figure 7: Observed crash states in NOVA during a rename
of file a to b in a directory, intending to replace b.
Boxes represent files. (1) is the initial state.

by the Tester component. As pictured in Figure 5, each store
is associated with a call stack. We see that the stores originate
from a write system call and that NOVA uses the function
__copy_user_nocache to write to NVM.

Next, we inspect the NVM trace pictured in Figure 6. It
captures the system call entry as well as all writes to NVM,
cache flushes, and memory fences. Non-temporal writes (NT)
are distinguished from temporal writes (T) as the former by-
pass the volatile caches. We see that the helper function
__copy_user_nocache writes the first eight bytes of the
string to NVM with a single non-temporal store, then writes
the remaining bytes one by one with temporal stores. As there
is no cache flush operation, these bytes end up unpersisted.

Further investigation in the Linux source code shows that
__copy_user_nocache has an architecture-specific imple-
mentation for x86 implemented in assembly. As the function
was written with performance and not persistency in mind,
the Linux developers deemed it acceptable to use temporal
stores for unaligned data.

This bug highlights the importance of testing unmodified
software. Using an approach that relies on source code an-
notations to trace NVM events, a developer would likely
assume that the Linux helper function works correctly and
would annotate it accordingly without following through to
the architecture-specific assembly implementation.

5.3.2 Data Loss During Rename

Second, we analyze the atomicity issues of the rename op-
eration in NOVA. As depicted in Figure 4, our tool detects
atomicity violations and data loss for all variants we test (over-
writing a file, renaming a directory, and a normal rename with
long file names). We visualize the crash states for the over-
write variant in Figure 7. In addition to the initial state (1)
and the desired final state (4), we observe a state where the
file to be renamed is missing (2), as well as a state where the
target file is also missing (3). For the other two test cases that
do not overwrite files, we observe crash states similar to (2)
where the file or directory is missing.

We find that both invalid crash states from Figure 7 have at
least one crash image associated with an “origin” where all
in-flight stores were persisted (i.e., includes all volatile cache
lines; §3.5). Consequently, the bug does not stem from mis-
takes with NVM persistency primitives. We inspect the call

stacks for these crash images and find that they correspond to
different locations in the nova_rename function. By inserting
early return statements at these locations, we can reproduce
the issue without our testing framework, thus confirming the
issue.

This bug shows that our testing pipeline is also capable of
finding persistency issues that are not specific to NVM. By
carrying metadata such as stack traces through the pipeline,
our framework makes bug verification easy.

6 Evaluation

In the previous section, we have shown that our approach
is capable of finding new crash consistency bugs in file sys-
tems. We now give a more complete picture of our prototype’s
performance by answering the following questions: Is the ap-
proach comprehensive or does it miss certain types of known
crash consistency bugs? How effective is our crash image
generation heuristic at reducing the search space of possible
crash images? How big is the slowdown incurred by tracing
and how fast are the other stages of the testing pipeline?

6.1 Completeness

It is well known that—outside of formal methods—software
testing can only prove the existence of bugs, but not their ab-
sence. Nevertheless, we would like to evaluate the complete-
ness of our approach: Does it miss certain types of real-world
crash consistency bugs?

To this end, we sight all 45 issues and patches available on
the public NOVA bug tracker which were submitted between
2019-01-01 and 2021-10-30. We include issues and patches
that are related to crash consistency bugs. We exclude #1104

as according to the bug description, recovery from a crash
only leads to error messages but no observed wrong behavior.
We exclude #98, as according to the bug report, it requires
an NVM capacity > 128GiB, which is infeasible with our
evaluation setup. We are left with four different patches (#89,
#92, #95, #109) that fix crash consistency bugs in NOVA and
NOVA-Fortis.

To assess whether our prototype is able to find these bugs,
we evaluate our prototype on a commit before and after each
bug, and compare the Tester component’s reports. This way,
we can ignore the crash consistency bugs we describe in Sec-
tion 5 which may already be present in older NOVA versions.

Our prototype is able to find all of the known bugs chosen
by our evaluation methodology. There is no need for special
test cases. All bugs are triggered by at least one of the test
cases we describe in Section 5.2.

4The numbers are IDs of issues or patches in the NOVA bug tracker and
can be accessed at URLs of the following form:
https://github.com/NVSL/linux-nova/issues/<ID> (also on archive.org)

942 2022 USENIX Annual Technical Conference USENIX Association

µ±σ [s]
total elapsed Tracer process time 6.37± 0.11�

boot (only minimal instrumentation) 1.63± 0.03�
trace (from outside) 4.15± 0.10�

trace (in guest, portion of command) 3.02± 0.05
execution in guest with raw PANDA 0.09± 0.00

Figure 8: Runtimes measured while tracing the pre-failure
command of the “write” test case in NOVA. 20 runs,
µ is mean and σ is sample standard deviation.

6.2 Effectiveness of Heuristic
We evaluate whether our proposed crash image generation
heuristic based on cross-failure reads (§3.3) helps with ef-
ficiency as intended. To this end, we modify our prototype
to consider all lines with unpersisted stores for crash image
generation, rather than only lines overlapping with the unper-
sisted cross-failure reads as reported by our heuristic. We run
this modified prototype on all NOVA test cases (§5.2).

We compare both the number of unique crash images gener-
ated (accumulated over all test cases), and the semantic crash
states discovered by the modified prototype with that of the
original prototype. 2 466 unique crash images are produced
by the modified prototype without the heuristic, versus only
438 crash images by the original prototype5. Thus, the pro-
totype without the heuristic needs to test approximately 5.6
times as many crash images. This results in an increased run-
time, but it still discovers only the same semantic crash states
as the original prototype using the heuristic.

