
This paper is included in the Proceedings of the
2022 USENIX Annual Technical Conference.

July 11–13, 2022 • Carlsbad, CA, USA
978-1-939133-29-8

Open access to the Proceedings of the
2022 USENIX Annual Technical Conference

is sponsored by

Pacman: An Efficient Compaction Approach for Log-
Structured Key-Value Store on Persistent Memory

Jing Wang, Youyou Lu, Qing Wang, and Minhui Xie, Tsinghua University;
Keji Huang, Huawei Technologies Co., Ltd; Jiwu Shu, Tsinghua University

https://www.usenix.org/conference/atc22/presentation/wang-jing

Pacman: An Efficient Compaction Approach for Log-Structured Key-Value Store
on Persistent Memory

Jing Wang† Youyou Lu† Qing Wang† Minhui Xie† Keji Huang‡ Jiwu Shu∗†

†Department of Computer Science and Technology, BNRist, Tsinghua University
‡Huawei Technologies Co., Ltd

Abstract
Recent persistent memory (PM) key-value (KV) stores adopt
the log-structured approach to reap PM’s full potential. How-
ever, they fail to sustain high performance at high capacity uti-
lization due to inefficient compaction. The inefficiency results
from the unawareness of PM’s characteristics. This paper pro-
poses Pacman, an efficient PM-aware compaction approach
for log-structured KV stores on PM. Pacman (1) offloads ref-
erence search during compaction to service threads, so as to
mitigate the onerous index traversal overhead, (2) leverages
tagged pointer and DRAM-resident compaction information
to avoid excessive PM accesses introduced by garbage collec-
tion, (3) redesigns the compaction pipeline based on the PM
peculiarities to lower the persistence overhead, and (4) sepa-
rates hot and cold objects in a lightweight manner to reduce
PM data copying in compaction. We apply Pacman to state-
of-the-art PM-based log-structured KV stores and evaluate
Pacman using various benchmarks. Our evaluations show that
Pacman curtails the performance degradation at high capac-
ity utilization, increases the compaction bandwidth by 2-4×,
and boosts the performance of the state-of-the-art systems by
1.5-1.8× under write-intensive workloads.

1 Introduction

The log-structured approach has been adopted in key-value
(KV) stores on PM [8, 12, 30, 44] for benefits like high capac-
ity utilization (low fragmentation), small device-level write
amplification on PM, and low failure atomicity overhead. De-
spite having these benefits, the log-structured approach needs
to reclaim free space (i.e., garbage collection or compaction)
by dedicated background threads (called cleaners), which
contributes to the major bottleneck, especially under a high
capacity utilization [39].

Over-provisioning can alleviate this problem but is not
cost-efficient. Datacenters place more emphasis on space
utilization in recent years [15] and try hard to fully utilize their
storage to reduce the total cost of ownership (TCO) [40]. Thus,
∗Jiwu Shu is the corresponding author (shujw@tsinghua.edu.cn).

it is important for storage systems to keep high performance
under high space utilization, especially for PM that has a
much higher cost than traditional storage devices.

The compaction overhead is already severe in DRAM-
based log-structured KV stores. For example, RAMCloud’s
throughput could drop by up to 50% at high capacity uti-
lization [39]. Nibble, a concurrent log-structured KV store,
enables 8 compaction threads to carry out the compaction
work per socket which has only 15 cores; even so, its through-
put drops to nearly a quarter in dynamic workloads [35].

Worse still, we observe that PM’s idiosyncrasies exacer-
bate the bottleneck of compaction. Our evaluation on state-of-
the-art PM-based log-structured KV stores1 (including Flat-
Store [12] and Viper [8]) shows that their performance drops
significantly at high capacity utilization. With abundant CPU
resources for compaction (foreground thread count to back-
ground cleaner thread count is 3:1), when the capacity utiliza-
tion increases from 50% to 80%, the system throughput drops
by up to 75% under write-intensive workloads. Unfortunately,
simply adding more CPU resources for compaction is inef-
ficient, because the performance of PM does not scale well
with high thread count [46]; in our experiment, the decline is
still up to 60% even with doubling cleaner threads.

We analyze that there are four deficiencies in the conven-
tional compaction approaches of these KV stores accounting
for the performance degradation. First, after copying valid
objects from the log segment being reclaimed, cleaners need
to update object references in the index, which incurs a huge
overhead, especially when the index resides on PM due to
PM’s high access latency (3× of DRAM in terms of random
read [46]). Second, service threads (i.e., threads performing
user requests, such as Get and Put) generate quantities of
small random PM accesses for compaction (e.g., marking
deleted flags). These small random accesses result in I/O am-
plification of PM, wasting PM’s limited bandwidth (1/3 and
1/6 of DRAM in terms of read and write, respectively [46]).
Third, cleaners need to perform many expensive persistence

1Note that this paper targets PM-based log-structured KV stores but not
LSM-tree-based KV stores.

USENIX Association 2022 USENIX Annual Technical Conference 773

instructions to guarantee crash consistency. Fourth, excessive
data copying in compaction contends limited PM bandwidth
with service threads. All these deficiencies boil down to un-
awareness of PM’s characteristics.

To solve the problems above, this work proposes Pacman, an
efficient PM-aware compaction approach for log-structured
KV stores on PM. Pacman comprises a series of techniques
to improve the compaction efficiency of log-structured KV
stores on PM. ➀ Pacman introduces a technique called short-
cut, which offloads reference search operations during com-
paction to service threads. Therefore cleaners can locate and
update references without traversing the index. ➁ Pacman
reduces excessive PM random accesses. Specifically, Pacman
leverages tagged pointer to reduce high-latency PM reads,
and stores frequently-accessed metadata in DRAM to avoid
small random PM writes. ➂ Pacman redesigns the compaction
pipeline in a batch pattern and leverages several optimizations
according to the characteristics of PM, which accelerates the
compaction and reduces the persistence overhead. ➃ Pacman
adopts a lightweight hot-cold separation method to reduce
the amount of valid data copying on PM and corresponding
reference updates. Consequently, Pacman boosts compaction
efficiency, decreases CPU resources for compaction, and en-
hances system performance at high capacity utilization.

We apply Pacman to state-of-the-art PM-based log-
structured KV stores, FlatStore [12] with different indexes and
Viper [8], and evaluate Pacman using a variety of benchmarks.
Our evaluation shows Pacman enhances the compaction band-
width by up to 4× and system performance by 2.4-4.6× under
write workloads at high capacity utilization. Besides, Pacman
has nearly no side-effects under read-intensive workloads and
has little overhead on recovery.

In summary, this paper makes the following contributions:

• We analyze the deficiencies of existing compaction ap-
proaches for log-structured KV stores on PM.
• We propose Pacman, an efficient PM-aware compaction

approach for PM-based log-structured KV stores, which
enables them to achieve high performance even at high
capacity utilization.
• We apply Pacman to state-of-the-art PM-based log-

structured KV stores and conduct a series of experiments
to show the efficiency of Pacman.

2 Background and Motivation

2.1 Log-Structured KV Stores on PM
Benefits of the log-structured approach on PM. The log-
structured approach has been adopted by state-of-the-art KV
stores on PM [8, 12, 30, 44] for the following benefits. First,
a log-structured approach to memory management supports
high capacity utilization (i.e., the percentage of space used by
alive data) of 80-90%, which is unfeasible for non-copying
allocators having great memory fragmentation [39]. Second,

D
RA

M
 /

PM
P

M

Index

Core 0

append …

Free SegmentsUsed Segments

free valid garbage

Core 1

append

Core N

append

Figure 1: Overview of a log-structured KV store.

due to the mismatch of access granularities between cache
lines and PM media (64 bytes vs. 256 bytes of Optane DIMM,
the only available PM production for now), small random
writes would cause write amplification. The log-structured
approach adopts a sequential write pattern, thus alleviating the
write amplification and improving the write throughput. Third,
in comparison with update-in-place approaches which need
expensive logging operations, the log-structured approach
makes it easy to commit an arbitrarily-sized persistent write.
Storage structure. Figure 1 shows the basic structure of log-
structured KV stores on PM. The whole log space locates
on PM and is divided into small-sized (e.g., 4 MB) pieces
called segments. Each service thread maintains a thread-local
segment to append KV objects. Compared to writing to a
global log tail, using per-thread segments not only avoids
contention but also limits the number of concurrent threads
accessing an Optane DIMM [8,46]. Once a service thread has
run out of its local segment, it requests a new free segment
from the free segments pool. A global index stores references
which point to the actual address of KV objects in the log.
The index is put in DRAM or PM for different requirements.
A volatile index in DRAM delivers better performance but
needs more time to restore after a restart. On the contrary, a
persistent index in PM provides instant usability after a restart
but relatively lower performance.
Garbage collection. Despite having numerous benefits, log-
structured systems are obliged to tackle garbage collection
by compaction, the main culprit of performance degradation.
Update or delete operations make prior objects stale in the log.
These stale objects occupy the memory space until being re-
claimed. When there is no free space left, service threads stall
and wait for new free space produced by compaction. In other
words, the system’s throughput at high capacity utilization is
nearly limited to the compaction throughput.

A qualified compaction process is described as follows.
When the fraction of free space is low, the compaction is
triggered, and candidate segments are selected to compact
through a certain strategy such as cost-benefit score2. During

2score = (1−u)×age
u , where u is the segment’s utilization (fraction of data

alive), and age is the time since the segment running out [39].

