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Abstract
Fast Internet-wide scanning is essential for network sit-

uational awareness and asset evaluation. However, the vast
IPv6 address space makes brute-force scanning infeasible.
Although state-of-the-art techniques have made effective at-
tempts, these methods do not work in seedless regions, while
the detection efficiency is low in regions with seeds. More-
over, the constructed hitlists with low coverage cannot truly
represent the active IPv6 address landscape of the Internet.

This paper introduces AddrMiner, a systematic and com-
prehensive global active IPv6 address probing system. We
divide the IPv6 address space regions into three kinds accord-
ing to the number of seed addresses to discover active IPv6
addresses from scratch, from few to many. For the regions
with no seeds, we present AddrMiner-N , leveraging an orga-
nization association strategy to mine active addresses. It fills
the gap of address probing in seedless regions and finds active
addresses covering 86.4K IPv6 prefixes announced by BGP,
accounting for 81.6% of the probed announced prefixes. For
the regions with few seeds, we propose AddrMiner-F , utiliz-
ing a similarity matching strategy to probe active addresses
further. The hit rate of active address probing is improved
by 70%-150% compared to existing algorithms. Moreover,
for the regions with sufficient seeds, we present AddrMiner-S
to generate target addresses based on reinforcement learn-
ing dynamically. It nearly doubles the hit rate compared to
the state-of-the-art algorithms. Finally, we deploy AddrMiner
and discover 2.1 billion active IPv6 addresses, including 1.7
billion de-aliased active addresses and 0.4 billion aliased ad-
dresses, through continuous probing for 13 months. We would
like to further open the door of IPv6 measurement studies by
publicly releasing AddrMiner and sharing our data.

1 Introduction

Internet-wide active address probing is a prerequisite for
Internet-scale network surveys. Existing network research and
applications rely heavily on Internet-wide active address scan-
ning. For example, the probed active addresses can be used

to examine trends and adoption rates of different technolo-
gies [11, 30], measure network topology for reflecting inter-
connections of nodes [4,52], probe Internet services for wide-
ranging assessments [9,25] and resource census [23], and test
network security by measuring the attack surface [16, 34].
Under IPv4, it is feasible to achieve Internet-wide active ad-
dress probing by brute-force scanning the entire IPv4 address
space at the minute level with high-speed scanning tools such
as ZMap [9]. With the rapid development of the Internet as
a globally crucial infrastructure, IPv4 no longer meets its de-
velopment needs, and IPv6 has been promoted and deployed
at an accelerated pace worldwide. For example, more than
36.6% of users accessed Google via IPv6 in 2021, compared
to fewer than 0.7% in 2012 [21]. However, under IPv6, there
are significant challenges to Internet-wide active address dis-
covery. The main reason is that the vast address space of IPv6
makes it more difficult, if not infeasible, to obtain globally
active addresses. For example, it would take at least millions
of years to scan the entire IPv6 address space using 10 Gigabit
links and high-speed scanning tools such as ZMap [9].

To address this issue, researchers usually collect known
active IPv6 addresses (i.e., seeds), learn the characteristics
of seeds, and generate the target addresses that may have
a higher probability of being active for scanning. Although
previous research efforts have examined how to detect active
IPv6 addresses, the issue of how to perform comprehensive
global active IPv6 address discovery remains, mainly in the
following aspects:

(1) Limited usage. In regions where seeds are missing,
existing methods cannot perform effective active IPv6 address
probing or even work [7, 15, 18, 24, 33, 36, 47, 51]. This is
because they need to learn the characteristics of the seeds
to generate target addresses that are more likely to be active.
There is still a gap in active IPv6 address probing in regions
lacking seeds.

(2) Limited detection efficiency. State-of-the-art algorithms
[7,24,47] have improved the efficiency of active IPv6 address
probing. However, these methods are too dependent on seeds.
The seed address sampling bias reduces the efficiency of
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active address probing because it makes the characteristics of
the actual active address inconsistent with those of the seeds.

(3) Limited coverage. Previous studies, while building a
list of active addresses, called IPv6 hitlist, have tended to
be limited to a few IPv6 prefixes announced by BGP [15,
18, 42, 47]. For example, active IPv6 addresses in the latest
hitlist [18] cover only 25.5K announced prefixes, which is
only ∼21.3% of all announced prefixes. They are not truly
representative of the active IPv6 address landscape of the
Internet. Active detection methods by analyzing seeds are
often also limited by the coverage of the seeds [15, 18, 24, 33,
36, 42, 47, 51].

In general, there still lacks a systematic methodology for
comprehensive global active IPv6 address probing. To solve
the above problems, we design and implement an active ad-
dress probing system, AddrMiner (§4). At its core, Addr-
Miner divides active address probing into three sub-tasks:
active IPv6 address probing for 1) address space regions with
no seeds, 2) address space regions with few seeds, and 3)
address space regions with sufficient seeds, respectively.

First, we present AddrMiner-N for the address space re-
gions without seeds (§5). The core idea is based on the ob-
servation that address patterns (i.e., structure) tend to have
similarities across network configurations. It obtains common
patterns by mining the structural features of active addresses
collected in other regions, and then migrate to regions without
seeds to generate targets for scanning. AddrMiner-N lever-
ages graph data structures to describe the similarity of address
structure features under different networks (§5.2). Then, it
uses graph community discovery algorithms to mine com-
mon address structure features for building a common pattern
library (§5.3). We observe that the address configuration pat-
terns are more similar within the same network organization
than within different organizations. AddrMiner-N selects the
most similar patterns from the library based on organization
association strategy to generate targets (§5.4).

Second, we propose AddrMiner-F , an active address prob-
ing algorithm for the case where the address space regions
contain few seeds (§6). Existing methods cannot effectively
learn seed characteristics for active address probing in this
scenario due to the lack of seeds. The core idea of AddrMiner-
F is also to generate targets for probing by selecting the most
relevant patterns from the common pattern library and migrat-
ing to regions with only a few seeds. Similar to AddrMiner-N ,
AddrMiner-F first uses the same method to build a common
pattern library (can reuse the one built by AddrMiner-N ).
Then, it improves the efficiency of address detection by ex-
tracting relevant patterns from the common pattern library
to generate scanning targets using only a few seeds. This is
because a few seeds can also provide some information for
guiding pattern selection.

Third, we present AddrMiner-S , which learns the density
characteristic of seeds and corrects density bias to find the real
high-density regions of active addresses for address detection,

for the case where the address space regions contain sufficient
seeds (§7). The key idea of AddrMiner-S is motivated by
the higher density regions of active addresses, the higher the
hit rate of active addresses. It uses reinforcement learning
to update the density distribution of the seeds based on the
rewards found for the active addresses and moves toward the
actual address distribution to correct the density bias caused
by the sampling of seeds.

AddrMiner naturally works in all announced prefix spaces
and enables comprehensive active IPv6 address probing in
different scenarios by corresponding algorithms to gradually
discover active IPv6 addresses from scratch, from few to
many.

Contributions. We make the following contributions:

• We present an active IPv6 address probing method,
AddrMiner-N . It fills the gap of address probing in the
seedless address space regions and discovers active IPv6
addresses covering 86.4K prefixes announced by BGP,
accounting for 81.6% of all announced prefixes.

• We propose an active IPv6 address probing method,
AddrMiner-F , which can further discover active IPv6
addresses in address space regions with few seeds. It can
find 70%-150% more active addresses than AddrMiner-
N and the state-of-the-art algorithms.

• We present an efficient active IPv6 address probing
method, AddrMiner-S , which can efficiently perform
active IPv6 address probing in address space regions
with sufficient seeds. Compared with state-of-the-art al-
gorithms, the results show AddrMiner-S improves the
hit rate of active addresses from 28.9% to 56.3%.

• We originally design and implement a global active IPv6
address probing system and discover 2.1 billion active
IPv6 addresses, including 1.7 billion de-aliased active
addresses and 0.4 billion aliased addresses, through con-
tinuous running AddrMiner for 13 months. The devel-
oped code and continuously probed active addresses are
made publicly available at:

https://github.com/AddrMiner/AddrMiner

2 Background

In this section, we briefly introduce the background of IPv6
addresses and discuss the characteristics of IPv6 addresses.