We additionally analyze how the heuristic reduces the num-
ber of in-flight stores considered for crash image generation.
In 47 out of 178 applications of the heuristic during all NOVA
tests, the recovery code does not read any in-flight stores. We
manually verify that these cases occur during journaling in
NOVA by checking tracing metadata. In 94 applications of
the heuristic, all cache lines with in-flight stores are read. In
the remaining 37 heuristic applications, the cross-failure reads
make up a strict subset of in-flight stores.

6.3 Performance
Even though performance was not a priority of our prototype,
we evaluate its performance to show that the approach is
sufficiently fast for testing file systems. We benchmark the
Tracer’s performance with the pre-failure command of the
“write” test case (see §5.2) on the NOVA evaluation target
on an Intel Xeon E5-2620 v4 CPU. We depict the results
in Figure 8. Compared to the runtime in raw PANDA (i.e.,
binary translation without tracing), we observe a slowdown
of approximately factor 34. The resulting traces each have

5We have only performed a single run for each test case; the generated
crash images in each run can slightly vary due to nondeterministic guest
execution.

µ±σ [s]
total elapsed process time 83.82± 0.53�

boot 1.63± 0.03�
Crash Image Generator 37.87± 0.33�

cross-failure tracing (heuristic) 2.00± 0.28 ×12�
Tester 43.65± 0.35�

reset to snapshot & load image 0.08± 0.01 ×31�
run dumper command (PANDA) 1.04± 0.12 ×31

Figure 9: Runtimes of the Crash Image Generator & Tester
process when processing the trace from Figure 8.

≈ 304438 events and are each ≈ 11.73 MiB in size (in a
simple textual format; compressed only ≈ 0.15 MiB).

As the Crash Image Generator and Tester run in the same
process in our prototype, we show the execution time of both
combined in Figure 9. 12 crash images at fences are used
as input for the cross-failure heuristic. The tester processes
31 unique crash images that stem from 77 origins (§3.3) and
result in seven unique semantic crash states. We find that the
Crash Image Generator and Tester contribute roughly equally
to the execution time.

With metadata tracing enabled, the runtime of the Tracer
increases significantly to 78.70s± 0.75s, whereas the run-
time of the Crash Image Generator and Tester only increases
slightly to 84.84s± 0.60s. We argue that performance of
metadata tracing mode is not very relevant in practice: Test
cases can be tested without metadata tracing, and if a crash
consistency bug is uncovered, the affected test cases can be re-
run with metadata tracing enabled. Nevertheless, performance
can presumably be significantly improved.

In total, all our test cases from Section 5.2 take approx-
imately 24 minutes to execute sequentially on the NOVA
evaluation target (without metadata tracing). This includes
additional steps such as compressing traces. As test cases can
be analyzed in parallel, the whole testing time can be reduced
to only a few minutes.

7 Discussion

VINTER fares well at finding new bugs. Its testing pipeline
is highly automated and the manual effort required for setup
and interpretation of its results is low. In the context of file
system testing, the Single Final State property has turned out
to be useful, as even if operations are not considered atomic,
this property should hold for most file system operations after
a call to sync. Even in cases where the crash consistency
semantics of a file system operation are not clear, VINTER’s
representation of semantic crash states makes manual vetting
feasible. It has turned out to be useful to test modifying the
file system after recovery as part of the state extraction proce-
dure, as some of the bugs only become visible when such an
operation fails.

USENIX Association 2022 USENIX Annual Technical Conference 943

We find that severe crash consistency bugs can be found
in NVM file systems by only testing primitive file system
operations, with no need for complex interaction between
multiple operations. This is contrary to the bugs discovered by
CrashMonkey [32], which all appear to involve more complex
operation sequences. We see two potential reasons: First, pro-
gramming for NVM with its byte-level access and persistency
semantics is much more complicated than the programming
pattern for traditional file systems, where updated sectors are
first built in DRAM and then transferred to block storage.
Second, the tested file systems are of relatively young age,
and are still research prototypes not aimed at production us-
age (and in case of PMFS, even unmaintained). Testing more
complex operation sequences on our evaluation targets might
yield even more bugs.

8 Conclusion

Crash consistency is difficult to achieve in non-volatile mem-
ory (NVM) software. Existing works on NVM crash consis-
tency testing for kernel software are either inefficient or incom-
prehensive and not automated, and none consider crash con-
sistency and atomicity among entire operations. This makes
existing work unsuitable for comprehensive file system crash
consistency testing.

In this work, we have introduced VINTER, a new approach
to automatic testing of non-volatile memory software. VIN-
TER consists of an automated testing pipeline that traces exe-
cutions of full systems that use NVM, simulates crashes, and
finally tests the resulting crash images for consistency. We
use VINTER to find crash consistency bugs in NVM file sys-
tems, including the state-of-the-art file systems NOVA [49]
and NOVA-Fortis [50]. Our evaluation uncovers several bugs
in all tested file systems, many of them previously unreported.
The bugs lead to issues such as data loss, kernel crashes, and
unwritable files.

To summarize, our approach is general as it is compati-
ble with differents kinds of software including kernel code,
easy to apply as it is largely automated and does not need
code modifications, and has been shown to find new bugs in
existing software.

8.1 Future Work
We lay out possibilities for future work on our subject. We
see several areas for improvement:
Support for persistent caches. Some recent processors en-

sure that all data in the CPU caches is written out
to persistent memory in case of a power failure (e.g.,
eADR [16]). With persistent caches, the programmer no
longer needs to use cache flushes to write out data to
NVM. This greatly reduces the potential for crash con-
sistency bugs, but does not entirely eliminate them. For
example, the NOVA bug we describe in Section 5.3.2

would still occur on an eADR-enabled system. VINTER
could support detecting crash consistency bugs on eADR
systems by considering prefixes of all temporal writes
instead of arbitrary subsets during crash image genera-
tion (§3.3). Choosing subsets of in-flight stores would
however still be applicable to non-temporal writes since
these are weakly-ordered.