774 2022 USENIX Annual Technical Conference USENIX Association

4 cleaners 8 cleaners

(a) FlatStore-H0

5

10

15

50 70 90
(b) FlatStore-PH0

2
4
6
8

50 70 90
(c) FlatStore-M0

5

10

50 70 90
(d) FlatStore-FF0

2

4

6

50 70 90
(e) Viper0

2
4
6
8

50 70 90

(f) volatile
 FlatStore-H0

10

20

30

50 70 90Th
ro

ug
hp

ut
 (M

op
s/

s)

Capacity Utilization (%)

Figure 2: Throughput decline at different capacity utilizations. FlatStore-H: with CCEH in DRAM. FlatStore-PH: with CCEH
in PM. FlatStore-M: with Masstree in DRAM. FlatStore-FF: with FastFair in PM. Viper: with CCEH in DRAM. volatile
FlatStore-H: both the index (CCEH) and log in DRAM.

compaction, cleaners copy all alive objects from the old seg-
ment to a reserved segment and update references to these
objects in the index. There are two methods to identify the
liveness of each object in the segment. One method is check-
ing whether the object is still pointed by the reference in
the index (e.g., FlatStore [12]). Another one is checking the
deleted flag (usually 1 bit) in the metadata header of objects;
the deleted flag is set when the corresponding object is up-
dated or deleted (e.g., Viper [8]). Both of the two methods
have shortcomings on PM, which we will analyze in §2.2.
After all valid objects in the old segment have been copied to
the reserved segment and their references have been updated,
the old segment is cleaned and turned into a free segment.

2.2 Compaction Overhead Analysis on PM
The compaction overhead already matters in DRAM-based
log-structured KV stores [35,39]. Worse still, the compaction
overhead becomes more severe on PM, as cleaner threads
need to contend PM’s limited bandwidth with foreground
service threads. Further, necessary but expensive persistence
instructions and PM’s high access latency make the overhead
of copying objects and updating references higher, especially
when the index is persistent.
Experiments. To analyze the compaction overhead of PM-
based log-structured KV stores in depth, we evaluate state-of-
the-art systems including FlatStore [12]3 and Viper [8]4.

We evaluate four versions of FlatStore, including FlatStore-
H (FlatStore with CCEH [37], a hash table, in DRAM
as a volatile index), FlatStore-PH (FlatStore with CCEH
in PM as a persistent index), FlatStore-M (FlatStore with
Masstree [34], a trie-like concatenation of B+-trees, in
DRAM), and FlatStore-FF (FlatStore with FastFair [20], a
B+tree, in PM) to show different cases. Like FlatStore-H,
Viper also uses CCEH in DRAM as its volatile index. We
measure the performance with a YCSB-A workload, where
200 million KV objects are randomly loaded first, then ser-
vice threads perform a write-intensive workload (50% Get

3As the original FlatStore is a networked system, we implement it as an
embedded KV store, and remove the network-related features for simplicity.

4We use the variable-sized object version of Viper and enhance it with
multi-threaded compaction.

and 50% Put) with Zipfian distribution (skewness parameter
0.99) until the system throughput converges to a stable value.
The value size is 48 bytes, a representative value of small
objects according to recent real-world workloads analysis [9].
We restrict the capacity utilization from 50% to 90% (the per-
centage of space occupied by alive data). We set the service
thread count to 12, and the cleaner thread count to 4 or 8. All
threads are bound to a single socket, which is equipped with
three Intel Optane DCPMMs.

Figure 2 shows their throughput at different capacity utiliza-
tions. From the results we observe that: (1) The throughput of
all systems drops significantly at high capacity utilization, es-
pecially for systems with a tree-based or persistent index. (2)
Simply augmenting more CPU resources for compaction (8
cleaner threads) has limited improvements for log-structured
KV stores on PM, and also intensifies the contentions. Note
that the garbage collection overhead will be much larger under
uniform workloads; see detailed results in §4.2.3.

We also evaluate the situation that both index and log locate
on DRAM (volatile FlatStore-H, Figure 2(f)) to simulate an
in-DRAM log-structured KV store. The throughput decline
is mitigating than the PM-based KV stores. Using 8 cleaners
has obvious improvements on DRAM because DRAM has
abundant bandwidth. However, adding more threads on com-
paction is not cost-effective and has less benefit in PM-based
systems as PM does not scale well with multiple threads due
to PM’s idiosyncrasies [46]. This shows that PM’s peculiari-
ties aggravate garbage collection overhead.

Overhead analysis. Taking test cases with 4 cleaners and
80% capacity utilization above as examples, we analyze the
compaction overheads and find out that there exist four ineffi-
ciencies on compaction.

(1) The high latency of random access in the index. Lots
of random accesses are introduced by two operations on the
index, checking references for identifying liveness and up-
dating references after copying alive objects. These two op-
erations require multiple random accesses in the index and
these accesses have no cache locality since alive objects in
compaction are usually cold.

Viper sidesteps checking references with deleted flags in
PM; yet, updating references costs half of the compaction

USENIX Association 2022 USENIX Annual Technical Conference 775

time. FlatStore identifies the liveness of each object by check-
ing the reference instead of using the deleted flag to avoid
small random writes. Thus, cleaners in FlatStore need to ac-
cess the index twice for each alive object, one for checking
liveness and one for updating the reference. FlatStore spends
60% of compaction time on the index in FlatStore-H. The
overhead becomes more severe when it comes to tree-based or
persistent indexes, which reach about 80% and 90% of com-
paction time in FlatStore-M and FlatStore-FF, respectively.
The latency of a search or an update operation in FastFair
reaches several microseconds due to PM’s high latency.

(2) Excessive small random access on PM. Service threads
perform excessive PM accesses for garbage information. To
maintain the size of garbage data of each candidate segment,
service threads read the metadata of the stale object to get its
size when the object is updated or deleted. These reads on PM
not only incur high latency but also pollute cache. In addition,
marking deleted flags in segments would introduce extra small
random PM writes. Though marking deleted flags facilitate
garbage collection, it is harmful to limited PM bandwidth.

(3) Expensive persistence instructions. Though copying
alive objects conducts sequential reads and writes, it still
costs heavier than copying on DRAM, not only due to the
low bandwidth but also because of necessary but expensive
persistence instructions (i.e., flush and fence).

(4) A large amount of data copying on PM. The perfor-
mance slowdown presents superlinear scaling with capacity
utilization. Cleaners have to do compaction much promptly
at high utilization, and segments to compact have less time to
accumulate stale objects. Accordingly, at high capacity utiliza-
tion, cleaners have to copy bulk of data in segments to reclaim
free space. The large amount of data copying contends the
limited PM bandwidth with service threads.

To summarize, traditional compaction approaches do not
consider the peculiarities of PM, hence squandering limited
PM bandwidth. On the other hand, existing log-structured
KV stores completely decouple the index and log. Therefore,
there has little room to facilitate garbage collection without
particular assistance from the index.

3 Design

Motivated by the analysis above, we propose Pacman, a PM-
aware compaction approach for log-structured KV stores on
PM. Pacman solves the deficiencies in conventional com-
paction approaches according to the characteristics of PM,
boosting the system performance at high capacity utilization.
Pacman introduces several core design principles to realize
efficient compaction.
• Avoid onerous index traversal. Pacman offloads reference

search operations during compaction to foreground service
threads without extra effort. With the information offered
by service threads, cleaner threads can locate and update
references effortlessly (§3.1).

• Reduce excessive small PM accesses. Pacman removes
avoidable PM accesses by leveraging tagged pointer and
storing frequently-accessed metadata in DRAM (§3.2).
• Redesign the compaction pipeline to cater to peculiari-

ties of PM. Pacman divides the compaction pipeline into
two major phases, copying valid objects and updating ref-
erences. For each phase, cleaner threads process objects in
a batched manner. Subsequently, Pacman can reduce the
number of persistence orderings and leverage non-temporal
stores and software prefetching (§3.3).
• Separate hot and cold objects to reduce excessive data

copying on PM. Pacman uses a hotspot set to distinguish
hot and cold objects and stores them in different segments
to facilitate compaction. Pacman can also replace the set
silently to handle hotspot shift without blocking foreground
service threads (§3.4).

3.1 Traversing Index with Shortcut

Traversing the index has expensive overhead due to the ran-
dom access pattern, especially for persistent index. Pacman
introduces a technique called shortcut to alleviate this over-
head in compaction. In this section, we take tree-based (in-
cluding trie-based) indexes as an example.

In existing compaction approaches, after copying a valid
object from an old segment to a new segment, the cleaner
needs to traverse the index, locate and update the reference.
When locating an entry, the cleaner starts from the root node
and then traverses multiple internal nodes to the deepest leaf
node. The pointer-chasing path contains several random ac-
cesses, and has much higher latency on PM. According to our
analysis (§2.2), these reference update operations constitute
the most considerable part of overhead in compaction.

However, we observe that the root-to-leaf path was already
traversed when the object was created or updated. To pre-
vent the cleaner from traversing the high latency path again,
Pacman leverages the traversal that was done before.

When creating or updating an object, in addition to insert
or update of the reference in the index, service threads also
record the address of leaf node which contains the reference
in the log. We name this additional information shortcut.
Objects thereupon have a shortcut to their reference in the
index. During compaction, cleaners could take the shortcut to
quickly locate the leaf node in the index. Then, cleaners still
need to search the exact entry in the leaf node. To accelerate
the last mile, Pacman also records the position number of
the entry in the shortcut. In this way, the reference search
operation is offloaded to service threads but without extra
effort. Figure 3 shows an example of a shortcut. The Node
Addr points to the node, and the KV Pos records the entry
position number of the array.