IPv6 addresses are 128 bits long. IPv6 unicast addresses
consist of a global routing prefix, a local subnet identi-
fier, and an interface identifier (IID). We represent IPv6
addresses in a human-readable text format using eight
groups of four hexadecimal characters, each group having
16 bits in total, separated by a colon (“:”). We refer to
each hexadecimal character (corresponding to the four bits
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of the address) as a nybble. An example IPv6 address is
2001:0db8:0000:0000:0008:8000:200c:417a. To simplify the
IPv6 representation, the leading zeros of each group are
usually excluded, and the longest all-zero group sequence
is replaced with a double colon (“::”). Thus, the simpli-
fied representation of the IPv6 address in this example is
2001:db8::8:8000:200c:417a.

IPv6 addresses have the following characteristics. (1) Vast-
ness of IPv6 address space: IPv6 address space is 2128, 296

times of IPv4 address space. This makes active IPv6 addresses
very scarce and more hidden, making it a challenging task to
find active IPv6 addresses. (2) Diversity of IIDs: IID can be
assigned in various ways, such as static configuration [20],
stateless address autoconfiguration [37], and DHCPv6 [40].
IPv6 addresses with random IIDs are more difficult to detect.

3 Related Work and Motivation

This section reviews related work and clarifies the motivation
of our work on discovering active addresses in the vast IPv6
address space. The existing work can be divided into the
following three categories:

Public Resources Extraction. This method obtains ac-
tive IPv6 addresses through public resource lookup or resolu-
tion [6, 13, 18, 50]. DNS is a common and effective channel.
Strowes et al. [50] obtained 965K globally routable IPv6 ad-
dresses by exhaustively enumerating the reverse DNS do-
mains in the IPv4 address space and performing AAAA
queries on the results. Fiebig et al. [13, 14] walked the
rDNS tree and collected 5.8M IPv6 addresses. Borgolte et
al. [6] also obtained 2.2M IPv6 addresses through DNSSEC-
signed reverse zones. Besides, Gasser et al. [18] collected
58.5M IPv6 addresses from public data sources, including
Domain Lists [1, 2, 17, 41, 44, 49], FDNS [46], AXFR [35],
Bitnodes [54], and RIPE Atlas [38].

Although we can get IPv6 addresses through public re-
sources, in the latest hitlist [18], these addresses only cover
25.5K announced prefixes, which is only ∼21.3% of all an-
nounced prefixes. Therefore, it is challenging to obtain glob-
ally active IPv6 addresses from public sources alone.

Passive Collection. This approach entails passively col-
lecting traffic or log files at vantage points and extracting
active IPv6 addresses from them [15, 19, 42, 47]. For the first
time, Plonka et al. [42] used IPv6 addresses collected from
the activity logs of all customers accessing a global CDN
as a dataset and analyzed the characteristics of active IPv6
addresses. Subsequently, Foremski et al. [15] proposed a tech-
nique for obtaining potentially active IPv6 addresses from the
initial seed dataset. A similar attempt was made by [19, 47]
using a large Internet Exchange Point as a vantage point to
collect active IPv6 addresses.

However, the above studies have the following shortcom-
ings. First, the vantage point used is not publicly available and
is difficult for others to access. Second, to obtain global active

Problem
Classification

IPv6
Hitlist

Prefixes 
Announced 

By BGP

AddrMiner-N

AddrMiner-F

AddrMiner-S

Aliased Prefix
Detection

Active
Addresses

Policy Engine

No addrs

Few addrs

Sufficient addrs

Public
Sources

Figure 1: High-level overview of AddrMiner

IPv6 addresses, many vantage points need to be deployed
worldwide, with high probing overhead. AddrMiner removes
the vantage point limitation and decreases the threshold for
address probing. Any node configured with IPv6 network can
use AddrMiner to probe active addresses.

Active Address Probing. A viable approach is to dis-
cover more active IPv6 addresses by collecting seeds, min-
ing the structural patterns and characteristics of the seeds to
generate target addresses, and probing the target addresses
[7, 15, 18, 24, 33, 36, 47, 51]. Ullrich et al. [51] proposed
a pattern-based recursive algorithm that greedily includes
more seeds for scanning each iteration through a variable ad-
dress range. Entropy/IP [15, 18] learns the internal structural
characteristics of seeds to generate target addresses and then
scans them to discover active IPv6 addresses. 6Tree [33] and
6Hit [24] combine the hierarchical characteristic of seeds to
construct hierarchical space trees, and dynamically guides the
direction of address generation based on the probing results.
6Gen [36] and DET [47, 48] use the density characteristic
of seeds to detect active IPv6 addresses in high-density re-
gions of seeds. 6GAN [7] aims to discourage aliased address
generation via generative adversarial nets with reinforcement
learning.

Although all the above methods improve active IPv6 ad-
dress probing efficiency, the sampling bias of seeds makes
the characteristics of actual active addresses inconsistent with
those of seeds, resulting in the inability to efficiently generate
target addresses for scanning. Although 6Hit attempts to use
reinforcement learning to reduce the dependence on seeds, it
simply uses the hierarchical characteristic and uses a space
repartition mechanism, which leads to random changes in the
probe space to reduce the address probing efficiency.

4 Overview of AddrMiner

This section describes an active IPv6 address probing system,
AddrMiner, capable of performing systematic and compre-
hensive probing of active IPv6 addresses to achieve the accu-
mulation of detected globally active addresses from scratch.

Figure 1 illustrates a high-level overview of AddrMiner . It
collects seeds to make an IPv6 hitlist from public sources and
divides them into different announced prefix spaces. Then, it
classifies these announced prefix spaces into different scenar-
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ios based on the number of seeds each prefix space contains.
The policy engine uses different policies for active address
probing according to different scenarios. 1) For announced
prefixes with no seeds, AddrMiner-N uses the organization
association strategy to select candidate patterns to probe for
active IPv6 addresses (§5). 2) For announced prefixes with
few seeds, AddrMiner-F uses the similarity matching strat-
egy to select candidate patterns to discover active addresses
further (§6). 3) For announced prefixes with sufficient seeds,
AddrMiner-S uses reinforcement learning techniques to learn
seed address characteristics while circumventing the short-
comings of similar existing schemes to perform active address
probing more effectively (§7). The classification of the sce-
narios for prefix spaces with seeds is discussed in detail in
Appendix C. The detected active addresses discovered from
the policy engine are tested for aliased prefixes. After elimi-
nating the aliased prefixes, the de-liased active addresses are
the globally active IPv6 addresses and are added to the IPv6
hitlist.

AddrMiner enables comprehensive probing of global active
IPv6 address, and provides more and balanced data to support
further measurement and security analysis of IPv6 networks.

5 AddrMiner-N

This section presents AddrMiner-N , which can guide active
address detection under an announced prefix without seeds
using patterns of active addresses under other prefixes owned
by the same organization to which the prefix without seeds
belongs.

5.1 Overview of AddrMiner-N

Since there are no seeds in the address space region, we can-
not use seeds to guide active address probes. An effective way
to generate targets under such regions is to use specific IPv6
address patterns, i.e., mining the structural characteristics of
active addresses collected in other regions and then migrating
to regions without seeds to generate targets for scanning. This
idea is feasible due to the observation that address patterns
tend to have similarities across network configurations [20].
Our analysis of the tens of millions of IPv6 addresses on the
Gasser’s hitlist [18] confirms this observation. For example,
gateway addresses often have a suffix of ::1 or ::2. Therefore,
the crux of the problem is to obtain a common pattern library
containing address patterns commonly used in address space
regions that have seeds. Our solution, AddrMiner-N , is to use
undirected graphs to represent the similarity between patterns
(§5.2), and then use graph community discovery methods to
find communities with high pattern similarity. Each commu-
nity represents a common address pattern, and these commu-
nities construct a common pattern library (§5.3). Finally, it
uses the organization association strategy to migrate these

Figure 2: Workflow of AddrMiner-N

common address patterns to any announced prefix for address
generation (§5.4).