Fault injection. Some NVM software including NOVA-
Fortis [50] intends to be resilient against media errors.
VINTER could be extended with fault injection to test
robustness against corruption.

Heuristics. Bug detection or crash image generation heuris-
tics that observe control or data flow such as those pro-
posed by Fu et al. [11] could be adapted to our approach.

Evaluate NVM operating systems. VINTER could not only
be applied to file systems, but also to entire operating
systems targeted for NVM, like Bittman et al.’s Twiz-
zler [2]. Twizzler removes the file system from the OS
interface, and instead allows applications to directly al-
locate NVM.

File system test cases. Our file system evaluation could be
extended by running automatically generated test cases
in a large scale similar to Mohan and Martinez et al.’s
CrashMonkey [32].

Traditional file systems. VINTER could also be extended to
test traditional block-storage-based file systems with-
out NVM support, bringing features such as automatic
atomicity testing over previous work [32]. A generally
applicable approach to achieve this would be virtualizing
a block storage device and recording a trace of writes as
well as flush primitives.

944 2022 USENIX Annual Technical Conference USENIX Association

A Artifact Appendix

Abstract
We provide an artifact containing our prototype implementa-
tion of VINTER as described in Section 4. The artifact further
includes the test cases, configurations, and scripts for repro-
ducing the major parts of our file system analysis (§5) as well
as our broader evaluation (§6).

Scope
We aim to achieve two main goals with the artifact. First, it
allows reproducing the results of this paper. In particular:

• VINTER can find new bugs in file systems and can help
developers with finding the root cause. We provide in-
structions for reproducing Figures 4 to 6 as well as Sec-
tion 5.3.

• VINTER can reproduce previously fixed bugs in NOVA.
We provide instructions for reproducing Section 6.1.

• VINTER’s heuristic is effective at reducing the number of
generated crash images without missing semantic states.
We provide instructions for reproducing Section 6.2.

• VINTER is sufficiently fast for analyzing file systems.
We provide instructions for reproducing Figures 8 and 9.

Second, we provide VINTER for the purpose of analyzing
other file systems, in the hope that it will prove useful in
developing new NVM file systems.

Contents
Our source code repository (located at /home/vinter/
vinter in the virtual machine image) contains the follow-
ing components:

• README.md contains general setup information, and
artifact-evaluation/README.md contains instruc-
tions for reproducing the experiments and launching
a virtual machine where VINTER is preinstalled.

• vinter_python/: The original implementation of VIN-
TER that is used for the analysis in this paper.

– pmemtrace.py: The Tracer component.
– trace2img.py: The Crash Image Generator and

Tester components.
– trace-and-analyze.sh: Main script for running

the full testing pipeline.
– report-results.py: Script for analyzing output

from the testing pipeline.
• vinter_rust/: A reimplementation of VINTER in Rust,

with the intention of improved performance and to pro-
vide a clean base for future extensions.

– vinter_trace/: The Tracer component.
– vinter_trace2img/: The Crash Image Genera-

tor and Tester components. Main entry point for
running the full testing pipeline.

• fs-testing/: Everything related to the analysis of file
systems.

– scripts/: Helper scripts, virtual machine (VM)
definitions, and test case definitions.

– initramfs/: BusyBox-based user space of the test
VMs.

– fs-dump/: File system state extraction program.
– linux/: Configurations of the Linux kernels we

test.
• panda/: The underlying full system emulator based on

upstream PANDA [9] with patches applied.

Hosting
VINTER’s source code is available on GitHub at
https://github.com/KIT-OSGroup/vinter
on the branch atc22-artifact,
commit 4b7e5651e820ec9ebbe2a7321e28b2748103ab74.

Additionally, we provide an archive containing a virtual
machine image that comes installed with VINTER and all its
dependencies at doi:10.5281/zenodo.6626098. The archive
contains instructions for using the virtual machine image.

USENIX Association 2022 USENIX Annual Technical Conference 945

https://github.com/KIT-OSGroup/vinter
https://doi.org/10.5281/zenodo.6626098

References

[1] Fabrice Bellard. “QEMU, a Fast and Portable Dy-
namic Translator.” In: 2005 USENIX Annual Tech-
nical Conference (USENIX ATC 05). Anaheim, CA:
USENIX Association, Apr. 2005. URL: https : / /
www . usenix . org / conference / 2005 - usenix -
annual-technical-conference/qemu-fast-and-
portable-dynamic-translator.

[2] Daniel Bittman, Peter Alvaro, Pankaj Mehra, Darrell
D. E. Long, and Ethan L. Miller. “Twizzler: A Data-
Centric OS for Non-Volatile Memory.” In: ACM Trans.
Storage 17.2 (June 2021). ISSN: 1553-3077. DOI: 10.
1145/3454129.

[3] James Bornholt, Antoine Kaufmann, Jialin Li, Arvind
Krishnamurthy, Emina Torlak, and Xi Wang. “Specify-
ing and Checking File System Crash-Consistency Mod-
els.” In: Proceedings of the Twenty-First International
Conference on Architectural Support for Programming
Languages and Operating Systems. ASPLOS ’16. At-
lanta, Georgia, USA: Association for Computing Ma-
chinery, 2016, pp. 83–98. ISBN: 978-1-4503-4091-5.
DOI: 10.1145/2872362.2872406.