Handling shortcut invalidation. In addition, Pacman needs
to handle the possible invalidation of the shortcut in two sit-
uations. ➀ The address of an index entry may change (e.g.,

776 2022 USENIX Annual Technical Conference USENIX Association

Header Entry Array

KV0 KV1 KV2 … KVn

Node Addr KV Pos Shortcut

…

Index

Figure 3: Structure of shortcut (taking a tree-based index as
an example). The value in an index’s KV pair is a reference
which points to the object in the log. KV Pos is the position
number of the associated KV pair (i.e., 2 in this figure).

caused by shift operations in a sorted tree-based index) and
thus the shortcut may not point to the original reference. ➁
The original node pointed by shortcut may have been deal-
located, and the original address space may be reclaimed or
re-allocated for other usages. Accessing the address wrongly
could result in program crash.

The first situation (i.e., Node Addr points to a valid node,
but KV Pos is wrong) can be handled easily by conduct-
ing some checks. The cleaner will check the header of the
node and compare the key indicated by KV Pos to infer that
whether the shortcut is correct. These checks are identical
as in a normal insert operation. Pacman attempts to reduce
penalty of an incorrect shortcut. For example, in a tree-based
index, the cleaner will check if the key still exists in the origi-
nal leaf node or the sibling node. Thus, shortcuts can tolerate
shift operations to a certain extent. If the shortcut is com-
pletely invalid, the cleaner updates the reference by falling
back to the normal update operation. The penalty of an invalid
shortcut is about one or several useless memory accesses and
can be further reduced by prefetch technique (§3.3).

To avoid the second situation (i.e., Node Addr does not
point to a valid node), instead of directly freeing the space
of deleted nodes, Pacman reserves the deallocated space for
future allocations. The deleted nodes are marked as deleted
by some means (e.g., a deleted bit in node header or all bytes
of the header are set to 0). When creating a new node, Pacman
first attempts to re-use a reserved and same-typed node space.
Generally, an index typically has only one or a few fixed types
of nodes (e.g., 4 types of nodes in ART [29]), so it is easy
to realize the re-allocation. In this way, Pacman guarantees
that the address space of deleted nodes is still valid and this
situation turns into the first situation.

Optimizing space overheads. Pacman stores shortcuts inside
the same log segment with their associated objects, which

squeezes the available space and increases compaction pres-
sure. Thus, the benefits of shortcuts are overshadowed espe-
cially when the capacity utilization is extremely high and the
average object size is small.

Pacman reduces the space overheads of shortcuts to mini-
mize the punishment of storing shortcuts. First, the size of a
shortcut is compressed to 48 bits, including 43-bit Node Addr
and 5-bit KV Pos. The Node Addr is compressed based on
two opportunities: 1) Current virtual address only uses 47
bit (for user-space virtual address, the 47-63th bits are 0);
2) Memory allocators (e.g., malloc [1], PMDK [4]) allocate
objects with at least 16-byte alignment by default. The size of
Node Addr can be further reduced according to the specific
alignment of nodes in the index (e.g., 512-byte leaf nodes
in FastFair). Second, Pacman doesn’t store shortcuts for ob-
jects reclaimed in compaction and hot objects with the help
of hot-cold data separation (§3.4). The objects reclaimed in
compaction are almost coldest, and the reserved segment are
less likely to be compacted again. Hot objects tend to be up-
dated soon and become stale, and shortcuts are useless for
stale objects. Besides, shortcut should be disabled when its
acceleration cannot cover the punishment of sacrificing more
space (e.g., for a hash table-based index and at an extremely
high capacity utilization).

Limitation. Shortcut is unsuitable for KV stores with a LSM-
based index (e.g., ChameleonDB [50]). Since KV entries
in the LSM-based index are moved frequently due to LSM
compactions, shortcuts can only stay valid for a transient time.

3.2 Reducing Excessive PM Accesses

Existing garbage collection approaches do not fit persistent
memory management as they take no notice of random mem-
ory accesses. The introduced small random accesses will
cause I/O amplification in PM. To address this issue, Pacman
1) embeds size information in the reference to reduce PM
read, and 2) stores frequently-accessed metadata in DRAM
to reduce small random writes on PM.
Embedding size information in the reference. When updat-
ing an object, the service thread needs to update the size of
total garbage data of each segment for compaction candidate
selection. However, getting the size of the stale object needs
to read its metadata from PM. To avoid these random PM
reads, Pacman embeds the size of an object in the upper 16
bits of its reference. Therefore, the address and size of the
object’s stale version can be acquired from the index together.
Because 16 bits can express 64 KiB at most (or larger if ob-
jects are allocated obeying to some alignments), Pacman sets
the upper bits of reference to 0 for objects larger than 64 KiB
and has to read their metadata when updated or deleted. For-
tunately, most objects have small size according to the recent
real-world workloads analysis [9].
DRAM-resident garbage information. Since checking ref-
erences to distinguish the liveness of objects has significant

USENIX Association 2022 USENIX Annual Technical Conference 777

overhead, especially when the index is on PM, Pacman turns
to deleted flags to store the liveness information. Marking
deleted flags in objects’ headers on PM will introduce numer-
ous small random writes. To eschew the detrimental effects
of small random writes on PM, Pacman adopts a bitmap on
DRAM for each segment. Pacman locates the corresponding
bit of a variable-sized object with its reference directly. We
denote the minimum size of an object as MIN_SIZE (8 bytes
of key, 8 bytes of value, plus the size of metadata header).
Pacman reserves one bit per MIN_SIZE. The position of the
deleted flag is calculated by dividing the offset within the
segment by MIN_SIZE. Though this approach leaves some
bits unused thereby wasting a small amount of DRAM space,
Pacman can quickly locate the corresponding deleted flags
for variable-sized log items. Even in the most extreme case,
where the size of the key, value, and header are both 8 bytes,
the bitmaps consume DRAM about 0.5% of the log space.

Besides bitmaps, Pacman stores the size of garbage data of
each segment in DRAM which is frequently updated.

3.3 Redesigning the Compaction Pipeline
Traditional compaction algorithms (e.g., memory compaction
in RAMCloud and Viper) update the reference right after
copying a valid object. Nevertheless, this pattern has several
shortcomings on PM without consideration of PM’s idiosyn-
crasies. Pacman reorganizes the pipeline in a batch pattern as
shown in Figure 4. The new algorithm separates the phases
of copying objects and updating references, and processes
objects in a batched pattern. The cleaner first collects all valid
objects from the old segment to a volatile buffer (step ➀),
and then copies them together to PM (step ➁). After that, the
cleaner updates their references. Different from using a nor-
mal index update operation, the cleaner updates references by
a special index update operation (update_pacman, lines 43-
52) that takes the object’s shortcut to locate the reference. Be-
sides, to handle race condition on the index, update_pacman
carries an extra old value of the reference (old_addr) to
update the reference in a compare-and-swap semantics (ex-
plained later). Subsequently, Pacman applies the following
three optimizations to cater to PM’s idiosyncrasies.
(1) Reducing ordering and launch concurrent flushes. In
traditional algorithms, for each relocated object, an ordering
point is required to ensure that the object has been flushed to
PM before updating its reference. These fences are expensive
as they stall CPU pipelines.

However, after separating the copying phase and the updat-
ing phase, only one fence instruction is needed between the
two phases (line 15). Pacman eliminates the ordering points
(fence) after update references (step ➃). Doing so will not
break crash consistency. This is because the old segment is
still available until the compaction is finished. Even if an
inopportune crash happens before reference updates being
flushed to PM (during step ➄), after restart, for those objects
whose references have not been updated or persisted, they can

1 NUM_BATCH_FLUSH = 32; // number of concurrent flushes
2 void compact_pacman(Segment segment) {
3 Buffer buffer; // temporal buffer in DRAM
4 vector<ObjectMeta> meta_vec;
5 // iterate objects in this segment
6 for (valid object old_obj : segment) {
7 // ➀. generate temporal new object into buffer
8 tmp_new_obj = make_object(old_obj, buffer.offset);
9 buffer.append(tmp_new_obj);

10 meta_vec.push_back(ObjectMeta(old_obj, tmp_new_obj));
11 }
12

13 // ➁. copy buffer to reserved segment by ntstore
14 ntstore(reserved_segment, buffer);
15 fence();
16

17 vector<EntryAddr> entry_addr_vec; // for batch persist
18 // iterate valid objects in buffer
19 for (size_t i = 0; i < meta_vec.size(); i++) {
20 // ➂. prefetch next object’s entry in index
21 prefetch(meta_vec[i + 1].shortcut);
22

23 // ➃. update reference
24 (shortcut, key, old_addr, new_addr) = meta_vec[i];
25 EntryAddr entry_addr;
26 index.update_pacman(shortcut, key, new_addr, old_addr,
27 &entry_addr);
28

29 // ➄. batch persist
30 entry_addr_vec.push_back(entry_addr);
31 if (entry_addr_vec.size() >= NUM_BATCH_FLUSH) {
32 // launch concurrent flushes
33 for (entry_addr : entry_addr_vec) {
34 persist(entry_addr);
35 }
36 fence();
37 entry_addr_vec.clear();
38 }
39 }
40 }
41