5.2 Undirected Graph Construction

AddrMiner-N constructs an undirected graph to describe the
differences between address patterns. The nodes represent the
address patterns, and the weights of the edges represent the
similarity between different patterns.

Pattern Representation. The address patterns constructed
by existing strategies [20, 22, 29, 32, 47] often do not corre-
spond to an accurate probing space. If the space is too large,
such as Embedded-IPv4, it will waste a lot of probing re-
sources and reduce the probing efficiency; if the space is too
small, such as low-byte, it will limit the probing range and
fail to find a large number of active addresses. To solve such
a problem, we use Balanced Spatial Pattern Representation
(BSPR) [31] to extract address patterns. BSPR can accept
any IPv6 address set as input and generate flexible patterns
representing the structural characteristics of that address set,
which can be used to generate targets.

First, the BSPR uses four representations to describe the
range of values for any nybble of an IPv6 address, including
Single, List, Interval, and Wildcard:

Single: The nybble takes a fixed value, which means that
the addresses in the address set do not change in the value
taken at that nybble position.

List: The value taken for this nybble is variable, and the
range is the set of values taken for the IPv6 addresses in the
address set at the nybble position.

Interval: The nybble value is variable. The range is a
closed interval consisting of the minimum and maximum
values of the IPv6 address set at the nybble position, possibly
including values that do not appear at the nybble position.

Wildcard: The nybble value is variable and ranges over
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Table 1: The relationship between the four representations
and three statistics used by BSPR

ID Range Entropy Values Representation Example Number of values

0 0 0.00 1 Single a 1
1 ≥ tr ≥ te ≥ tc Wildcard * 16
2 ≥ tr ≥ te < tc List [1cf] 3
3 ≥ tr < te ≥ tc Interval [1-e] 14
4 ≥ tr < te < tc List [2be] 3
5 < tr ≥ te ≥ tc Interval [6-b] 6
6 ≥ tr ≥ te < tc List [679] 3
7 < tr < te < tc List [67] 2

all hexadecimal values and may include values that do not
appear at the nybble position, as indicated by the wildcard *.

To choose a suitable representation, BSPR introduces three
statistics for each nybble of IPv6 address in the input address
set: range, Shannon entropy, and value count. The range is
equal to the maximum value of the value taken by the nybble
minus the minimum value; the Shannon entropy can be calcu-
lated according to Formula (5-1); the value count is equal to
the number of values that have appeared at the position of the
nybble.

E(xi) =−
0xf

∑
v=0x0

p(xi = v) log16 p(xi = v) (5-1)

The base of Formula (5-1) is 16 because the value count of the
nybble is 16, which makes the result of the Shannon entropy
calculation fall into the interval [0,1], where xi represents the
ith nybble. The value range of i is [1,32], meaning the 32
nybbles of an IPv6 address. p(xi = v) can be obtained by
dividing the number of IPv6 addresses that take the value v at
the ith nybble position in the address set by the total number
of addresses.

Table 1 shows how BSPR decides the nybble representation
based on these three statistics. Whether these three statistics
are large or small is determined by three thresholds tr, te and
tc for range, entropy, and value count respectively.

Second, BSPR needs to solve how to determine the value of
the three hyperparameter thresholds. If the thresholds are set
too small, the modeled address space increases rapidly. At one
extreme, all three hyperparameters are set to 0, and the address
generation patterns are all in Wildcard. If the thresholds are
set too large, the modeled address space is too small. At the
other extreme, all three hyperparameters are taken to their
maximum values. The patterns of address generation are all
in List, and the value of each nybble represented by List
depends entirely on the value of the seed address set, which
will aggravate the sample bias.

Suppose the counts of List, Interval, and Wildcard in a pat-
tern are l, r, and w, respectively. L j, R j represent the count of
values taken at the jth List or Interval, respectively. The value
range of Wildcard is the 16 values of a single hexadecimal
number. Therefore, the size of the space range (SR) of any

24033a00.....[48]0[26][0-5][0-9]0 * **

24033b00.....[48]0[16][3-9][0-9]0 1 **

p1

p2

00000000.....  1   0   1     1      1   0 1 11

00000000.....  1   0   1     1      1   0 0 11

sequence 1

sequence 2

𝑠𝑐𝑜𝑟𝑒 = 	(…𝑟*(1,1)×𝐽(𝐴*, 𝐵*) …𝑟* (1,0)×𝐽(𝐴4 , 𝐵4 )…

Figure 3: Calculation of the similarity of two patterns

pattern string is thus calculated as follows:

SR = 16w ·
l

∏
j=1

L j ·
r

∏
j=1

R j (5-2)

Since l, r, and w are affected by the three hyperparameters,
tr, te and tc, SR is a ternary function with respect to these
three parameters. The domains of tr and tc are the integer of
[0,15] and [1,16], respectively. The domain of te is the real
number of [0,1], which can be discretized, for example, with
an interval of 0.05. Let the range of the ternary function SR
be the set Y . Since its domain of definition is a finite set, and
the range of Y is also a finite set. Let the number of elements
of Y be N. The most balanced space range BSR chosen by
BSPR should be the average of the Y range. Here, we use
the geometric mean because it is less influenced by extreme
values than the arithmetic mean.

BSR = N

√
∏

SR j∈Y
SR j (5-3)

Third, BSPR can choose the set of hyperparameters when
the value of SR is closest to that of BSR as the values of
tr, te and tc, as shown in Formula (5-4). Finally, a pattern is
generated based on Table 1.

argmin
tr ,te,tc

|SR−BSR| (5-4)

Similarity Calculation. The core of constructing undi-
rected edges is to determine between which nodes undirected
edges need to be created and the weights of these undirected
edges. Since patterns are represented by strings, the common
methods of calculating the similarity between strings can
also be used. AddrMiner-N introduces Jaccard similarity [28]
and Hamming distance-based similarity [53] to calculate the
similarity between patterns (specific definitions are given in
Appendix A).

Figure 3 shows an example of calculating the similarity
between two pattern strings. Two main aspects are considered
in the calculation: the similarity of the corresponding nybble
representation and the similarity of the values taken by the
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24033 a 00.....[48]0 [26] [0-5][0-9]0  * **

24033 b 00.....[48]0 [16] [3-9][0-9]0  1 **

p1

p2

24033[ab]00.....[48]0[126][0-9][0-9]0 * ** pnew
∪

Figure 4: Merging process of different patterns

representation. For the similarity of the corresponding nybble
representation, the main focus is to compare whether the
two pattern strings have the same fixed value taken at the
same nybble position, i.e., whether they belong to the Single
representation or not. Non-Single representations include List,
Interval, and Wildcard. We convert all Single representation
nybbles to a zero value, and Non-Single representations are
represented as one, as shown in Sequence 1 and Sequence 2
in Figure 3. In this way, the similarity of the corresponding
nybble representation is obtained by calculating the Hamming
distance between Sequence 1 and Sequence 2. Regarding the
similarity of the values taken by the representation, Jaccard
similarity is used to calculate the similarity of the two sets of
values of the representation at the same nybble position. Thus,
the similarity of the two pattern strings can be obtained by
weighting the Jaccard similarity of the corresponding nybble
with the Hamming distance-based similarity of each nybble
representation as the weight. The calculation is shown in
Formula (5-5), where ai and bi denote the values of Sequence
1 and Sequence 2 at the ith position, and Ai and Bi indicate
the sets of values of pattern strings p1 and p2 at the ith nybble
representation, respectively.

score =
32

∑
i=1

ri (ai,bi) · J (Ai,Bi) , (5-5)

where ri indicates Hamming distance-based similarity at the
ith nybble and J indicates Jaccard similarity.