[4] Youmin Chen, Youyou Lu, Fan Yang, Qing Wang, Yang
Wang, and Jiwu Shu. “FlatStore: An Efficient Log-
Structured Key-Value Storage Engine for Persistent
Memory.” In: Proceedings of the Twenty-Fifth Interna-
tional Conference on Architectural Support for Pro-
gramming Languages and Operating Systems. AS-
PLOS ’20. Lausanne, Switzerland: Association for
Computing Machinery, 2020, pp. 1077–1091. ISBN:
9781450371025. DOI: 10.1145/3373376.3378515.

[5] Jeremy Condit, Edmund B. Nightingale, Christo-
pher Frost, Engin Ipek, Benjamin Lee, Doug Burger,
and Derrick Coetzee. “Better I/O through Byte-
Addressable, Persistent Memory.” In: Proceedings of
the ACM SIGOPS 22nd Symposium on Operating
Systems Principles. SOSP ’09. Big Sky, Montana,
USA: Association for Computing Machinery, 2009,
pp. 133–146. ISBN: 978-1-60558-752-3. DOI: 10 .
1145/1629575.1629589.

[6] Luke Craig, Andrew Fasano, Tiemoko Ballo, Tim Leek,
Brendan Dolan-Gavitt, and William Robertson. “Py-
PANDA: Taming the PANDAmonium of Whole Sys-
tem Dynamic Analysis.” In: Workshop on Binary Anal-
ysis Research (BAR). Vol. 2021. 2021, p. 21.

[7] John Derrick, Simon Doherty, Brijesh Dongol, Ger-
hard Schellhorn, and Heike Wehrheim. “Verifying
Correctness of Persistent Concurrent Data Structures.”
In: Formal Methods – The Next 30 Years. Ed. by
Maurice H. ter Beek, Annabelle McIver, and José
N. Oliveira. Cham: Springer International Publishing,
2019, pp. 179–195. ISBN: 978-3-030-30942-8.

[8] Bang Di, Jiawen Liu, Hao Chen, and Dong Li. “Fast,
Flexible, and Comprehensive Bug Detection for Persis-
tent Memory Programs.” In: Proceedings of the 26th
ACM International Conference on Architectural Sup-
port for Programming Languages and Operating Sys-
tems. ASPLOS 2021. Virtual, USA: Association for
Computing Machinery, 2021, pp. 503–516. ISBN: 978-
1-4503-8317-2. DOI: 10.1145/3445814.3446744.

[9] Brendan Dolan-Gavitt, Josh Hodosh, Patrick Hulin,
Tim Leek, and Ryan Whelan. “Repeatable Reverse En-
gineering with PANDA.” In: Proceedings of the 5th
Program Protection and Reverse Engineering Work-
shop. PPREW-5. Los Angeles, CA, USA: Association
for Computing Machinery, 2015. ISBN: 978-1-4503-
3642-0. DOI: 10.1145/2843859.2843867.

[10] Subramanya R. Dulloor, Sanjay Kumar, Anil Keshava-
murthy, Philip Lantz, Dheeraj Reddy, Rajesh Sankaran,
and Jeff Jackson. “System Software for Persistent
Memory.” In: Proceedings of the Ninth European Con-
ference on Computer Systems. EuroSys ’14. Amster-
dam, The Netherlands: Association for Computing Ma-
chinery, 2014. ISBN: 978-1-4503-2704-6. DOI: 10 .
1145/2592798.2592814.

[11] Xinwei Fu, Wook-Hee Kim, Ajay Paddayuru Shree-
pathi, Mohannad Ismail, Sunny Wadkar, Dongyoon
Lee, and Changwoo Min. “Witcher: Systematic Crash
Consistency Testing for Non-Volatile Memory Key-
Value Stores.” In: Proceedings of the ACM SIGOPS
28th Symposium on Operating Systems Principles.
SOSP ’21. Virtual Event, Germany: Association for
Computing Machinery, 2021, pp. 100–115. ISBN:
9781450387095. DOI: 10.1145/3477132.3483556.

[12] Vaibhav Gogte, William Wang, Stephan Diestelhorst,
Peter M. Chen, Satish Narayanasamy, and Thomas
F. Wenisch. “Relaxed Persist Ordering Using Strand
Persistency.” In: 2020 ACM/IEEE 47th Annual Inter-
national Symposium on Computer Architecture (ISCA).
2020, pp. 652–665. DOI: 10.1109/ISCA45697.2020.
00060.

[13] Morteza Hoseinzadeh and Steven Swanson. “Corun-
dum: Statically-Enforced Persistent Memory Safety.”
In: Proceedings of the 26th ACM International Con-
ference on Architectural Support for Programming
Languages and Operating Systems. ASPLOS 2021.
Virtual, USA: Association for Computing Machinery,
2021, pp. 429–442. ISBN: 978-1-4503-8317-2. DOI:
10.1145/3445814.3446710.

[14] Qingda Hu, Jinglei Ren, Anirudh Badam, Jiwu Shu,
and Thomas Moscibroda. “Log-Structured Non-
Volatile Main Memory.” In: 2017 USENIX Annual
Technical Conference (USENIX ATC 17). Santa Clara,
CA: USENIX Association, July 2017, pp. 703–717.

946 2022 USENIX Annual Technical Conference USENIX Association

https://www.usenix.org/conference/2005-usenix-annual-technical-conference/qemu-fast-and-portable-dynamic-translator
https://www.usenix.org/conference/2005-usenix-annual-technical-conference/qemu-fast-and-portable-dynamic-translator
https://www.usenix.org/conference/2005-usenix-annual-technical-conference/qemu-fast-and-portable-dynamic-translator
https://www.usenix.org/conference/2005-usenix-annual-technical-conference/qemu-fast-and-portable-dynamic-translator
https://doi.org/10.1145/3454129
https://doi.org/10.1145/3454129
https://doi.org/10.1145/2872362.2872406
https://doi.org/10.1145/3373376.3378515
https://doi.org/10.1145/1629575.1629589
https://doi.org/10.1145/1629575.1629589
https://doi.org/10.1145/3445814.3446744
https://doi.org/10.1145/2843859.2843867
https://doi.org/10.1145/2592798.2592814
https://doi.org/10.1145/2592798.2592814
https://doi.org/10.1145/3477132.3483556
https://doi.org/10.1109/ISCA45697.2020.00060
https://doi.org/10.1109/ISCA45697.2020.00060
https://doi.org/10.1145/3445814.3446710

ISBN: 978-1-931971-38-6. URL: https : / / www .
usenix . org / conference / atc17 / technical -
sessions/presentation/hu.