42 // customized index update operation
43 bool Index::update_pacman(Shortcut shortcut, KeyType key,
44 ValueType new_addr, ValueType old_addr,
45 EntryAddr *entry_addr) {
46 // find entry by key with the help of shortcut
47 ...
48 *entry_addr = &entry; // record entry address
49 // update only if old_addr matched, e.g., using CAS
50 bool success = CAS(&entry.value, old_addr, new_addr);
51 return success;
52 }

Figure 4: Pseudo-code of the Pacman compaction algorithm
and customized index update operation.

still be acquired from the old segment.
Furthermore, Pacman adopts lazy and batched flushes on

reference updates to take advantage of concurrent asyn-
chronous flushes [17], such as clwb and clflushopt. Pac-
man records addresses of updated entries in the index, and
launches multiple asynchronous flushes on them, which re-
duces the average flush latency (step ➄).
(2) Using non-temporal store to copy valid objects. In copy-
ing phase, Pacman first collects valid objects in volatile seg-
ments (step ➀), then uses non-temporal store (ntstore) to
copy them to PM (step ➁) for three benefits. First, ntstore

778 2022 USENIX Annual Technical Conference USENIX Association

has higher bandwidth for large (over 256 B) write than normal
store [46]. Second, ntstore bypasses the cache and avoids
unnecessary cache pollution. Third, ntstore can also avoid
repeated flushes on the same cache line due to non-aligned
writes, which incurs dramatical delay [12].

Though flushes are not necessary for data persistence in
new generation CPUs with support of eADR [2], sequential
writes (e.g., copying objects) without flushes will turn into
random writes on PM due to the random eviction of CPU
cache [23]. Therefore, the batch pattern is still beneficial on
new CPUs with eADR for adopting ntstore.
(3) Leveraging prefetching on PM. Since most valid ob-
jects being collected are cold, their references in the index
are less likely to stay in cache, which results in high memory
access latency, especially for PM indexes. Fortunately, with
the shortcut, Pacman can easily prefetch the index node or en-
try of the next valid object when updating the current object’s
reference (step ➂), hiding the high access latency with update
operation. Thanks to shortcuts and the redesigned pipeline,
the reference update operations are quite lightweight, which
makes prefetching’effect much more evident.

Handling race condition on the index. The contention be-
tween cleaner threads and service threads should be handled
properly. A service thread may update an object while a
cleaner thread copies the old version of this object and up-
dates its reference. In such a case, the new version of the
object updated by the service thread will be covered by the
old version of the object. The batched compaction pipeline
increases the possibility of this race condition.

One naive approach is holding a lock and blocking service
threads during the whole time of relocating an object (lookup
reference, copy object, and update reference) [39]. Pacman
minimizes the critical section on updating references, which
updates references in a compare-and-swap pattern. Specif-
ically, cleaner threads update references via a customized
index update operation (i.e., update_pacman) that carries
an extra old value of the reference (old_addr in step ➃).
In update_pacman, only when the original value of the in-
dex entry matches the old value old_addr, which means no
race condition has happened, the reference can be updated
to new_addr. If the update fails, the reclaimed object in new
segment is marked as stale.

Comparing with FlatStore’s compaction pipeline. Though
FlatStore [12] also optimize the compaction pipeline by sep-
arating the copying phase and the reference updating phase
to reduce the fence instructions, it suffer from severe perfor-
mance issue. Specifically, as FlatStore conducts the index
traversal twice for each valid object (i.e., check the liveness
and update the reference), the batch pattern exacerbates the
overhead on the index. Results in a long reuse distance be-
tween the two index traversals for each alive object, causing
updating reference not to take the benefit of cache brought by
checking reference. By contrast, Pacman eliminates the first in-

dex traversal by checking in-DRAM deleted flags and reduces
the second traversal overhead by prefetching and shortcuts.

3.4 Separating Hot-Cold Data

Pacman leverages hot-cold data separation to reduce the
amount of valid data copying on PM and corresponding refer-
ence updates during compaction. Specifically, service threads
append hot objects in their per-thread segment and cold ob-
jects in another per-thread cold segment. Though hot-cold
data separation is a well-known technique to improve garbage
collection efficiency [10,18,36], we elaborately design how to
1) identify hotspots and 2) handle hotspots shift in the context
of the low-latency key-value store on PM.

Identifying hotspots in a lightweight pattern. Pacman uses
a small read-only hash set of hot objects for service threads
to distinguish hotspots. The identification of hotspots should
be lightweight enough to not increase too much extra latency.
Previous work could distinguish the hotspots without main-
taining the hotness of objects, such as by data type [28] or
hash-based partition [10]. However, these methods are not
feasible for Pacman due to the lack of type semantics or the
per-thread logs. Dynamically maintaining hotspots set is not
ideal, because it introduces extra operations to another index,
resulting in contention and crash thrashing.

Handling hotspots shift and generating new hotspots set.
As the access patterns keep changing in real-world workloads,
Pacman uses a lightweight mechanism to detect hotspots and
generate new hotspots set. First, service threads keep counting
the hit ratio of the old hotspots set to detect whether a hotspots
shift has happened. Second, if the hit ratio is lower than a
customized threshold which means the hotspots have shifted
and the original hot set is stale, service threads record the keys
of updated objects in their local circular buffers by sampling.
A background thread collects the keys recorded by service
threads, sorts these keys using a heap, and generates a new
hot set. Third, the background thread changes the pointer of
hot set to the new one using CAS. After waiting for a grace
period through an RCU-like barrier, the background thread
confirms that no service threads are accessing or will access
the old hot set, then frees the old hot set safely. Note that the
background thread consumes negligible CPU resources as the
hotspots shift in real-world workloads is not frequently (at
least second-level) [9, 21]. It doesn’t matter if service threads
identify hot keys inaccurately since it only determines the
location of objects. Moreover, cold objects get another chance
to be separated from hot objects by compaction.

Though checking the read-only hash set is lightweight, it
would bring no benefit but extra overheads in uniform work-
loads. In the second step above, if the occurrence of the hottest
key is close to the occurrence of the coldest key (e.g., less
than 3×), the background thread clears the new hot set.

USENIX Association 2022 USENIX Annual Technical Conference 779

w/o Pacman w/ Pacman

(a) FlatStore-H0

10

20

50 70 90
(b) FlatStore-PH0

5

10

50 70 90
(c) FlatStore-M0

5

10

50 70 90
(d) FlatStore-FF0

2

4

6

50 70 90
(e) Viper0

5

10

50 70 90Th
ro

ug
hp

ut
 (M

op
s/

s)

Capacity Utilization (%)

Figure 5: Impact of capacity utilization.

3.5 Recovery
The recovery of the log and the index is similar to existing
work [12]. We mainly discuss recovery related to Pacman.
Shortcut. For KV stores with a volatile index, all shortcuts
are invalid after a restart. However, since all segments have
to be scanned to rebuild the index, new valid shortcuts are
rebuilt in the meantime. For KV stores with a persistent index,
to make shortcuts still valid after a restart, Pacman stores the
offset from the base address of the PM pool for the index (e.g.,
PMEMobjpool in PMDK [4]) in the Node Addr instead of
the virtual address of the node.
DRAM-resident information. Though the DRAM-resident
information is unavailable after recovery, the loss of this in-
formation has no impact on service threads.

For KV stores with a volatile index, since the index needs
to be recovered by scanning all segments, the bitmaps are
recovered together with the index at the same time. To dis-
tinguish the latest and stale objects, Pacman compares their
version number and retains the latest reference in the index.
For KV stores with a persistent index, the volatile bitmaps and
metadata only cripple the garbage collection after recovery
for a while. Cleaner threads scan the segments and recover
the bitmaps by checking references in the index. Then the
scanned segments become candidates for compaction.
Crash of compaction. After a restart, unfinished compaction
does not need to resume. If a crash happens before the ref-
erence updating phase (before line 16 in Figure 4), after a
restart, the new segment is still marked as a free segment as
nothing has happened. If a crash happens in the middle of
the reference updating phase (after line 16 in Figure 4), after
a restart, background threads will scan these segments and
distinguish redundant objects as described above.

4 Evaluation

In this section, we use a series of experiments to evaluate
Pacman. After describing our setup (§4.1), we first conduct
experiments to show the overall performance of Pacman on
PM-based log-structured KV stores under various workloads
(§4.2). Then, we analyze the benefit of each optimization of
Pacman with different cases (§4.3). Last, we compare log-
structured KV stores with Pacman against other KV stores on
PM with a production workload (§4.4).

4.1 Experimental Setup
All experiments are conducted on a server with Intel Xeon
Gold 6240 CPUs. Each CPU has 18 physical cores (36 logical
cores with hyper-threading). Each socket is equipped with
three 128 GB Intel Optane DC Persistent Memory (DCPMM)
DIMMs and 96 GB DRAM. We bind all threads to a single
socket to avoid NUMA effect [25, 46]. The Optane DIMMs
are configured in App Direct mode.

We apply Pacman to four versions of FlatStore [12] and
Viper [8] we have evaluated in §2.2. FlatStore adopts a
log batching technique to reduce the persisting overhead.
Viper leverages PM-specific access patterns and employs
CCEH [37] in DRAM as its index.