Finally, a threshold value hmin needs to be determined.
If the similarity between two pattern strings exceeds hmin,
an undirected edge is created. The similarity is used as
the weight of that edge. Otherwise, no undirected edge is
created. The length of announced prefixes generally does
not exceed 56 (14 nybbles). Some prefixes are highly simi-
lar, e.g., 2a02:26f0:128:100:/56 and 2a02:26f0:128:500:/56,
which causes the merge pattern to contain unannounced pre-
fixes, e.g., 2a02:26f0:128:*00:/56, but addresses in the unan-
nounced space are inactive. Therefore, when constructing
the undirected graph, we set hmin to 14.0 to avoid generating
non-announced spaces as much as possible.

5.3 Pattern Mining
After constructing the undirected graph (§5.2), we apply the
community discovery algorithm to cluster similar nodes in

Prefix 
announced 

by BGP

Pattern library

Organization label

To vector

Organization labelPreprocessing

Calculate 
similarity

Multiple

One Address 
generation 
and probe

filter

Candidate pattern

Sorted list of patterns

Figure 5: Organization association strategy

undirected graphs and build a common pattern library by
mining common patterns from communities.

The graph community discovery algorithm will produce
many communities. These nodes have high similarity in the
same community but low similarity in different communities.
After obtaining the community, we merge the patterns of the
nodes contained in the community to extract the common
pattern about the community. To make the pattern contain
more seeds, we adopt the union method to obtain the pattern.
Suppose that C represents a community, which contains k
nodes. That is, C = {p1, p2, ..., pk}. Then the common pattern

of the community is: pC =
k⋃

i=1
pi. At the nybble positions

corresponding to the different patterns, we take a union of
the values corresponding to the nybble. Figure 4 shows the
merging process of different patterns.

5.4 Organization Association Strategy
To probe active addresses under announced prefixes with
no seeds, AddrMiner-N adopts an organization associa-
tion strategy, the core of which is to extract the most rel-
evant patterns of the specified announced prefix from the
pattern library and then use them to generate target ad-
dresses for scanning. The reason for adopting this strat-
egy is that address configuration patterns are more simi-
lar within the same network organization than within dif-
ferent organizations. In the constructed common pattern li-
brary, for example, the announced prefixes of organization
"Wireless Broadband Service Provider Malaysia" contain the
following common patterns: the sixth group of nybbles is
represented by Wildcard, and the other nybbles are repre-
sented by Single, where the last nybble is 1, and the other
nybbles are 0. Specifically, the prefix 2405:7c00:a004::/48
contains the pattern 24057c00a00400000000****00000001
and the prefix 2405:7c00:a000::/48 contains the pat-
tern 24057c00a00000000000****00000001. AddrMiner-N
makes full use of the organization information of announced
prefixes to filter relevant patterns from the pattern library. The
evaluation results in §8.1 show that this strategy can enhance
significantly improve the probing efficiency.

Figure 5 shows the method of filtering the pattern library
using organization labels. We first construct organization la-
bels for the announced prefixes to which the patterns in the
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pattern library belong. We obtain the organization label by
querying the whois information in Hurricane Electric [10].
To avoid the influence of generic words on the organization
association strategy, we remove generic words, such as corpo-
ration, international, etc. For example, the organization label
of the prefix 2a01:111:2003::/48 is "Microsoft Corporation",
we add an English word "Microsoft" to the organization label
of the prefix. Similarly, we obtain the organization labels of
the announced target prefixes in the same way. To calculate
the degree of similarity between the organization labels, we
next convert these labels directly into vectors by using the
most popular fastText [5, 26, 27] pre-training model in word
embedding. Then, we use Euclidean distance to calculate the
similarity between the organization label of the target prefix
and the organization labels of each pattern in the pattern li-
brary. The calculation is shown in Formula (5-6) and yields a
list of korg most similar patterns:

similarity = ∑
i∈T, j∈W

d(vi,v j), (5-6)

where T is the set of words for the organization label of the
target prefix, W is the set of words for the organization label
of a common pattern in the pattern library. This approach
can identify the same network organization, e.g., identifying
"Akamai Technologies, inc" and "Akamai International B.V."
as belonging to the organization "Akamai" and thus selecting
more relevant patterns. Note that when the similarity is small,
i.e., the prefixes belong to different organizations, such as
"Akamai" and "Fastly", the candidate patterns are randomly
selected from the common pattern library.

After obtaining the candidate patterns, we use them to
generate target addresses under the target prefix. More specif-
ically, iterate over each candidate pattern to generate a spec-
ified number of targets, and then replace the prefixes of the
generated target addresses with target prefix. Finally, we probe
whether these addresses are active or not.

6 AddrMiner-F

Target regions with few seeds come from both (1) prefix space
regions containing few seeds selected from the public IPv6
hitlist, and (2) transformed by detecting few active addresses
after running AddrMiner-N in regions without seeds. We
experimentally find that the active address hit rate of the state-
of-the-art algorithm [47] decreases with the number of seeds,
especially when the number of seeds is less than 10, the hit
rate is already less than 1% (See more details in Appendix
C). However, the number of announced prefixes with only
few seeds is large. As shown in §8.1, we find more than
30K announced prefixes with less than 10 seeds. To solve
this problem, we propose AddrMiner-F , which can use few
seeds to extract the most relevant patterns from the common
pattern library to generate targets for scanning and achieve
effective detection of active addresses in announced prefixes

Target pattern

Pattern library

BSPR

Address generation 
and probe

… 𝑝𝑎𝑡𝑡𝑒𝑟𝑛'

Candidate patterns

Similarity    matching

𝑝𝑎𝑡𝑡𝑒𝑟𝑛(

Prefix announced by BGP 

Figure 6: Similarity matching strategy

with few seeds. We call this strategy of matching address
patterns using few seeds the similarity matching strategy.
AddrMiner-F also consists of three steps: undirected graph
construction, pattern mining, and similarity matching strategy.
Among them, the first two steps have been introduced in §5.2
and §5.3, respectively. The similarity matching strategy is
described in detail below.

In this case, we have a small number of IPv6 seeds under
the target prefix. Therefore, the similarity matching strategy
mainly combines these seeds to filter out a more relevant
candidate pattern list from the pattern library. Figure 6 shows
the process of similarity matching strategy. We first use BSPR
to obtain the patterns of few seeds under the target prefix (i.e.,
the target pattern). Then we traverse the pattern library and use
Formula (5-5) to calculate the similarity between the target
pattern and each pattern in the pattern library separately and
find the kheap most similar candidate patterns. After getting
the candidate patterns, we use the address generation method
in §5.4 to generate the target addresses and probe whether
they are active or not.

7 AddrMiner-S

Target regions with sufficient seeds come from three scenarios:
(1) prefix space regions containing sufficient seeds selected
from the public IPv6 hitlist, (2) transformed by detecting suf-
ficient active addresses after running AddrMiner-N in regions
without seeds, and (3) transformed by detecting sufficient ac-
tive addresses after running AddrMiner-F in regions with few
seeds. If the address space regions have enough seeds, the
state-of-the-art address generation algorithms based on seeds
are effective attempts. They learn the characteristics of seeds
to generate target addresses for scanning. However, due to the
seeds’ sampling bias, the characteristics of the seeds do not
coincide with the characteristics of the actual active addresses
under the address space regions. The sampling bias reduces
the probing efficiency and wastes resources. Although 6Hit
attempts to use reinforcement learning to eliminate sampling
bias, it simply uses the hierarchical characteristic of seeds and
it’s space repartition mechanism randomly generates target
addresses to reduce the efficiency of active address detec-
tion. In our work, we propose AddrMiner-S , which learns
seeds’ density characteristic and uses reinforcement learning
to correct the discrepancies in the density distribution caused
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by the sampling of seeds. In space expansion, AddrMiner-S
guide the target address generation in a larger address space
by merging subspace density characteristic. The model about
AddrMiner-S is built in Appendix B.