[15] IEEE Std 1003.1-2017 (revision of IEEE Std 1003.1-
2008) – IEEE Standard for Information Technology–
Portable Operating System Interface (POSIX(®)) Base
Specifications, Issue 7. IEEE Computer Society and
The Open Group.

[16] Intel. eADR: New Opportunities for Persistent Mem-
ory Applications. 2021. URL: https://www.intel.
com/content/www/us/en/developer/articles/
technical / eadr - new - opportunities - for -
persistent-memory-applications.html.

[17] Intel. Intel 64 and IA-32 Architectures Software Devel-
oper’s Manual. Apr. 2021.

[18] Joseph Izraelevitz, Hammurabi Mendes, and Michael L.
Scott. “Linearizability of Persistent Memory Objects
Under a Full-System-Crash Failure Model.” In: Dis-
tributed Computing. Ed. by Cyril Gavoille and David
Ilcinkas. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2016, pp. 313–327. ISBN: 978-3-662-53426-7.

[19] Shehbaz Jaffer, Stathis Maneas, Andy Hwang, and
Bianca Schroeder. “Evaluating File System Reliabil-
ity on Solid State Drives.” In: 2019 USENIX Annual
Technical Conference (USENIX ATC 19). Renton, WA:
USENIX Association, July 2019, pp. 783–798. ISBN:
978-1-939133-03-8. URL: https://www.usenix.
org/conference/atc19/presentation/jaffer.

[20] Jungi Jeong and Changhee Jung. “PMEM-Spec: Per-
sistent Memory Speculation (Strict Persistency Can
Trump Relaxed Persistency).” In: Proceedings of the
26th ACM International Conference on Architectural
Support for Programming Languages and Operating
Systems. ASPLOS 2021. Virtual, USA: Association for
Computing Machinery, 2021, pp. 517–529. ISBN: 978-
1-4503-8317-2. DOI: 10.1145/3445814.3446698.

[21] Yanyan Jiang, Haicheng Chen, Feng Qin, Chang Xu,
Xiaoxing Ma, and Jian Lu. “Crash Consistency Vali-
dation Made Easy.” In: Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Founda-
tions of Software Engineering. FSE 2016. Seattle, WA,
USA: Association for Computing Machinery, 2016,
pp. 133–143. ISBN: 9781450342186. DOI: 10.1145/
2950290.2950327.

[22] Arpit Joshi, Vijay Nagarajan, Marcelo Cintra, and
Stratis Viglas. “Efficient persist barriers for multicores.”
In: 2015 48th Annual IEEE/ACM International Sympo-
sium on Microarchitecture (MICRO). 2015, pp. 660–
671. DOI: 10.1145/2830772.2830805.

[23] Rohan Kadekodi, Se Kwon Lee, Sanidhya Kashyap,
Taesoo Kim, Aasheesh Kolli, and Vijay Chidambaram.
“SplitFS: Reducing Software Overhead in File Systems
for Persistent Memory.” In: Proceedings of the 27th
ACM Symposium on Operating Systems Principles.
SOSP ’19. Huntsville, Ontario, Canada: Association
for Computing Machinery, 2019, pp. 494–508. ISBN:
9781450368735. DOI: 10.1145/3341301.3359631.

[24] Olzhas Kaiyrakhmet, Songyi Lee, Beomseok Nam,
Sam H. Noh, and Young-ri Choi. “SLM-DB: Single-
Level Key-Value Store with Persistent Memory.” In:
17th USENIX Conference on File and Storage Tech-
nologies (FAST 19). Boston, MA: USENIX Associa-
tion, Feb. 2019, pp. 191–205. ISBN: 978-1-939133-09-
0. URL: https://www.usenix.org/conference/
fast19/presentation/kaiyrakhmet.

[25] Seulbae Kim, Meng Xu, Sanidhya Kashyap, Jungyeon
Yoon, Wen Xu, and Taesoo Kim. “Finding Seman-
tic Bugs in File Systems with an Extensible Fuzzing
Framework.” In: Proceedings of the 27th ACM Sym-
posium on Operating Systems Principles. SOSP
’19. Huntsville, Ontario, Canada: Association for
Computing Machinery, 2019, pp. 147–161. ISBN:
9781450368735. DOI: 10.1145/3341301.3359662.

[26] Youngjin Kwon, Henrique Fingler, Tyler Hunt, Si-
mon Peter, Emmett Witchel, and Thomas Anderson.
“Strata: A Cross Media File System.” In: Proceed-
ings of the 26th Symposium on Operating Systems
Principles. SOSP ’17. Shanghai, China: Association
for Computing Machinery, 2017, pp. 460–477. ISBN:
9781450350853. DOI: 10.1145/3132747.3132770.

[27] Philip Lantz, Subramanya Dulloor, Sanjay Kumar, Ra-
jesh Sankaran, and Jeff Jackson. “Yat: A Validation
Framework for Persistent Memory Software.” In: 2014
USENIX Annual Technical Conference (USENIX ATC
14). Philadelphia, PA: USENIX Association, June
2014, pp. 433–438. ISBN: 978-1-931971-10-2. URL:
https://www.usenix.org/conference/atc14/
technical-sessions/presentation/lantz.