We set the upper limit of the hotspot set size (§3.4) to
128K in all experiments. We co-locate the background thread
for generating new hotspot set (§3.4) with a random cleaner
thread. The MIN_SIZE (§3.2) is set to 32, which means that
the deleted flag bitmaps use 1 bit in DRAM for every 32
bytes in segments, which is 0.4% of the whole log size. We
use 8-byte keys in all evaluated systems. Unless otherwise
stated, we restrict the capacity utilization to 80%. Also, the
value size is fixed at 48 for simplicity, because performance
mainly depends on the average object size but not the exact
size distribution [39] and the value size is corresponding to
the recent real-world workloads [9].

4.2 Overall Performance

4.2.1 Impact of Capacity Utilization
We show how Pacman mitigates the performance decline at
high capacity utilization with the same experiments as in §2.2,
in which 12 service threads perform write-intensive (50% Put,
Zipfian distribution with parameter 0.99) workloads and 4
cleaners conduct the compaction work. Figure 5 shows the
results, from which we make three observations.

First, Pacman obviously curtails the performance decline at
high capacity utilization. FlatStore-M with Pacman maintains
throughput above 90% even at extremely high capacity utiliza-
tion (90%). Due to the huge overhead of compaction, original
systems can not fully utilize their performance at high utiliza-
tion. Pacman improves the efficiency of compaction according
to PM’s peculiarities, and therefore reduces the compaction
overhead. Though the performance declines of FlatStore-PH

780 2022 USENIX Annual Technical Conference USENIX Association

w/o Pacman w/ Pacman
(a) FlatStore-H

0

20

40

A B C

(b) FlatStore-PH

0

10

20

A B C

(c) FlatStore-M

0

10

20

30

A B C E

(d) FlatStore-FF

0

5

10

15

A B C E

(e) Viper

0

10

20

A B CTh
ro

ug
hp

ut
 (M

op
s/

s)

Figure 6: YCSB workloads performance. (FlatStore-H, FlatStore-PH, and Viper don’t support scan operations in YCSB-E.)

and FlatStore-FF with Pacman at 80% utilization still exceed
20%, they are much better than the original systems.

Second, Pacman also enhances the performance at low ca-
pacity utilization, which is because Pacman reduces small
random accesses on PM and saves PM’s limited bandwidth.
The improvement on Viper is more evident since Viper marks
deleted flags and modifies locks on PM.

Third, systems using Pacman with 4 cleaners also outper-
form the original systems with 8 cleaner threads (see §2.2).
Pacman saves CPU resources for compaction but brings more
improvements, which is not only due to the efficient com-
paction, but also because of the reduction in contentions on
both the index and PM resources [46].

4.2.2 YCSB Benchmark
In this section, we evaluate the basic performance with
YCSB [13] benchmark. Table 1 shows the characteristics
of workloads. We omit the YCSB-D as it has similar traits
to YCSB-B. We set 24 threads to perform workloads after
random prefilling 200 million objects, and 4 cleaners for all
evaluated systems. Each service thread performs 20 million
operations. The capacity utilization is restricted to 80%.

Workload Feature Read-Write-Scan %
A write-intensive 50-50-0
B read-intensive 95-5-0
C read-only 100-0-0
E scan-intensive 0-5-95

Table 1: YCSB workloads description.

The experimental results are presented in Figure 6, from
which we have two observations.

First, under write-intensive workload (YCSB-A), Pacman
improves the performance of each system by 1.5-1.8×. Pac-
man improves Viper most among these systems, which is
because Pacman on Viper not only increases the compaction
efficiency but also reduce small random writes on PM.

In this workload, 4 cleaner threads are insufficient for sys-
tems without Pacman. The cleaner threads’ CPU utilizations
are all above 95%. For evaluated systems with Pacman, there
are a few unused CPU cycles. For example, with Pacman the
cleaner threads’ CPU utilization is 81% in FlatStore-H and
92% in FlatStore-FF. The random prefilling phase invalidates
a part of shortcuts. For example, the invalidation ratio of short-

cuts is about 25% in FlatStore-FF and 58% in FlatStore-M.
FlatStore-FF has lower invalidation ratio because FastFair has
larger leaf node than Masstree and can tolerate more shift
operations. Note that we regard the shortcut as valid if the
entry can be found the in the node indicated by the shortcut
or its sibling node.

Second, under read-dominated workloads (YCSB-B, C, and
E), systems with Pacman have similar performance with the
original systems. This is because Pacman does not directly
influence read and scan operations, their performance under
read-dominated workloads is similar.

4.2.3 Sensitivity Analysis
In this section, we evaluate how workload characteristics
affect Pacman. The default configurations are the same as
in §4.2.1. We only show results of FlatStore-H with Pacman
in Figure 7 as a representative sample.
Uniform workloads. In uniform workloads, the system’s per-
formance drops compared with that in skewed workloads
(Figure 5(a)), which is because of poor locality and much se-
vere garbage collection overhead. The raw FlatStore-H drops
more than half at 80% capacity utilization. However, Pac-
man still curtails the throughput decline within 15% at 80%
utilization and 50% at 90% utilization.
Thread scalability. Due to the compaction overhead, the raw
FlatStore-H can not scale well with multiple threads. On the
contrary, with only 4 cleaners, FlatStore-H with Pacman can
scale linearly up to about 20 threads.
Value size. The throughput of both systems drops with the
value size getting larger because larger objects consume more
bandwidth. Pacman enhances the throughput of FlatStore-H
by 50-70% as the value size varies from 32 to 512, which
shows that value size has little impact on Pacman.
Write ratio. Since the compaction overhead increases with
write ratio, the improvement of Pacman on FlatStore-H is
more significant with higher write ratio, reaching to 2.3×
when the write ratio is 100%. A strange phenomenon is that
FlatStore-H with Pacman has higher throughput when the
write ratio is 80% than 60%. We find that cold segments have
shorter ages due to the faster write rate. Thus, cleaners are
more likely to select hot segments to compact according to
the cost-benefit strategy, which has lesser overhead.
Number of objects. With the capacity utilization fixed at 80%,
we vary the number of objects to prefill. The number of ob-

USENIX Association 2022 USENIX Annual Technical Conference 781

w/o Pacman w/ Pacman

(a)

0

5

10

50 70 90

(b)

0

10

20

0 6 12 18 24 30

(c)

w/o Pacman w/ Pacman

0

5

10

15

32 64 128 256 5121024

(d)

0

10

20

0 20 40 60 80 100

(e)

0

5

10

15

50 100 200 400 800Th
ro

ug
hp

ut
 (M

op
s/

s)

Capacity Utilization (%) # of Threads Value Size (Bytes) Write Ratio (%) # of objects (M)

Figure 7: Sensitivity Analysis (on FlatStore-H). (a) Uniform workloads. (b) Thread scalability. (c) Different value sizes. (d)
Different write ratios. (e) Different numbers of objects.

jects has two effects on the performance. On one hand, the
CPU cache miss rate gets higher with the larger memory
footprint (both the index and the log space). On the other
hand, as the log space gets larger, the system writes more
segments when compaction is triggered and has more time
to accumulate stale objects. Thus, the candidate segments
for compaction have less live data and the compaction is
less expensive. For different numbers of objects, Pacman can
improve the performance by 35-60%.

4.3 Analysis of Techniques

In this section, we analyze the performance benefit of each
technique by applying them one by one. To differentiate re-
sults more obviously, we stress the system with an artificial
workload at a high capacity utilization level (80%) modeled
after prior work [39], in which the system throughput is heav-
ily limited by compaction. After loading 200 million KV
objects, 12 service threads overwrite these objects following a
Zipfian access distribution with skewness parameter 0.99, and
2 cleaner threads perform the compaction work. The work-
load proceeds for a while until the system throughput and
compaction overhead converge to a stable value.

We only show results of Pacman on FlatStore-H and
FlatStore-FF since their results are representative.

Figure 8 shows the contribution of each technique to the
throughput and corresponding compaction bandwidth (bytes
of cleaned segments per second). The applying order is deter-
minded by the dependencies between these techniques (e.g.,
the shortcut relies on hot-cold separation to reduce its space
overhead). Specifically, we gradually apply to the raw sys-
tems with reducing avoidable PM accesses (§3.2), hot-cold
data separation (§3.4), shortcut (§3.1), and the redesigned
batching compaction pipeline (§3.3).

The results show that all techniques contribute to the im-
proved performance more or less in some cases.
➀ Reducing. Storing garbage information in DRAM and em-
bedding size information in reference eschew the avoidable
PM random accesses. Especially in FlatStore, this technique
avoids checking references in the index for identifying live-
ness of objects. Therefore, it brings about 80% improvements
on FlatStore with a tree-based index (i.e., FlatStore-FF and

(a) FlatStore-FF
Throughput Compaction Bandwidth

0

1

2

3

0.1

0.2

0.3

raw +reducing

+separation

+shortcut

+batching

(b) FlatStore-H

0

5

10

0.2
0.4
0.6
0.8
1.0

raw +reducing

+separation

+shortcut

+batching
Th

ro
ug

hp
ut

 (M
op

s/
s)

Th
ro

ug
hp

ut
 (M

op
s/

s)

C
om

pa
ct

io
n

BW
 (G

B/
s)

C
om

pa
ct

io
n

BW
 (G

B/
s)

Figure 8: Contributions of techniques to throughput and com-
paction bandwidth.

