
This paper is included in the Proceedings of the
2022 USENIX Annual Technical Conference.

July 11–13, 2022 • Carlsbad, CA, USA
978-1-939133-29-8

Open access to the Proceedings of the
2022 USENIX Annual Technical Conference

is sponsored by

Pridwen: Universally Hardening SGX
Programs via Load-Time Synthesis

Fan Sang, Georgia Institute of Technology; Ming-Wei Shih, Microsoft; Sangho Lee,
Microsoft Research; Xiaokuan Zhang, Georgia Institute of Technology; Michael
Steiner and Mona Vij, Intel Labs; Taesoo Kim, Georgia Institute of Technology

https://www.usenix.org/conference/atc22/presentation/sang

PRIDWEN: Universally Hardening SGX Programs via Load-Time Synthesis

Fan Sang∗,1, Ming-Wei Shih∗,3, Sangho Lee4, Xiaokuan Zhang1,
Michael Steiner2, Mona Vij2 and Taesoo Kim1

1Georgia Institute of Technology, 2Intel Labs, 3Microsoft, 4Microsoft Research

Abstract
A growing class of threats to Intel Software Guard Exten-

sions (SGX) is Side-Channel Attacks (SCAs). As a response,
numerous countermeasures have been proposed. However, it
is hard to incorporate them to protect SGX programs against
multiple SCAs simultaneously. A naïve combination of dis-
tinct countermeasures does not work in practice because some
of them are 1) undeployable in target environments lacking
dependent hardware features, 2) redundant if there are already
defenses with similar functionalities, and 3) incompatible with
each other by design or implementation. Identifying all of
such conditions and preparing potential workarounds before
deployment are challenging, primarily when an SGX program
targets multiple platforms that abstract or manipulate their
configurations.

PRIDWEN is a framework that selectively applies essen-
tial SCA countermeasures when loading an SGX program
based on the configurations of the target execution platform.
PRIDWEN allows a developer to deploy a program in the
form of WebAssembly (Wasm). Upon receiving a Wasm bi-
nary, PRIDWEN probes the current hardware configuration,
synthesizes a program (i.e., a native binary) with an opti-
mal set of countermeasures, and validates the final binary.
PRIDWEN supports both software-only and hardware-assisted
countermeasures, and our evaluations show PRIDWEN effi-
ciently, faithfully synthesizes multiple benchmark programs
and real-world applications while securing them against mul-
tiple SCAs.

1 Introduction

Conducting confidential or private computing in a shared
computing environment (e.g., the public cloud) is challeng-
ing [1, 2]. Intel Software Guard Extensions (SGX) [3, 4] has
thus been proposed and adopted by leading cloud service
providers to help ensure even system software and hardware
cannot compromise the authenticity, confidentiality, and in-
tegrity of applications running inside SGX enclaves [5–7].
Nevertheless, Intel SGX is susceptible to Side-Channel At-
tacks (SCAs) [8], which are threats to shared cloud envi-
ronments in which it aims to be deployed. Researchers

∗The two lead authors contributed equally to this work.

Attack Known Countermeasures

Cache Cache flushing [21], cache eviction detection [23]
Page Page fault detection [24], frequent exception monitoring [26, 27]
HT HT disabling [21], co-location detection [25, 26]
Branch prediction Branch obfuscation [28]
Speculation Branch prediction control [29], lfence [30]
L1TF Cache flushing and HT disabling [21]
MDS HT disabling [22]

Table 1: Known side-channel attacks against SGX and counter-
measures. HT: Hyper-Threading; L1TF: L1 Terminal Fault; MDS:
Microarchitectural Data Sampling.

have shown that SGX is vulnerable to various SCAs utiliz-
ing cache [9–13], page table [14–18], and transient execu-
tion [19, 20], which can infer sensitive control flows or exfil-
trate secret data. To defend against individual SCAs, software-
and/or hardware-based countermeasures have been proposed,
such as cache flushing [21,22] or eviction detection [23], page
fault detection [24], and Hyper-Threading Technology (HT)
disabling [21, 22] or co-location detection [25, 26] (Table 1).