[28] Sihang Liu, Suyash Mahar, Baishakhi Ray, and Samira
Khan. “PMFuzz: Test Case Generation for Persistent
Memory Programs.” In: Proceedings of the 26th ACM
International Conference on Architectural Support for
Programming Languages and Operating Systems. AS-
PLOS 2021. Virtual, USA: Association for Comput-
ing Machinery, 2021, pp. 487–502. ISBN: 978-1-4503-
8317-2. DOI: 10.1145/3445814.3446691.

[29] Sihang Liu, Korakit Seemakhupt, Yizhou Wei, Thomas
Wenisch, Aasheesh Kolli, and Samira Khan. “Cross-
Failure Bug Detection in Persistent Memory Programs.”
In: Proceedings of the Twenty-Fifth International Con-
ference on Architectural Support for Programming

USENIX Association 2022 USENIX Annual Technical Conference 947

https://www.usenix.org/conference/atc17/technical-sessions/presentation/hu
https://www.usenix.org/conference/atc17/technical-sessions/presentation/hu
https://www.usenix.org/conference/atc17/technical-sessions/presentation/hu
https://www.intel.com/content/www/us/en/developer/articles/technical/eadr-new-opportunities-for-persistent-memory-applications.html
https://www.intel.com/content/www/us/en/developer/articles/technical/eadr-new-opportunities-for-persistent-memory-applications.html
https://www.intel.com/content/www/us/en/developer/articles/technical/eadr-new-opportunities-for-persistent-memory-applications.html
https://www.intel.com/content/www/us/en/developer/articles/technical/eadr-new-opportunities-for-persistent-memory-applications.html
https://www.usenix.org/conference/atc19/presentation/jaffer
https://www.usenix.org/conference/atc19/presentation/jaffer
https://doi.org/10.1145/3445814.3446698
https://doi.org/10.1145/2950290.2950327
https://doi.org/10.1145/2950290.2950327
https://doi.org/10.1145/2830772.2830805
https://doi.org/10.1145/3341301.3359631
https://www.usenix.org/conference/fast19/presentation/kaiyrakhmet
https://www.usenix.org/conference/fast19/presentation/kaiyrakhmet
https://doi.org/10.1145/3341301.3359662
https://doi.org/10.1145/3132747.3132770
https://www.usenix.org/conference/atc14/technical-sessions/presentation/lantz
https://www.usenix.org/conference/atc14/technical-sessions/presentation/lantz
https://doi.org/10.1145/3445814.3446691

Languages and Operating Systems. ASPLOS ’20. Lau-
sanne, Switzerland: Association for Computing Ma-
chinery, 2020, pp. 1187–1202. ISBN: 978-1-4503-7102-
5. DOI: 10.1145/3373376.3378452.

[30] Sihang Liu, Yizhou Wei, Jishen Zhao, Aasheesh Kolli,
and Samira Khan. “PMTest: A Fast and Flexible Test-
ing Framework for Persistent Memory Programs.” In:
Proceedings of the Twenty-Fourth International Con-
ference on Architectural Support for Programming
Languages and Operating Systems. ASPLOS ’19.
Providence, RI, USA: Association for Computing Ma-
chinery, 2019, pp. 411–425. ISBN: 978-1-4503-6240-5.
DOI: 10.1145/3297858.3304015.

[31] C. Mohan, Don Haderle, Bruce Lindsay, Hamid Pi-
rahesh, and Peter Schwarz. “ARIES: A Transaction
Recovery Method Supporting Fine-Granularity Lock-
ing and Partial Rollbacks Using Write-Ahead Log-
ging.” In: ACM Trans. Database Syst. 17.1 (Mar. 1992),
pp. 94–162. ISSN: 0362-5915. DOI: 10.1145/128765.
128770.

[32] Jayashree Mohan, Ashlie Martinez, Soujanya Ponna-
palli, Pandian Raju, and Vijay Chidambaram. “Crash-
Monkey and ACE: Systematically Testing File-System
Crash Consistency.” In: ACM Trans. Storage 15.2 (Apr.
2019). ISSN: 1553-3077. DOI: 10.1145/3320275.

[33] Ian Neal, Ben Reeves, Ben Stoler, Andrew Quinn,
Youngjin Kwon, Simon Peter, and Baris Kasikci. “AG-
AMOTTO: How Persistent is your Persistent Memory
Application?” In: 14th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI
20). USENIX Association, Nov. 2020, pp. 1047–1064.
ISBN: 978-1-939133-19-9. URL: https : / / www .
usenix.org/conference/osdi20/presentation/
neal.

[34] Yuanjiang Ni, Jishen Zhao, Daniel Bittman, and Ethan
Miller. “Reducing NVM Writes with Optimized
Shadow Paging.” In: 10th USENIX Workshop on
Hot Topics in Storage and File Systems (HotStorage
18). Boston, MA: USENIX Association, July 2018.
URL: https : / / www . usenix . org / conference /
hotstorage18/presentation/ni.

[35] Steven Pelley, Peter M. Chen, and Thomas F. Wenisch.
“Memory persistency.” In: 2014 ACM/IEEE 41st Inter-
national Symposium on Computer Architecture (ISCA).
2014, pp. 265–276. DOI: 10 . 1109 / ISCA . 2014 .
6853222.

[36] Thanumalayan Sankaranarayana Pillai, Vijay
Chidambaram, Ramnatthan Alagappan, Samer Al-
Kiswany, Andrea C. Arpaci-Dusseau, and Remzi
H. Arpaci-Dusseau. “All File Systems Are Not
Created Equal: On the Complexity of Crafting
Crash-Consistent Applications.” In: Proceedings of

the 11th USENIX Conference on Operating Systems
Design and Implementation. OSDI’14. Broomfield,
CO: USENIX Association, 2014, pp. 433–448. ISBN:
9781931971164.