FlatStore-M), and about 50% on FlatStore-H.
➁ Separation. Hot-cold data separation improves the system
performance about 30%. The improvement of system through-
put is more than the compaction bandwidth. This is because
that hot-cold data separation alleviates the mixture of stale
and valid objects in a segment, thus decreasing the amount of
valid objects moving and compaction time.
➂ Shortcut. Though Pacman trades some available log space
for storing shortcuts, shortcuts still boost the system perfor-
mance by about 70% for FlatStore-FF and about 45% for
FlatStore-M (not shown in the figure) even at high capac-
ity utilization. Moreover, since we do not store shortcuts for
hot objects, the rate of successfully using shortcuts to update
references is 55% in FlatStore-FF in this experiment. The ef-
fect is not obvious for systems with a hash table-based index,
since the benefit brought by shortcuts is overshadowed by the
additional overhead of storing shortcuts. Since Pacman only
stores shortcuts for inserted cold objects, and we assume that
about half of inserted objects are cold, the space overhead is
less than 4% for 64B objects. Note that this space overhead
has been paid by Pacman.
➃ Batching. The batching compaction pipeline and corre-
sponding optimizations bring another 40% improvement on
FlatStore-M and FlatStore-H. However, batching has smaller
effect on FlatStore with a persistent index, which is because
the main overhead of compaction comes from operations on
the persistent index.

Put them together, Pacman increases the compaction band-
width, and improves the system throughput by about 3× for

782 2022 USENIX Annual Technical Conference USENIX Association

PMem-RocksDB pmemkv ChameleonDB FlatStore-PH FlatStore-FF FlatStore-PH-Pac c
(a) Throughput

0

2

4
(b) P50 Get Lat.

0

2

4

6
(c) P50 Put Lat.

0

10

20 (d) P99 Get Lat.

0

20

40

60 (e) P99 Put Lat.

1
10

100
1000

Th
ro

ug
hp

ut
 (M

op
s/

s)

La
te

nc
y

(μ
s)

FlatStore-FF-Pac

Figure 9: Facebook ETC throughput and latency. (Y axis in P99 Put Lat. is in log scale.)

FlatStore-H and 4.6× for FlatStore-FF.
The results of Pacman on Viper are similar to FlatStore-

H, except for reducing and batching. As Viper uses deleted
flags in objects, reducing on Viper has smaller effect than
FlatStore. However, due to the inefficiency of Viper’s original
compaction, the batching compaction algorithm significantly
improves Viper’s performance.

4.4 Comparison with Other KV Stores
In this section, we compare FlatStore with Pacman (denoted
by suffix -Pac in Figure 9) against other three representa-
tive KV stores on PM, ChameleonDB [50], pmemkv [6], and
PMem-RocksDB [3, 5]. ChameleonDB adopts a LSM-based
hash index tracking KV objects in the log. We implement
ChameleonDB since it is not open-source. Our implementa-
tion can achieve approximate performance in its paper when
not considering garbage collection. As ChameleonDB does
not provide their garbage collection approach, we implement
its garbage collection like WiscKey [33] for their similar struc-
tures, but with a hot-cold data separation (§3.4). pmemkv
internally leverages PMDK [4] for object allocation, which is
a non-copying allocator. We set pmemkv’s storage engine to
cmap, a persistent concurrent hash map. PMem-RocksDB is
based on RocksDB [16], a LSM-tree-based key-value store.
PMem-RocksDB locates SSTables and write ahead log (WAL)
on PM. We follow the recommended configurations [5] except
for enabling the key-value separation of PMem-RocksDB,
since it offloads the object management to PMDK, which is
similar to pmemkv. Note that we do not restrict the capacity
of pmemkv and PMem-RocksDB.

We compare these systems with a production workload
from Facebook ETC memcached pool [7]. Specifically, the
workload has trimodal object size distribution, where the size
of an object can be small (1-13 bytes), median (14-300 bytes)
and large (larger than 300 bytes). This distribution is rep-
resentative in real-world productions, as it also resembles
the workloads of UP2X at Facebook [9]. We use skewed
distribution (Zipfian parameter 0.99) for small and median
objects, and uniform distribution for large objects as prior
work [12, 14]. After random prefilling each system with 200
million objects, each thread performs 20 million operations
of write-intensive workload (50% Get and 50% Put).

For a fair comparison, 1) we only include FlatStore-PH
and FlatStore-FF as all compared systems have a persistent

index; 2) we disable the log batching in FlatStore as a normal
embedded KV store. All systems use 24 service threads and 4
background threads (for compaction and PMem-RocskDB’s
flush) except for pmemkv. As pmemkv does not need garbage
collection, we set pmemkv with 28 service threads. We report
their throughput and latency in Figure 9.
Throughput. From the throughput results, we have the fol-
lowing observations.

The log-structured approach has great performance ad-
vantages. Even without Pacman, FlatStore-PH outperforms
pmemkv as unordered KV stores, and FlatStore-FF outper-
forms PMem-RocksDB as ordered KV stores. However, the
garbage collection overhead overshadowed this advantage.
Due to the efficient compaction, Pacman improves the perfor-
mance of original systems, especially for FlatStore-FF as it
has more severe compaction overheads.

PMem-RocksDB has the lowest throughput even though
efforts have been endeavoured to optimize RocksDB with
persistent memory. This is because RocksDB was born for
SSD, and some design is not suitable for PM. For example,
the memtable, WAL, software caching, and file-based man-
agement are less effective when the storage device changes
from disk or flash to PM.

Though pmemkv does not need garbage collection, it has a
low performance. Since the value size varies in this workload,
pmemkv needs to allocate new object by PMDK’s pmemobj
allocator if the size exceeds previous allocated size.

ChameleonDB has much lower performance than expec-
tation. We also evaluate ChameleonDB with unlimited log
space (i.e., no compaction) that can achieve similar perfor-
mance to a KV store with a volatile hash table-based index
(not shown in the figure). However, the garbage collection of
ChameleonDB is much difficult due to its LSM-based index.
The LSM-based index inserts a new KV pair to memtable
directly without looking for the former entry of the same key.
Therefore, cleaners are unaware of the garbage information
and have to copy bulk of cold data. Its performance decreases
sharply at higher capacity utilization due to the inefficient
garbage collection. ChameleonDB requires a more elaborate
garbage collection approach which considers both KV sepa-
ration [10, 41] and PM’s peculiarities.
Latency. The median Get latency of each system accords with
their index’s overhead. ChameleonDB has the lowest latency
due to its efficient DRAM-PM-hybird index.

USENIX Association 2022 USENIX Annual Technical Conference 783

For PMem-RocksDB, the notorious write stalls in LSM-
trees [49] result in high Put tail-latencies. The dilatory flush
and compaction not only block foreground write operations,
but also lead to multiple SSTable levels, which makes Get op-
erations inefficient. Besides, for low-latency devices like PM,
bloom filters aimed at reducing storage I/Os can introduce
non-negligible latencies in Get operations.

As pmemkv turns to transaction and logging for atomic
in-place updates, it has the highest median Put latency and tail
latency among all evaluated systems with a high thread count.
First, transactions are more likely to be aborted with a high
thread count. Second, the low-performance crash consistency
mechanism of pmemkv makes index access inefficient.

4.5 Recovery
We evaluate the recovery with FlatStore-H and FlatStore-
FF. We randomly prefill 200 million objects of 256B value
size with 80% capacity utilization, in which the log space is
63.3 GB. Then we perform 100 million update operations to
disorder all segments. We set 8 threads for the recovery.

For FlatStore-H, garbage information and shortcuts are
restored with the volatile index in the meantime. It takes
14 seconds to recover all these things in FlatStore-H. For
FlatStore-FF, it takes 102 ms to recover the states of segments.
Note that the system is ready for service at this moment. Then,
the 8 threads recover information for garbage collection (e.g.,
deleted flag bitmaps) in background, which takes 37 seconds.

5 Related Work

PM-based KV stores. There has been plenty of research on
high-performance KV indexes [11, 20, 26, 27, 32, 37, 38, 43,
50, 51] and KV storage systems [8, 12, 22, 24, 30, 42, 49]. In
this paper, we focus on log-structured KV stores on PM.
Log-structured memory storage systems. The log-
structured design has been widely adopted in storage sys-
tems. RAMCloud [39] is a distributed KV store that uses
log-structured memory to achieve high memory utilization.
It uses memory to serve requests from clients and disk to
store backup copies of data. FASTER [20] designs a hybrid
log that spans main memory and storage. Nibble [35] is a
concurrent log-structured in-memory KV store that uses a
scalable multi-head log allocator with a concurrent index. It
can scale up to hundreds of cores with ultra-large volumes
of memory. MICA [31] and Segcache [47] are in-memory
caching systems using the log-structured approach.