7.1 Target Address Generation Based on Rein-
forcement Learning

We know the higher the density of active addresses, the higher
the hit rate of active addresses (The theoretical proof is in Ap-
pendix B). Although the active address density of each region
in the real IPv6 network is unknown, we estimate the active
address density of each region through Thompson sampling.
After discovering seeds’ high-density regions, we use the re-
inforcement learning method to select candidate regions for
generating target addresses in the seed address’s high-density
regions, update the active address density distribution through
feedback rewards of each iteration’s scanning results, and
dynamically adjust the target address generation’s direction.
As the number of iterations increases, the evaluation of the
probability of each action’s reward will become more accu-
rate. Eventually, high-density regions of active addresses in
the real network will be discovered, and address generation
will be performed in the high-density regions.

Space Partition: We first discover the high-density regions
X = {x1,x2, ...,xk} of seeds. To quickly cluster the density
space distribution of seeds, we use the density space tree [47]
to find high-density regions of the seeds in linear time. The
root node represents the entire active address space, and the
leaf node represents a high-density region of seeds. In each
node region xi, there are two attributes αi and βi. Where αi
represents the number of active addresses probed in region xi,
and βi represents the number of inactive addresses discovered
in region xi. Initially, we take out all the leaf nodes from the
density space tree as the high-density regions set X .

After discovering regions with a high density of seeds, we
dynamically probe active IPv6 addresses based on reinforce-
ment learning. The iterative process of reinforcement learning
consists of three main steps: 1) Generate target addresses to
probe (action), 2) Update the reward of probed regions with
the number of active addresses and inactive addresses (ac-
tion’s reward) to update the density distribution, and 3) Merge
the nodes of the space tree to meet the needs of exploring a
larger address space.

Target Generation: To adapt to the large-scale probing of
addresses and speed up address probing, we select multiple
target regions in each iteration, and the budget (the probing
number of target addresses) consumed is b. Since the node
region with a larger reward is more likely to discover active
addresses, in each iteration, we select the top P searchable
regions based on the reward for target address generation in
the candidate regions X . We use prior events (action’s reward)
to evaluate the distribution of active address density. However,
the larger space, the higher the risk of searching in the node

region (more difficult to find active addresses). For example,
in extreme cases, the hit rate of active addresses is extremely
low in the entire IPv6 address space. To reduce the risk of low
address probing efficiency due to excessive space, we use the
region address variable space (variable dimensions) to adjust
the probability of generating active addresses in each region.
The number of target addresses generated in each region is
calculated as follows:

p(xi) =
eRi

log(Vi)∗
n
∑

i=1

eRi
log(Vi)

(7-1)

N(xi) = b∗ p(xi) (7-2)

Where Ri indicates the expected reward in region i, p(xi) indi-
cates the probability of generating target addresses in region
xi, N(xi) indicates the number of target addresses generated
in region xi, Vi represents the number of variable dimensions
in active addresses in region xi, and n represents the probing
regions of the top P percent of the candidate regions X , b
represents the budget consumed per iteration.

Reward Update: We update node regions’ reward to in-
crease the chance of generating target addresses in high-
density regions for next-round probing. After each round of
probing, we need to update the probed node region’s reward
value based on the probing result. Initially, we take out all
the leaf nodes from the density space tree as the high-density
regions set X and each leaf node’s reward in xi is initialized
as follows:

R1
i = Beta(α1

i ,β
1
i ) (7-3)

where Ri represents the expected reward in leaf node region
xi. Initially, α1

i is the number of seeds distributed in the leaf
node region xi plus 1, and β1

i =1.
After each iteration, the expected reward of the probed

region xi is updated as follows:

Rt+1
i = Beta(αt

i +α
∗,βt

i +β
∗) (7-4)

where α∗ represents the number of new active addresses from
scanning result in node region xi, and β∗ represents the num-
ber of new inactive addresses from scanning result in node
region xi. We assume b∗ represent the target address generated
in the node region xi in each iteration. α∗, β∗ and b∗ satisfy
the following relationship: b∗ = α∗ + β∗.

Node Merging: The search space in the node is defined as
the seed address’s variable dimensions, but this will cause the
search space to be incomplete. We adopt the method of merg-
ing upward after the child node’s space search is completed,
thus ensuring that space not included in the child node can be
searched in the parent node.

When a leaf node region needs to be merged, we need
to merge all the leaf nodes of the subtree (T ) rooted at this
leaf node’s parent node to ensure that addresses continue
to be generated in the high-density region. We can get all
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the leaf nodes recursively, but the time consumption is too
high. Because the leaf nodes of T are all included in the
density regions X to be searched, we can store all the node’s
child nodes during the tree-building process and only need to
intersect with X to get all the leaf nodes when merging. The
merging strategy of the node’s parameters is as follows:

1) Probed addresses merge: The active addresses (α f ) and
inactive addresses (β f ) found in the parent node ( f ) region
is equal to the union of the set of active addresses found in
all child nodes (C = {x1, ...,x j}). The specific relationship is
expressed as follows: α f =

⋃ j
i=1 αi and β f =

⋃ j
i=1 βi.

2) Reward merge: The parent node’s reward value still
satisfies beta distribution, and the reward = Beta(α f ,β f ) is
calculated based on the active and inactive addresses obtained
by strategy 1).

3) Space merge: The target address generation space of
the parent node is equal to the variable space of the parent
node minus the variable space of the child nodes. The specific
relationship is expressed as follows:
f .var_space = f .var_space−

⋃ j
i=1 xi.var_space.

8 Evaluation

This section highlights the evaluation of the effectiveness of
active address probing for AddrMiner . AddrMiner is an active
measurement method to discover active addresses. Therefore
in our experimental evaluation, we compare AddrMiner with
active address probing methods, not with passive collection
methods (e.g., vantage point mirroring traffic) or public re-
source extraction methods (e.g., rDNS, Domain Lists, FDNS,
AXFR). In all following experiments, we perform aliased
prefix detection and aliased address removal.

Data: We automated the process of obtaining Gasser’s pub-
licly de-aliased active addresses from December 2020 to June
2021, and obtained 46.2M active IPv6 addresses, covering
49.2K announced prefixes. In addition, we obtained 105,973
announced prefixes from the Pyasn project [3]. As shown in
Table 2, we classify announced prefix spaces into no seed
address spaces, few seed address spaces, and sufficient seed
address spaces according to the number of seeds each an-
nounced prefix space contains. We have explored the number
of seeds on the probing efficiency in Appendix C and selected
target regions with the number of seed addresses less than ten
as few seed scenarios.

Active Detection: When judging whether the target address
is active, we send an ICMPv6 request packet using the ZMap
to each address. If we receive a response from an address, we
determine that it is active at the time of detection.

Default Parameters: We empirically set the important pa-
rameters. In undirected graph construction, hmin is set = 14.0.
In pattern mining, the Louvain algorithm is used for graph
community discovery. Pattern strings with space range SR
greater than 107 are filtered. In AddrMiner-S , we set P to

Table 2: Scenarios classification in the data set
Scenarios Classification The number of announced prefixes
No seeds 56,730
Few seeds (≤ 10) 31,771
Sufficient seeds 17,472

Figure 7: Hit rate of active addresses in the no seed scenario.

0.05, i.e., the top 0.05 percent of the highest reward nodes
are selected for probing. We set korg and kheap to 10.0. The
maximum number of seeds contained in each leaf node is 4,
i.e., δ = 4. We set the granularity of the IPv6 address repre-
sentation to 4, i.e., γ = 4.

8.1 Efficiency of AddrMiner-N

Suppose bcount represents the number of announced prefixes
to be probed, pcount indicates the number of candidate pat-
terns for each announced prefix, and g denotes the number
of addresses generated in each pattern. Thus, the number of
addresses generated in each announced prefix is pcount × g,
and the number of target addresses generated in all announced
prefixes is M = bcount× pcount×g. We generate different num-
bers of target addresses for each announced prefix without
seeds, i.e., bcount = 56,730, pcount = 10, and g=1, 10, 100, 1000.