[37] Azalea Raad, John Wickerson, Gil Neiger, and Viktor
Vafeiadis. “Persistency Semantics of the Intel-X86 Ar-
chitecture.” In: Proc. ACM Program. Lang. 4.POPL
(Dec. 2019). DOI: 10.1145/3371079.

[38] Anthony Rebello, Yuvraj Patel, Ramnatthan Alagap-
pan, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. “Can Applications Recover from fsync Fail-
ures?” In: 2020 USENIX Annual Technical Confer-
ence (USENIX ATC 20). USENIX Association, July
2020, pp. 753–767. ISBN: 978-1-939133-14-4. URL:
https://www.usenix.org/conference/atc20/
presentation/rebello.

[39] Jinglei Ren, Qingda Hu, Samira Khan, and Thomas
Moscibroda. “Programming for Non-Volatile Main
Memory Is Hard.” In: Proceedings of the 8th Asia-
Pacific Workshop on Systems. APSys ’17. Mumbai,
India: Association for Computing Machinery, 2017.
ISBN: 978-1-4503-5197-3. DOI: 10.1145/3124680.
3124729.

[40] Steve Scargall. “Introduction to Persistent Memory
Programming.” In: Programming Persistent Memory:
A Comprehensive Guide for Developers. Berkeley, CA:
Apress, 2020. ISBN: 978-1-4842-4932-1. DOI: 10 .
1007/978-1-4842-4932-1.

[41] Margo Seltzer, Virendra Marathe, and Steve Byan. “An
NVM Carol: Visions of NVM Past, Present, and Fu-
ture.” In: 2018 IEEE 34th International Conference
on Data Engineering (ICDE). 2018, pp. 15–23. DOI:
10.1109/ICDE.2018.00011.

[42] Peter Sewell, Susmit Sarkar, Scott Owens, Francesco
Zappa Nardelli, and Magnus O. Myreen. “X86-TSO:
A Rigorous and Usable Programmer’s Model for X86
Multiprocessors.” In: Commun. ACM 53.7 (July 2010),
pp. 89–97. ISSN: 0001-0782. DOI: 10.1145/1785414.
1785443.

[43] Jim Smith and Ravi Nair. Virtual Machines: Versa-
tile Platforms for Systems and Processes (The Morgan
Kaufmann Series in Computer Architecture and De-
sign). San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 2005. ISBN: 1558609105.

[44] Denys Vlasenko. BusyBox. URL: https://busybox.
net (visited on 2022-01-10).

[45] Haris Volos, Sanketh Nalli, Sankarlingam Panneer-
selvam, Venkatanathan Varadarajan, Prashant Saxena,
and Michael M. Swift. “Aerie: Flexible File-System
Interfaces to Storage-Class Memory.” In: Proceed-
ings of the Ninth European Conference on Computer

948 2022 USENIX Annual Technical Conference USENIX Association

https://doi.org/10.1145/3373376.3378452
https://doi.org/10.1145/3297858.3304015
https://doi.org/10.1145/128765.128770
https://doi.org/10.1145/128765.128770
https://doi.org/10.1145/3320275
https://www.usenix.org/conference/osdi20/presentation/neal
https://www.usenix.org/conference/osdi20/presentation/neal
https://www.usenix.org/conference/osdi20/presentation/neal
https://www.usenix.org/conference/hotstorage18/presentation/ni
https://www.usenix.org/conference/hotstorage18/presentation/ni
https://doi.org/10.1109/ISCA.2014.6853222
https://doi.org/10.1109/ISCA.2014.6853222
https://doi.org/10.1145/3371079
https://www.usenix.org/conference/atc20/presentation/rebello
https://www.usenix.org/conference/atc20/presentation/rebello
https://doi.org/10.1145/3124680.3124729
https://doi.org/10.1145/3124680.3124729
https://doi.org/10.1007/978-1-4842-4932-1
https://doi.org/10.1007/978-1-4842-4932-1
https://doi.org/10.1109/ICDE.2018.00011
https://doi.org/10.1145/1785414.1785443
https://doi.org/10.1145/1785414.1785443
https://busybox.net
https://busybox.net

Systems. EuroSys ’14. Amsterdam, The Netherlands:
Association for Computing Machinery, 2014. ISBN:
9781450327046. DOI: 10.1145/2592798.2592810.

[46] Haris Volos, Andres Jaan Tack, and Michael M. Swift.
“Mnemosyne: Lightweight Persistent Memory.” In:
Proceedings of the Sixteenth International Conference
on Architectural Support for Programming Languages
and Operating Systems. ASPLOS XVI. Newport
Beach, California, USA: Association for Computing
Machinery, 2011, pp. 91–104. ISBN: 9781450302661.
DOI: 10.1145/1950365.1950379.

[47] Hu Wan, Youyou Lu, Yuanchao Xu, and Jiwu Shu.
“Empirical study of redo and undo logging in persistent
memory.” In: 2016 5th Non-Volatile Memory Systems
and Applications Symposium (NVMSA). 2016, pp. 1–6.
DOI: 10.1109/NVMSA.2016.7547178.

[48] Xiaojian Wu and A. L. Narasimha Reddy. “SCMFS:
A file system for Storage Class Memory.” In: SC
’11: Proceedings of 2011 International Conference for
High Performance Computing, Networking, Storage
and Analysis. 2011, pp. 1–11.

[49] Jian Xu and Steven Swanson. “NOVA: A Log-
structured File System for Hybrid Volatile/Non-volatile
Main Memories.” In: 14th USENIX Conference on File
and Storage Technologies (FAST 16). Santa Clara, CA:
USENIX Association, Feb. 2016, pp. 323–338. ISBN:
978-1-931971-28-7. URL: https://www.usenix.
org/conference/fast16/technical-sessions/
presentation/xu.