The log-structured approach is also embraced by many
persistent memory systems. FlatStore [12], RStore [30], and
Viper [8] are all DRAM-PM hybrid KV stores that lever-
age a volatile index on DRAM and log-structured storage
on PM. To reduce small writes on PM, FlatStore proposes
pipelined horizontal batching to batch small-sized requests
from multiple cores, achieving high throughput without sac-
rificing low latency. Viper assigns threads to different PM

regions to minimize the thread-to-DIMM ratio, and stores
data in DIMM-aligned storage segments. NOVA [45] is a
scalable persistent memory file system that maintains sepa-
rate logs for each inode. LSNVMM [19] is a log-structured
transactional memory system that takes advantage of copy-
on-write to avoid redo/undo logging.
Optimizations on garbage collection. The main overhead of
log-structured storage systems comes from garbage collection.
RAMCloud designs an elaborate garbage collection approach
to enable high memory utilization. RAMCloud decouples the
garbage collection on the memory logs and backups. Hence,
memory can have higher utilization and backup disks bear
less garbage collection work. In-place updates can reduce the
pressure of garbage collection [20, 31]. However, the in-place
updates could lead to internal memory fragmentation. Fur-
thermore, for persistent memory, in-place updates without ex-
pensive logging cannot guarantee crash consistency. Hot-cold
separation is beneficial to garbage collection. Log-structured
file systems such as F2FS [28] separate data by their types.
HashKV [10] partitions KV objects by hashing. They separate
hot and cold objects to some extent. Yang et al. [48] propose a
PM-aware garbage collector in JVM. They separate the read-
mostly phase and the write-only phase to fully utilize PM
bandwidth. However, they adopt PM for merely increasing
memory capacity and do not provide persistence guarantee.

The peculiarities of persistent memory make the problem
of memory compaction more severe. To the best of our knowl-
edge, Pacman is the first work that optimizes compaction for
log-structured key-value store on PM.

6 Conclusion

Garbage collection overhead in log-structured KV stores be-
comes more severe on PM. We summarize that the culprit
is that existing approaches are unawareness of PM’s char-
acteristics. In this paper, we analyzed the inefficiencies of
existing compaction approaches in log-structured KV stores
on PM. According to the analysis, we design, implement,
and evaluate Pacman, an efficient PM-aware compaction ap-
proach for log-structured KV store on PM. Pacman intro-
duces several techniques to streamline garbage collection
with the consideration of PM idiosyncrasies. Pacman signif-
icantly boosts the compaction bandwidth and improves the
performance of state-of-the-art systems at high capacity uti-
lization. Our implementation of Pacman is publicly available
at https://github.com/thustorage/pacman.

Acknowledgements

We sincerely thank our shepherd Changwoo Min and the
anonymous reviewers for their valuable feedback. We also
thank Junru Li and Zhe Yang for their help on this work. This
work is funded by the National Natural Science Foundation
of China (Grant No. 62022051, 61832011), and Huawei.

784 2022 USENIX Annual Technical Conference USENIX Association

https://github.com/thustorage/pacman

References

[1] Aligned memory blocks (the gnu c library). https:
//www.gnu.org/software/libc/manual/html_n
ode/Aligned-Memory-Blocks.html, 2021.

[2] eADR: New Opportunities for Persistent Memory Ap-
plications. https://www.intel.com/content/ww
w/us/en/developer/articles/technical/eadr-
new-opportunities-for-persistent-memory-
applications.html, 2021.

[3] How Intel Optimized RocksDB Code for Persistent
Memory with PMDK. https://software.intel
.com/content/www/us/en/develop/articles/
how-intel-optimized-rocksdb-code-for-per
sistent-memory-with-pmdk.html, 2021.

[4] Persistent Memory Development Kit. https://pmem
.io/pmdk/, 2021.

[5] PMem-RocksDB, A version of RocksDB that uses per-
sistent memory. https://github.com/pmem/pmem
-rocksdb, 2021.

[6] pmemkv: Key/value datastore for persistent memory.
https://pmem.io/pmemkv/, 2021.

[7] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song
Jiang, and Mike Paleczny. Workload analysis of a
large-scale key-value store. In Proceedings of the
12th ACM SIGMETRICS/PERFORMANCE Joint Inter-
national Conference on Measurement and Modeling
of Computer Systems, SIGMETRICS ’12, page 53–64,
New York, NY, USA, 2012. Association for Computing
Machinery.

[8] Lawrence Benson, Hendrik Makait, and Tilmann Rabl.
Viper: An efficient hybrid pmem-dram key-value store.
Proceedings of the VLDB Endowment, 14(9):1544–
1556, 2021.

[9] Zhichao Cao, Siying Dong, Sagar Vemuri, and
David H.C. Du. Characterizing, modeling, and bench-
marking rocksdb key-value workloads at facebook.
In 18th USENIX Conference on File and Storage
Technologies (FAST 20), pages 209–223, Santa Clara,
CA, February 2020. USENIX Association.

[10] Helen H. W. Chan, Yongkun Li, Patrick P. C. Lee, and
Yinlong Xu. Hashkv: Enabling efficient updates in KV
storage via hashing. In 2018 USENIX Annual Techni-
cal Conference (USENIX ATC 18), pages 1007–1019,
Boston, MA, July 2018. USENIX Association.

[11] Youmin Chen, Youyou Lu, Kedong Fang, Qing Wang,
and Jiwu Shu. uTree: A Persistent B+-Tree with Low
Tail Latency. Proc. VLDB Endow., 13(12):2634–2648,
July 2020.

[12] Youmin Chen, Youyou Lu, Fan Yang, Qing Wang, Yang
Wang, and Jiwu Shu. Flatstore: An efficient log-
structured key-value storage engine for persistent mem-
ory. In Proceedings of the Twenty-Fifth International
Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’20, page
1077–1091, New York, NY, USA, 2020. Association for
Computing Machinery.

[13] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking cloud
serving systems with ycsb. In Proceedings of the 1st
ACM Symposium on Cloud Computing, SoCC ’10, page
143–154, New York, NY, USA, 2010. Association for
Computing Machinery.

[14] Diego Didona and Willy Zwaenepoel. Size-aware shard-
ing for improving tail latencies in in-memory key-value
stores. In 16th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 19), pages 79–
94, Boston, MA, February 2019. USENIX Association.

[15] Siying Dong, Andrew Kryczka, Yanqin Jin, and Michael
Stumm. Evolution of development priorities in key-
value stores serving large-scale applications: The
RocksDB experience. In 19th USENIX Conference on
File and Storage Technologies (FAST 21), pages 33–49.
USENIX Association, February 2021.

[16] Facebook. Rocksdb. https://rocksdb.org.

[17] Swapnil Haria, Mark D. Hill, and Michael M. Swift.
Mod: Minimally ordered durable datastructures for per-
sistent memory. In Proceedings of the Twenty-Fifth
International Conference on Architectural Support for
Programming Languages and Operating Systems, AS-
PLOS ’20, page 775–788, New York, NY, USA, 2020.
Association for Computing Machinery.

[18] Jen-Wei Hsieh, Tei-Wei Kuo, and Li-Pin Chang. Effi-
cient identification of hot data for flash memory storage
systems. ACM Trans. Storage, 2(1):22–40, February
2006.

[19] Qingda Hu, Jinglei Ren, Anirudh Badam, Jiwu Shu, and
Thomas Moscibroda. Log-structured non-volatile main
memory. In 2017 USENIX Annual Technical Conference
(USENIX ATC 17), pages 703–717, Santa Clara, CA,
July 2017. USENIX Association.

[20] Deukyeon Hwang, Wook-Hee Kim, Youjip Won, and
Beomseok Nam. Endurable Transient Inconsistency in
Byte-Addressable Persistent B+-Tree. In 16th USENIX
Conference on File and Storage Technologies (FAST 18),
pages 187–200, Oakland, CA, February 2018. USENIX
Association.

USENIX Association 2022 USENIX Annual Technical Conference 785

https://www.gnu.org/software/libc/manual/html_node/Aligned-Memory-Blocks.html
https://www.gnu.org/software/libc/manual/html_node/Aligned-Memory-Blocks.html
https://www.gnu.org/software/libc/manual/html_node/Aligned-Memory-Blocks.html
https://www.intel.com/content/www/us/en/developer/articles/technical/eadr-new-opportunities-for-persistent-memory-applications.html
https://www.intel.com/content/www/us/en/developer/articles/technical/eadr-new-opportunities-for-persistent-memory-applications.html
https://www.intel.com/content/www/us/en/developer/articles/technical/eadr-new-opportunities-for-persistent-memory-applications.html
https://www.intel.com/content/www/us/en/developer/articles/technical/eadr-new-opportunities-for-persistent-memory-applications.html
https://software.intel.com/content/www/us/en/develop/articles/how-intel-optimized-rocksdb-code-for-persistent-memory-with-pmdk.html
https://software.intel.com/content/www/us/en/develop/articles/how-intel-optimized-rocksdb-code-for-persistent-memory-with-pmdk.html
https://software.intel.com/content/www/us/en/develop/articles/how-intel-optimized-rocksdb-code-for-persistent-memory-with-pmdk.html
https://software.intel.com/content/www/us/en/develop/articles/how-intel-optimized-rocksdb-code-for-persistent-memory-with-pmdk.html
https://pmem.io/pmdk/
https://pmem.io/pmdk/
https://github.com/pmem/pmem-rocksdb
https://github.com/pmem/pmem-rocksdb
https://pmem.io/pmemkv/
https://rocksdb.org

[21] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé,
Jeongkeun Lee, Nate Foster, Changhoon Kim, and Ion
Stoica. Netcache: Balancing key-value stores with fast
in-network caching. In Proceedings of the 26th Sympo-
sium on Operating Systems Principles, SOSP ’17, page
121–136, New York, NY, USA, 2017. Association for
Computing Machinery.

[22] Olzhas Kaiyrakhmet, Songyi Lee, Beomseok Nam,
Sam H. Noh, and Young ri Choi. SLM-DB: Single-
Level Key-Value Store with Persistent Memory. In 17th
USENIX Conference on File and Storage Technologies
(FAST 19), pages 191–205, Boston, MA, February 2019.
USENIX Association.