Figure 7 shows the active address probing results of
AddrMiner-N and other existing methods in the seedless ad-
dress scenario. The vertical axis represents the average hit
rate of probed prefix spaces without seeds (bcount ). We found
that state-of-the-art target address generation algorithms, in-
cluding Entropy/IP [15], 6Gen [36], 6Tree [33], 6Hit [24],
and DET [47], do not work in seedless regions since they
need to learn seeds’ characteristics. Compared with random
scanning, which has extremely hit rate of only about 0.6%,
AddrMiner-N has a higher hit rate of up to 3.6% for active
address probing.

Furthermore, we perform a more comprehensive probing
through the announced prefix space. We use 105,973 an-
nounced prefixes as probing regions, employ 500 patterns un-
der each announced prefix, and generate 100 target addresses
under each pattern, i.e., bcount = 105,973, pcount = 500, and
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Table 3: The probing results of the two probing methods
Probing Method #Active Addrs #BPFXs Coverage
AddrMiner-N 158,959,500 86,423 81.6%
Random Scanning 708,697 1,421 1.3%

BPFXs: prefixes announced by BGP.
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Figure 8: Hit rate of active addresses in the few seed scenario.

g= 100. Thus, we generated about 5.2 billion target addresses
for probing. Table 3 shows the number of active addresses
discovered by the two probing methods and the number of an-
nounced prefixes covered by the active addresses. AddrMiner-
N discovered approximately 159.0M active addresses, cov-
ering 86.4K announced prefixes, accounting for 81.6% of all
announced prefixes. It indicates that AddrMiner-N can per-
form active address probing over a broader address space and
is more suitable for global active IPv6 address probing.

8.2 Efficiency of AddrMiner-F

In few seed scenario, we evaluate AddrMiner-F by comparing
active address hit rate with AddrMiner-N and the state-of-the-
art target address generation algorithms. We generated dif-
ferent numbers of target addresses among 31,771 announced
prefixes containing few seeds, i.e., bcount = 31,771, pcount =
10, and g=1, 10, 100, 1000. Figure 8 shows the hit rate of ac-
tive address probing. When target addresses are small, DET,
6Hit, and 6Tree randomly generate target addresses in low
nybble space. As the target addresses increase, the larger the
target address will cause the hit rate to decrease. Therefore, in
the scenario with few seeds, the state-of-the-art target address
generation algorithms are inferior. The hit rate of active ad-
dresses is very low when the target space represented by the
pattern is too large or too small. We probed all mined com-
mon patterns and found that the hit rate was highest when the
pattern contained 2 variable nybbles ([32-256] targets). This
is because we choose the pattern space closest to the probing
number (G) to generate targets randomly. This explains why
the hit rate of AddrMiner-N increases and then decreases

Table 4: Ratio of common patterns in the pattern library
Patterns Example of patterns in pattern library Ratio/%
Low-byte 20010db800000000000000000000000[1-a] 25.886
Embedded-IPv4 20010db80122034400000000874b2b[3-f][4-f] 7.420
Embedded-port 20010db800000000000000000000[01]*** 0.100
ISATAP fe8000000000000002005efec0000*** 0.002
EUI-64 fe8000000000000002aa00fffe3f[2-f][a-c]1c 3.100
Other 240085001000000000de00e300**00** 63.490

in Figure 7 and Figure 8. As the number of target addresses
increases, the expansion of the probe space reduces the effec-
tiveness of similarity matching, which affects the efficiency
of AddrMiner-F probing. However, AddrMiner-F is more
effective overall than the other methods. When AddrMiner-F
generates 10-10,000 target addresses for each announced pre-
fix containing few seeds, the active address probing efficiency
is improved by 70%-150% compared to existing methods.
AddrMiner-F enables a more efficient transition from few
active address scenario to sufficient address scenario.

8.3 Common Pattern Library Analysis

The common pattern library generated by AddrMiner is a set
of pattern strings. We analyze this pattern library and provide
some further guidance for active IPv6 address probing.

RFC documents [20, 32] presents several common patterns
in the IID of IPv6 address, e.g., may be a low-byte IID with a
run of zeroes followed only by a low number, an embedded-
IPv4 IID inserting one IPv4 address, an embedded-port IID
including the service port in the lowest-order byte of the IID,
an ISATAP IID with "0200:5EFE" flag and IPv4 address, an
EUI-64 IID with an embedded MAC address. Table 4 shows
the common address patterns, examples of pattern strings,
and the ratio in the pattern library. We find that EUI-64 IID
and ISATAP take fixed values at some locations where the
address is fixed, so the pattern strings use the Single policy,
which is a non-dynamically changing nybble, at these fixed
locations. Low-byte address patterns will have more consecu-
tive nybbles in the middle that takes on a value of zero and
only change at the end in multiple consecutive nybble posi-
tions, such as 20010db800000000000000000000000[1-a] for
2001:db8::1 or 2001:db8::4 for these types of IPv6 address
structures. The high percentage of the low-byte address pat-
tern in the pattern library means that a brute-force scanning
can be attempted for such structures, i.e., fixing the value
of the middle nybbles to 0 and traversing only the last con-
secutive nybbles. It explains the high hit rate of incremental
scanning when the number of targets is small. In addition,
AddrMiner can find many additional address patterns, such as
the other types in Table 4, which also account for 63.49% of
the total. Although such address patterns do not correspond to
address patterns known from RFC documents, their stronger
regularity can reduce the difficulty in brute-force scanning of
such addresses and improve the efficiency of address probing.
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In short, AddrMiner can dig out address patterns that not only
contain the address patterns of RFC documents, but can also
discover more valuable address patterns. We do not consider
the assignment of given address space to one of the classes
to be static. Furthermore, AddrMiner adds newly discovered
addresses to the IPv6 hitlist, and updates the common patterns
promptly for dynamic IPv6 address spaces.

8.4 Efficiency of AddrMiner-S

We evaluate the efficiency of AddrMiner-S in probing ac-
tive addresses by comparing the active address hit rate of
AddrMiner-S and the state-of-the-art algorithms.

Here, we randomly select announced prefixes that contain
more than 1K seeds. We run the above algorithms for each
announced prefix to generate target addresses with a budget
of 10 times the seeds. Figure 9(a) illustrates the address prob-
ing efficiency of AddrMiner-S in announced prefixes with
sufficient seeds. We observe that the active address hit rate of
AddrMiner-S outperforms other state-of-the-art algorithms in
every announced prefix. In particular, the active address hit
rate of AddrMiner-S reaches 35.2% in prefix 2001:1291::/32.

To further validate the efficiency of AddrMiner-S , we ran-
domly select 1M active addresses as seeds from Gasser’s
public hitlist. We use AddrMiner-S and state-of-the-art algo-
rithms (Note that 6GAN is not suitable for large-scale global
active address detection since the time complexity is too high
based on deep learning framework) to generate target ad-
dresses with budgets ranging from 10M to 50M. We set the
budget b consumed for each iteration to 10K. Figure 9(b)
shows the probing results after removing the aliased addresses.
We find that AddrMiner-S outperforms the other algorithms.
When the budget is 50M, the hit rates of the algorithms from
highest to lowest are AddrMiner-S (56.3%), DET (28.9%),
6Tree (12.9%), 6Gen (14.6%), and Entropy/IP (3.1%), 6Hit
(2.6%), and the hit rate of AddrMiner-S is almost twice as
much. In particular, 6Hit has a high hit rate when the budget
is small. Still, space expansion leads to a rapid decrease in hit
rate as the budget increases because the target addresses are
generated randomly due to the spatial repartition mechanism
of 6Hit. AddrMiner-S maintains the state learned from sub-
space during space expansion to avoid a rapid decrease in hit
rate and effectively improve detection.

In the ideal sampling case, the density distribution of seeds
is consistent with the density distribution of active addresses
in the actual network. The reward (Ri) of each iteration re-
flects the active address density distribution of the real net-
work. The density distribution of seeds updated by rewards
in the next iteration (Rt+1

i ) is more convergent to the distri-
bution of active addresses in the actual network compared to
the previous iteration (Rt

i). Therefore, the similarity between
the current seed address density distribution and the actual
network’s active address density distribution can be obtained
by calculating the difference in reward ranking after each

iteration using Hamming distance. As shown in Figure 9(c),
the density distribution of seeds increasingly converges to the
density distribution of active addresses in the actual network
as the number of iterations increases. In addition, AddrMiner-
S strikes a balance between exploration and exploitation (the
specific analysis is given in Appendix D).