[50] Jian Xu, Lu Zhang, Amirsaman Memaripour, Akshatha
Gangadharaiah, Amit Borase, Tamires Brito Da Silva,
Steven Swanson, and Andy Rudoff. “NOVA-Fortis:
A Fault-Tolerant Non-Volatile Main Memory File
System.” In: Proceedings of the 26th Symposium on
Operating Systems Principles. SOSP ’17. Shanghai,
China: Association for Computing Machinery, 2017,
pp. 478–496. ISBN: 978-1-4503-5085-3. DOI: 10 .
1145/3132747.3132761.

[51] Jian Yang, Joseph Izraelevitz, and Steven Swanson.
“Orion: A Distributed File System for Non-Volatile
Main Memory and RDMA-Capable Networks.” In:
17th USENIX Conference on File and Storage Tech-
nologies (FAST 19). Boston, MA: USENIX Associa-
tion, Feb. 2019, pp. 221–234. ISBN: 978-1-939133-09-
0. URL: https://www.usenix.org/conference/
fast19/presentation/yang.

[52] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph
Izraelevitz, and Steve Swanson. “An Empirical Guide
to the Behavior and Use of Scalable Persistent Mem-
ory.” In: 18th USENIX Conference on File and Storage
Technologies (FAST 20). Santa Clara, CA: USENIX

Association, Feb. 2020, pp. 169–182. ISBN: 978-1-
939133-12-0. URL: https: //www .usenix.org /
conference/fast20/presentation/yang.

[53] Junfeng Yang, Can Sar, and Dawson Engler. “EX-
PLODE: A Lightweight, General System for Find-
ing Serious Storage System Errors.” In: 7th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 06). Seattle, WA: USENIX Associ-
ation, Nov. 2006. URL: https://www.usenix.org/
conference / osdi - 06 / explode - lightweight -
general - system - finding - serious - storage -
system-errors.

[54] Takeshi Yoshimura, Tatsuhiro Chiba, and Hiroshi Horii.
“EvFS: User-level, Event-Driven File System for Non-
Volatile Memory.” In: 11th USENIX Workshop on
Hot Topics in Storage and File Systems (HotStorage
19). Renton, WA: USENIX Association, July 2019.
URL: https : / / www . usenix . org / conference /
hotstorage19/presentation/yoshimura.

[55] Baoquan Zhang and David H. C. Du. “NVLSM: A Per-
sistent Memory Key-Value Store Using Log-Structured
Merge Tree with Accumulative Compaction.” In: ACM
Trans. Storage 17.3 (Aug. 2021). ISSN: 1553-3077.
DOI: 10.1145/3453300.

[56] Shengan Zheng, Morteza Hoseinzadeh, and Steven
Swanson. “Ziggurat: A Tiered File System for Non-
Volatile Main Memories and Disks.” In: 17th USENIX
Conference on File and Storage Technologies (FAST
19). Boston, MA: USENIX Association, Feb. 2019,
pp. 207–219. ISBN: 978-1-939133-09-0. URL: https:
/ / www . usenix . org / conference / fast19 /
presentation/zheng.

USENIX Association 2022 USENIX Annual Technical Conference 949

https://doi.org/10.1145/2592798.2592810
https://doi.org/10.1145/1950365.1950379
https://doi.org/10.1109/NVMSA.2016.7547178
https://www.usenix.org/conference/fast16/technical-sessions/presentation/xu
https://www.usenix.org/conference/fast16/technical-sessions/presentation/xu
https://www.usenix.org/conference/fast16/technical-sessions/presentation/xu
https://doi.org/10.1145/3132747.3132761
https://doi.org/10.1145/3132747.3132761
https://www.usenix.org/conference/fast19/presentation/yang
https://www.usenix.org/conference/fast19/presentation/yang
https://www.usenix.org/conference/fast20/presentation/yang
https://www.usenix.org/conference/fast20/presentation/yang
https://www.usenix.org/conference/osdi-06/explode-lightweight-general-system-finding-serious-storage-system-errors
https://www.usenix.org/conference/osdi-06/explode-lightweight-general-system-finding-serious-storage-system-errors
https://www.usenix.org/conference/osdi-06/explode-lightweight-general-system-finding-serious-storage-system-errors
https://www.usenix.org/conference/osdi-06/explode-lightweight-general-system-finding-serious-storage-system-errors
https://www.usenix.org/conference/hotstorage19/presentation/yoshimura
https://www.usenix.org/conference/hotstorage19/presentation/yoshimura
https://doi.org/10.1145/3453300
https://www.usenix.org/conference/fast19/presentation/zheng
https://www.usenix.org/conference/fast19/presentation/zheng
https://www.usenix.org/conference/fast19/presentation/zheng

	1 Introduction
	2 Background and Related Work
	2.1 Memory Persistency Models
	2.2 NVM Crash Consistency
	2.3 NVM Crash Consistency Testing
	2.4 File System Crash Consistency

	3 Approach
	3.1 Overview
	3.2 Tracer
	3.3 Crash Image Generator
	3.4 Tester
	3.4.1 Crash Consistency Definitions
	3.4.2 Testing Crash Consistency Properties

	3.5 Bug Analysis

	4 Implementation
	5 File System Crash Consistency
	5.1 File System Setup
	5.2 Test Cases and Results
	5.3 Analysis
	5.3.1 Incompletely Persisted Data
	5.3.2 Data Loss During Rename

	6 Evaluation
	6.1 Completeness
	6.2 Effectiveness of Heuristic
	6.3 Performance

	7 Discussion
	8 Conclusion
	8.1 Future Work

	A Artifact Appendix
	References