[23] Anuj Kalia, David Andersen, and Michael Kaminsky.
Challenges and solutions for fast remote persistent mem-
ory access. In Proceedings of the 11th ACM Symposium
on Cloud Computing, SoCC ’20, page 105–119, New
York, NY, USA, 2020. Association for Computing Ma-
chinery.

[24] Sudarsun Kannan, Nitish Bhat, Ada Gavrilovska, An-
drea Arpaci-Dusseau, and Remzi Arpaci-Dusseau. Re-
designing LSMs for nonvolatile memory with Nov-
eLSM. In 2018 USENIX Annual Technical Conference
(USENIX ATC 18), pages 993–1005, Boston, MA, July
2018. USENIX Association.

[25] Jonghyeon Kim, Wonkyo Choe, and Jeongseob Ahn.
Exploring the design space of page management for
multi-tiered memory systems. In 2021 USENIX Annual
Technical Conference (USENIX ATC 21), pages 715–
728. USENIX Association, July 2021.

[26] Wook-Hee Kim, R. Madhava Krishnan, Xinwei Fu,
Sanidhya Kashyap, and Changwoo Min. PACTree: A
High Performance Persistent Range Index Using PAC
Guidelines. In Proceedings of the ACM SIGOPS 28th
Symposium on Operating Systems Principles, SOSP ’21,
page 424–439, New York, NY, USA, 2021. Association
for Computing Machinery.

[27] R. Madhava Krishnan, Wook-Hee Kim, Xinwei Fu,
Sumit Kumar Monga, Hee Won Lee, Minsung Jang, Ajit
Mathew, and Changwoo Min. TIPS: Making volatile
index structures persistent with dram-nvmm tiering. In
2021 USENIX Annual Technical Conference (USENIX
ATC 21), pages 773–787. USENIX Association, July
2021.

[28] Changman Lee, Dongho Sim, Jooyoung Hwang, and
Sangyeun Cho. F2FS: A New File System for Flash Stor-
age. In 13th USENIX Conference on File and Storage
Technologies (FAST 15), pages 273–286, Santa Clara,
CA, February 2015. USENIX Association.

[29] Viktor Leis, Alfons Kemper, and Thomas Neumann. The
adaptive radix tree: Artful indexing for main-memory
databases. In 2013 IEEE 29th International Conference
on Data Engineering (ICDE), pages 38–49, 2013.

[30] Lucas Lersch, Ivan Schreter, Ismail Oukid, and Wolf-
gang Lehner. Enabling low tail latency on multicore key-
value stores. Proc. VLDB Endow., 13(7):1091–1104,
March 2020.

[31] Hyeontaek Lim, Dongsu Han, David G. Andersen, and
Michael Kaminsky. MICA: A holistic approach to fast
in-memory key-value storage. In 11th USENIX Sym-
posium on Networked Systems Design and Implementa-
tion (NSDI 14), pages 429–444, Seattle, WA, April 2014.
USENIX Association.

[32] Baotong Lu, Xiangpeng Hao, Tianzheng Wang, and Eric
Lo. Dash: Scalable Hashing on Persistent Memory.
Proc. VLDB Endow., 13(10):1147–1161, April 2020.

[33] Lanyue Lu, Thanumalayan Sankaranarayana Pillai,
Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. WiscKey: Separating Keys from Values in
SSD-conscious Storage. In 14th USENIX Conference
on File and Storage Technologies (FAST 16), pages 133–
148, Santa Clara, CA, February 2016. USENIX Associ-
ation.

[34] Yandong Mao, Eddie Kohler, and Robert Tappan Morris.
Cache craftiness for fast multicore key-value storage. In
Proceedings of the 7th ACM European Conference on
Computer Systems, EuroSys ’12, page 183–196, New
York, NY, USA, 2012. Association for Computing Ma-
chinery.

[35] Alexander Merritt, Ada Gavrilovska, Yuan Chen, and
Dejan Milojicic. Concurrent log-structured memory
for many-core key-value stores. Proc. VLDB Endow.,
11(4):458–471, December 2017.

[36] Changwoo Min, Kangnyeon Kim, Hyunjin Cho, Sang-
Won Lee, and Young Ik Eom. SFS: Random write con-
sidered harmful in solid state drives. In 10th USENIX
Conference on File and Storage Technologies (FAST 12),
San Jose, CA, February 2012. USENIX Association.

[37] Moohyeon Nam, Hokeun Cha, Young ri Choi, Sam H.
Noh, and Beomseok Nam. Write-Optimized Dynamic
Hashing for Persistent Memory. In 17th USENIX Con-
ference on File and Storage Technologies (FAST 19),
pages 31–44, Boston, MA, February 2019. USENIX
Association.

786 2022 USENIX Annual Technical Conference USENIX Association

[38] Ismail Oukid, Johan Lasperas, Anisoara Nica, Thomas
Willhalm, and Wolfgang Lehner. FPTree: A Hybrid
SCM-DRAM Persistent and Concurrent B-Tree for Stor-
age Class Memory. In Proceedings of the 2016 Interna-
tional Conference on Management of Data, SIGMOD
’16, page 371–386, New York, NY, USA, 2016. Associ-
ation for Computing Machinery.

[39] Stephen M. Rumble, Ankita Kejriwal, and John Ouster-
hout. Log-structured memory for dram-based storage.
In Proceedings of the 12th USENIX Conference on File
and Storage Technologies, FAST’14, page 1–16, USA,
2014. USENIX Association.

[40] Denis Serenyi. Cluster-level storage at google. In
Keynote at the 2nd Joint International Workshop on
Parallel Data Storage and Data Intensive Scalable In-
tensive Computing Systems, 2017.

[41] Chen Shen, Youyou Lu, Fei Li, Weidong Liu, and Jiwu
Shu. Novkv: Efficient garbage collection for key-value
separated lsm-stores. 2020.

[42] Jiwu Shu, Youmin Chen, Qing Wang, Bohong Zhu,
Junru Li, and Youyou Lu. TH-DPMS: Design and Imple-
mentation of an RDMA-Enabled Distributed Persistent
Memory Storage System. ACM Trans. Storage, 16(4),
oct 2020.

[43] Qing Wang, Youyou Lu, Junru Li, and Jiwu Shu. Nap: A
Black-Box approach to NUMA-Aware persistent mem-
ory indexes. In 15th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 21), pages
93–111. USENIX Association, July 2021.

[44] Xingbo Wu, Fan Ni, Li Zhang, Yandong Wang, Yufei
Ren, Michel Hack, Zili Shao, and Song Jiang. Nvm-
cached: An nvm-based key-value cache. In Proceedings
of the 7th ACM SIGOPS Asia-Pacific Workshop on Sys-
tems, APSys ’16, New York, NY, USA, 2016. Associa-
tion for Computing Machinery.

[45] Jian Xu and Steven Swanson. NOVA: A log-structured
file system for hybrid volatile/non-volatile main memo-
ries. In 14th USENIX Conference on File and Storage

Technologies (FAST 16), pages 323–338, Santa Clara,
CA, February 2016. USENIX Association.

[46] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph
Izraelevitz, and Steve Swanson. An empirical guide
to the behavior and use of scalable persistent memory.
In 18th USENIX Conference on File and Storage Tech-
nologies (FAST 20), pages 169–182, Santa Clara, CA,
February 2020. USENIX Association.

[47] Juncheng Yang, Yao Yue, and Rashmi Vinayak. Seg-
cache: a memory-efficient and scalable in-memory key-
value cache for small objects. In 18th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 21), pages 503–518. USENIX Association, April
2021.

[48] Yanfei Yang, Mingyu Wu, Haibo Chen, and Binyu Zang.
Bridging the Performance Gap for Copy-Based Garbage
Collectors atop Non-Volatile Memory, page 343–358.
Association for Computing Machinery, New York, NY,
USA, 2021.

[49] Ting Yao, Yiwen Zhang, Jiguang Wan, Qiu Cui, Liu
Tang, Hong Jiang, Changsheng Xie, and Xubin He. Ma-
trixKV: Reducing write stalls and write amplification
in LSM-tree based KV stores with matrix container in
NVM. In 2020 USENIX Annual Technical Conference
(USENIX ATC 20), pages 17–31. USENIX Association,
July 2020.

[50] Wenhui Zhang, Xingsheng Zhao, Song Jiang, and Hong
Jiang. Chameleondb: A key-value store for optane per-
sistent memory. In Proceedings of the Sixteenth Euro-
pean Conference on Computer Systems, EuroSys ’21,
page 194–209, New York, NY, USA, 2021. Association
for Computing Machinery.

[51] Pengfei Zuo, Yu Hua, and Jie Wu. Write-Optimized and
High-Performance Hashing Index Scheme for Persistent
Memory. In 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18), pages
461–476, Carlsbad, CA, October 2018. USENIX Asso-
ciation.

USENIX Association 2022 USENIX Annual Technical Conference 787

	Introduction
	Background and Motivation
	Log-Structured KV Stores on PM
	Compaction Overhead Analysis on PM

	Design
	Traversing Index with Shortcut
	Reducing Excessive PM Accesses
	Redesigning the Compaction Pipeline
	Separating Hot-Cold Data
	Recovery

	Evaluation
	Experimental Setup
	Overall Performance
	Impact of Capacity Utilization
	YCSB Benchmark
	Sensitivity Analysis

	Analysis of Techniques
	Comparison with Other KV Stores
	Recovery

	Related Work
	Conclusion