9 IPv6 Hitlist

AddrMiner probes each IPv6 prefix announced by BGP, re-
quiring approximately one month to probe all announced pre-
fixes. As the number of all announced prefixes exceeds 100K,
this results in a long probing time. Therefore, to deal with the
dynamic changes in the IPv6 space, we repeat the probing
of IPv6 prefixes announced by BGP every month. The probe
period should be set as short as possible to get a more accu-
rate view of active IPv6 addresses, depending on the probe
resources. We have developed AddrMiner for continuously
probing active IPv6 addresses worldwide for 13 months and
discovered 2.1B active addresses (covering 86.4K announced
prefixes), including 1.7 billion de-aliased active addresses
(IPv6 hitlist) and 0.4 billion aliased addresses. Meanwhile,
we found 1.1M aliased prefixes, which are described and ana-
lyzed in Appendix E. The IPv6 hitlist is analyzed as follows:

Time Characteristics. Active IPv6 addresses have time
characteristics. IPv6 addresses, especially client addresses,
have a short lifetime. Therefore, when a probe response is re-
ceived, we can only determine that the IPv6 address is active
at the response time. We analyze the stability of addresses to
determine addresses’ lifetime, mainly by separating server ad-
dresses, router addresses, persistent or stable client addresses,
and temporarily active client addresses.

We define nd-stable to represent the stability of the address.
For example, 1d-stable is active for at least one day during
the continuous detection period, and nd-stable address means
active for at least n days. The active address of nd-stable
is also the address of (n-1)d-stable. We send an ICMPv6
request to each address we collect every day and record these
addresses’ lifetime according to the response information
from January 8, 2021. As shown in Table 5, we found that the
long-term active addresses(100d-stable addresses) are more
than 46%. Compared with temporarily active client addresses,
long-term active addresses are more meaningful for detection.

IID Analysis. We analyze the IID types of active address
assignments to understand the global IPv6 address configura-
tion landscape. Utilizing the addr6 tool [12], we have divided
the IID portion of IPv6 addresses into different types.

In Table 5, we analyze the IID allocation types of different
stable addresses. The 1.7 billion 1-stable de-aliased addresses
mean IPv6 hitlist we collected. We found that pattern-bytes
(some discernible patterns) IID addresses accounted for as
high as 40.8%, closely related to our detection strategy be-
cause we mainly detect active addresses by constructing com-
mon pattern library (similarly, low-byte IID and embedded-
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Figure 9: Comparisons between the AddrMiner-S and the state-of-the-art algorithms with sufficient seeds.

Table 5: IID Analysis of Discovered n-stable Addresses
- #IPs EUI-64 Embedded-IPv4 Pattern-bytes Randomized Low-byte

1d-stable(Hitlist) 1.7B 71.4M (4.2%) 251.6M (14.8%) 676.6M (39.8%) 411.4M (24.2%) 277.1M (16.3%)
7d-stable 1.1B (65.8%) 57.8M (3.4%) 212.5M (12.5%) 506.6M (29.8%) 113.9M (6.7%) 227.8M (13.4%)

30d-stable 919.4M (54.1%) 760.8K (0.0%) 204.0M (12.0%) 498.1M (29.3%) 13.6M (0.8%) 202.3M (11.9%)
60d-stable 860.2M (50.6%) 701.6K (0.0%) 190.4M (11.2% ) 464.1M (27.3%) 13.5M (0.8%) 188.7M (11.1%)
100d-stable 783.7M (46.1%) 680.4K (0.0%) 173.4M (10.2%) 425.0M (25.0%) 10.3M (0.6%) 173.3M (10.2%)

IPv4 IID addresses). In addition, the IPv6 hitlist contains
24.2% of randomized IID addresses, which are randomly gen-
erated in high-density regions. The EUI-64 IID addresses are
only 4.2%. This is because Gasser’s hitlist contains a small
proportion of EUI-64 IID addresses. At the same time, the
detected address space is small, and there is no address gener-
ation in the EUI-64 flag. In vertical analysis, we found that
randomized IID and EUI-64 IID addresses are more unstable
during continuous detection. The proportion of temporarily
active client addresses is high, and the lifetime is less than
seven days. Embedded-IPv4 IID, low-byte IID, and pattern-
bytes IID addresses have high stability and a long lifetime.
These are more likely to contain long-term active and stable
client addresses, server addresses, router addresses, etc.

We further analyze the organization and location distribu-
tion of active addresses in the IPv6 hitlist in Appendix F.

10 Ethical Considerations

To perform global IPv6 address probing, we follow ethical
conventions for network measurement, including recommen-
dations provided by Partridge et al. [39] and Dittrich et al. [8].
We first evaluate whether active address measurements in-
duce harm to the probed hosts and networks. We send only
one probe packet to each IP address, which minimally affects
the host and the network where the IP is located. To avoid
duplicate probes, AddrMiner removes IPv6 addresses that
have already been probed from the generated target addresses.
Next, we evaluate whether the probing behavior will cause
harm to the local network. We will use distributed probes with
a probing rate limit of 10 Mbps per probe to avoid causing
problems to the network where the probing point is located
during active address probing.

11 Conclusion and Future Work

This work proposes a systematic methodology, AddrMiner,
which comprehensively probes the global active IPv6 ad-
dresses. We follow ethical conventions for network measure-
ment. AddrMiner divides the global active IPv6 address prob-
ing into three scenarios and accumulates active addresses
from none to many. We used AddrMiner to probe the global
active IPv6 addresses and found 2.1 billion active addresses
within 13 months. AddrMiner removes the limitation of us-
ing a vantage point for active IPv6 address probing. Our
work will effectively support more researchers to conduct in-
depth IPv6 network measurement and security research. We
share code and data at: https://github.com/AddrMiner/
AddrMiner.

In future work, we will continue to probe active IPv6 ad-
dresses. In addition, the blocking strategies and middle boxes
can affect the detection of active addresses [25], we will fur-
ther study their impact on active address detection.
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A Similarity Definition

In this section, we give the definition of Jaccard similarity
and Hamming distance-based similarity.

• Jaccard similarity: Jaccard similarity can be used to
calculate the similarity between any two sets. The cal-
culation is shown in Formula (1), where U1 and U2 are
both sets. In particular, if U1 and U2 are both empty sets,
then J(U1,U2) is 0.

J(U1,U2) =
|U1∩U2|
|U1∪U2|

(1)

• Hamming distance-based similarity: For two se-
quences of the same length z1 and z2, their similarity
based on Hamming distance is calculated as follows:

SHD =
n

∑
i=1

r(z1 [i] ,z2 [i])

r(a,b) =

{
1, i f a = b
0, otherwise

(2)

B Model Building of AddrMiner-S

We use a multi-armed bandit model [45] based on Thompson
sampling [43] to dynamically update the density distribution
in the active address space to correct the inconsistency in the
density distribution between the seeds and the actual active
addresses.

We divide the IPv6 address space into different density
regions X = {x1,x2, ...,xk}, and each address region is an
arm of the multi-armed bandits. There are k actions A =
{a1,a2, ...,ak}, and ai refers to scanning the target address
in xi and probing whether it is an active address, where i ∈
[1,k]. Θ = {θ1,θ2, ...,θk} represents the mean reward. The
distribution of each arm reward is the Bernoulli score with Θ

as the parameter:

P(r|ai,θi) =

{
θi, if r = 1
1−θi, otherwise

(3)

When ai is played, the action produces a reward of one with
probability θi, and a reward of zero with probability 1−θi.
The θi can be interpreted as an action’s success probability or
mean reward. Let the agent begin with an independent prior
belief over each θi. Take these priors to be beta-distributed
with parameters A = {α1, ...,αk} and B = {β1, ...,βk}. In par-
ticular, for each action ai, the prior probability density func-
tion of θi is:

P(θi) =
Γ(αi +βi)

Γ(αi)Γ(βi)
θ

αi−1
i (1−θi)

βi−1 (4)

where Γ denotes the gamma function. As observations are
gathered, and the distribution is updated according to Bayes’s
rule. It is particularly convenient to work with Beta distribu-
tions because of their conjugacy properties. In particular, each
action’s posterior distribution is also beta distribution with
parameters that can be updated according to a simple rule:

(αi,βi)←

{
(αi,βi), if at ̸= i
(αi,βi)+(rt ,1− rt), otherwise

(5)

In other words, we choose region xi to scan a target address.
If we find the target address is active (reward = 1), we will
add one to the corresponding αi (βi remains unchanged);
otherwise (reward = 0), will add one to the corresponding
βi (αi unchanged). αi represents the active address probed
in region xi, αi +βi represents the address budget consumed
in region xi, so the hit rate of active addresses in region xi
is αi

αi+βi
. As in Formula (6), the xi’s active address density is

proportional to the hit-rate of active address.

xi.density =
xi.active addresses

xi.size
∝

αi

αi +βi
(6)

In active IPv6 address probing, the key issue is to achieve a
high active address hit rate within a given budget. Assuming
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(a) 2001:1291::/32. (b) 2001:1498::/32. (c) 2001:1458::/32.

(d) 2001:41d0::/32. (e) 2001:470::/32.

Figure 10: Comparisons of the probing efficiency between the AddrMiner-S and other address generation algorithms for different
budgets in announced prefixes with sufficient seeds.

that our probing budget is B and the objective function of
address probing is f , the active address probing is a combina-
torial optimization problem of (X , B, f ), they need to satisfy
the following relationship:

n

∑
i=1

(αi +βi)≤ B & αi +βi ≤ xi.size (7)

n represents the number of regions where the target addresses
are generated. Our objective function f represents the hit rate
of the active address within the target address budget B.

f =

n
∑

i=1
αi

n
∑

i=1
αi +βi

(8)

A feasible solution x⊆ X that satisfies Formula (7), then the
most effective solution x∗ is only if f (x∗)≧ f (x),∀x⊆ X .

C Seed Number vs. Probing Efficiency

State-of-the-art address generation algorithms learn the struc-
tural and distributional characteristics of seeds to generate
target addresses that are more likely to survive. However,
these techniques are overly dependent on the quality, quantity,
and distribution of seeds. Theoretically, seed address-based
target address generation algorithms cannot work in target
regions with no seeds, nor can they work efficiently in target
regions with few seeds. Next, we further explore the impact of

Figure 11: The effect of the number of seeds on the efficiency
of active IPv6 address probing.

the number of seeds on the efficiency of active IPv6 address
probing.

From the previous measurements, we find that DET [47]
has better probing efficiency than 6Tree [33], 6Gen [36], and
Entropy/IP [15]. Therefore, we randomly select a different
number of active addresses as seeds in any announced prefix
with a sufficient number of seeds, and use DET to generate
target addresses, with a budget of 10K.

Figure 11 shows the hit rate of active address probing for
DET with a different number of seeds. We find that the hit
rate of the active address is the lowest when the extreme case
of the seed address is 1. At this point, the address probing
strategy is the same as 6Tree and fixed-space brute force
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Table 6: Overview of our IPv6 Hitlist on September 8, 2021
Name #IPs #IPs1 #PFXes #PFXes2 #Top AS1 #Top AS2 #Top AS3 #Top AS4 #Top AS5

1d-stable 2.1B 1.7B 86.4K 83.8K 20.40%8 16.39%■ 13.20%♦ 9.45%8 4.65%▶

7d-stable 1.5B 1.1B 85.7K 83.1K 23.41%8 21.48%■ 14.44%♦ 14.02%8 2.49%■

30d-stable 1.3B 919.4M 80.6K 78.0K 34.96%8 29.75%■ 24.05%♦ 3.85%8 1.73%■

60d-stable 1.3B 860.2M 80.3K 77.6K 36.74%8 31.83%■ 19.62%♦ 4.11%8 1.85%■

100d-stable 1.2B 783.7M 80.1K 78.5K 39.58%■ 34.93%8 13.58%8 4.52%♦ 2.03%■
1 Removing aliased addresses using aliased prefix detection8 Amazon, ■ Fastly, ♦ Imperva, ▶ ChinaTelecom,8 Cloudflare, ■ Akamai.
2 Removing aliased prefixes using aliased prefix detection

Figure 12: The length distribution of aliased prefixes.

scanning. It builds a hierarchical space tree and prioritizes
randomly generates target addresses in low nybble space, so
the probing efficiency of this active address is poor (the hit
rate is less than 0.01%). As the number of seeds increases,
the hit rate of active address probing increases. When the
number of seeds in the target region exceeds 100, the active
address hit rate exceeds 10%. When the number of seeds ex-
ceeds 1000, the hit rate of active addresses remains stable.
Therefore, the seed address-based target address generation
algorithms are very dependent on seeds and cannot effectively
perform global active IPv6 address probing when the number
of seeds is insufficient. In this paper, we divide the global
active IPv6 address probing task into three sub-tasks accord-
ing to the number of seeds in the announced prefix spaces,
including scenarios with no seeds, scenarios with few seeds,
and scenarios with sufficient seeds. We empirically classify
the announced prefix spaces. When the number of seeds in
the announced prefix space exceeds 1000, we classify the
announced prefix space with sufficient seeds. We classify the
announced prefix space with few seeds when the number of
seeds is not greater than 10. Solutions are designed for each
of the above scenarios, effectively solving the global active
IPv6 address probing problem.

Figure 13: The location distribution of IPv6 hitlist.

D Verification of AddrMiner-S

Figures 10(a) to 10(e) show how the hit rate of active ad-
dresses and the number of merged nodes vary with the number
of reinforcement learning iterations. AddrMiner-S can find
more optimal address regions by merging nodes to discover
active addresses (exploration) and generate target addresses
(exploitation) in high-density regions. When the node space is
fully explored, the node merging operation can further expand
the address search space. During the exploration process, the
hit rate of active addresses does not drop suddenly, ensuring
the efficiency of active address probing and discovering new
high-density regions. Thus, AddrMiner-S strikes a balance
between exploration and exploitation. In Figure 10(c), the
sampling bias of the seeds is small, so the hit rate is less
volatile. In Figure 10(e), the sampling bias is obvious. As the
number of iterations increases, high-density regions of the
actual network are discovered, which effectively improves the
efficiency of address probing.

E Aliased Prefix Analysis

During our evaluation process, we found that aliased prefixes
profoundly impact the generation of IPv6 addresses. Because
the entire prefix is configured on the same network device,
when we do not judge the aliased prefix, all addresses in the
aliased prefix space will return an ICMPv6 response packet.
These addresses will consume probing resources and cause a
lot of false active addresses. Therefore, in our probing system,
we consciously detect the aliased prefix and remove aliased
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addresses.
Figure 12 shows the length distribution of aliased prefixes.

We found that the length of aliases prefix is mostly between
/64 and /84. We also surprisedly found that 2,685 aliased pre-
fixes are announced prefixes, such as 2401:5e40:8000::/33,
assigned to Japan Network Information Center. We further
analyzed and found that the target network opened FTP and
Telnet ports and took anti-probing measures. Therefore, we
inferred that the device where the prefix 2401:5e40:8000::/33
was located could be a honeypot, a decoy network, or a clus-
tered storage system.

The aliased prefix, especially the entire announced prefix
as an aliased prefix, may bring the following security prob-
lems: First, heuristic active address probing will guide a large
number of probes into the aliased prefix space for probing (if
there is no ability to remove the aliased prefix), it will cause
excessive load on the network device configured with the
aliased prefix, and even multiple normal probers will cause
DDoS attacks. In addition, it may also affect the performance
of the upper network.

F IPv6 Hitlist Introduction

We further analyze the organizational distribution and address
location distribution of the IPv6 hitlist in Table 6 and Figure
13, respectively.
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