However, multiple side channels can co-exist in a vulnera-
ble program; protecting SGX programs from multiple known
SCAs is difficult, not to mention the existence of unknown
ones. One way is collectively applying existing countermea-
sures against individual SCAs, but naïvely doing so fails due
to the unawareness of diverse target execution platforms or co-
existing mitigation techniques, which may make such counter-
measures 1) undeployable due to different hardware settings,
2) redundant because of over-protection, and 3) incompatible
due to conflicts among different mitigations. Another way is
adopting a comprehensive countermeasure, i.e., oblivious exe-
cution [18,31], that is effective to many SCAs except for spec-
ulative execution. However, even the state-of-the-art oblivious
execution incurs average slowdown of 51× [31], largely down-
grading the cost-effectiveness of cloud computing. A practical
alternative, data-location (re-)randomization [32], incurs rela-
tively small slowdown (8×), but it is still heavy and does not
cover control-flow leakage.

One conventional approach to solve such issues is to create
a bloated application incorporating independently compiled
object files for each architecture and runtime detection code,
to selectively activate them according to different hardware
configurations [33]. This approach, however, is not suitable
for Intel SGX: First, checking hardware configurations is sup-

USENIX Association 2022 USENIX Annual Technical Conference 455

ported by system software outside the Trusted Computing
Base (TCB); malicious system software can provide misinfor-
mation about hardware configurations to SGX applications.
Second, the secure memory that enclaves share, Processor
Reserved Memory (PRM), is limited [4]; bloated SGX appli-
cations can easily occupy a huge portion of it.
PRIDWEN. To practically protect SGX programs from vari-
ous SCAs, we argue that the decision of the SCA mitigations
to be applied should be delayed as close to the final execu-
tion as possible to best fit the target SGX platform as well
as co-existing mitigation techniques. Therefore, instead of
adopting the static compilation approach, in this paper, we
propose PRIDWEN, a framework that uses load-time synthesis
to dynamically harden SGX programs by selectively applying
different mitigation techniques according to the configura-
tions on the target execution platform. While ensuring the
security, PRIDWEN maintains the cost-effectiveness of cloud
computing by minimizing the extra effort required for prepa-
ration on the tenant side, and the runtime overhead of program
synthesis on the cloud side.

PRIDWEN has a universal loader that securely loads and
hardens a given SGX program inside an enclave based on four
components: 1) Prober that identifies the target platform’s
hardware and system configurations using SGX exception
handling logic and remote attestation; 2) PassManager that
manages and determines an optimal set of feasible instru-
mentation passes based on the identified configurations; 3)
Synthesizer that hardens a given SGX program with the chosen
instrumentation passes before loading it in the target enclave;
and 4) Validator that verifies whether the final executable is
hardened as expected, and provides a functionality for devel-
opers to remotely verify both the process of synthesis and the
hardened binary before execution.

To make PRIDWEN 1) platform-independent, 2)
instrumentation-friendly, and 3) lightweight, we de-
velop a new instrumentation framework using WebAssembly
(Wasm) [34, 35] as the Intermediate Representation (IR). The
size of PRIDWEN in binary is only 1.26 MiB, which only
adds a slim footprint to the enclave TCB. Existing Wasm
runtimes for SGX [36–39] only interpret Wasm binaries
without any instrumentation support. Furthermore, unlike
existing Wasm instrumentation frameworks for non-SGX
programs [40, 41], PRIDWEN can comprehensively transform
Wasm binaries at both Wasm IR and native code levels.
PRIDWEN also supports multiple high-level languages; users
only need to compile their SGX programs once with a Wasm
compiler backend (e.g., Emscripten [42]).

To showcase the capability and practicality of PRIDWEN,
we integrate four mitigation passes into PRIDWEN: 1) T-
SGX [24] to prevent a page-fault SCA with a hardware
support; 2) Varys [26] to mitigate cache-timing, page-fault-,
and HT-based attacks in a software-only manner; 3) QSpec-
tre [30] to mitigate the Spectre attack; and 4) fine-grained
Address Space Layout Randomization (ASLR) [43] as a

general-purpose mitigation. We first detail the steps to in-
tegrate the four passes into PRIDWEN, then we demonstrate
how PRIDWEN produces the optimal set of passes based on
the runtime configurations with minimal manual effort.
Performance. PRIDWEN poses moderate performance over-
head on top of the original mitigation techniques and retains
faithfulness of execution semantics (§6). The average slow-
down of hardened real-world applications (Lighttpd, libjpeg,
and SQLite) was 2.1× with hardware-assisted non-redundant
mitigation techniques and 3.6× with software-only mitigation
techniques for outdated microcode (i.e., no hardware-level
mitigation), which closely conforms to the originally reported
performance overhead of the selected countermeasures. Also,
PRIDWEN faithfully compiled and ran all 73 programs from
the official Wasm specification test suite [44]. Program syn-
thesis completed within 0.5 s with a temporary usage of less
than 25 MiB of enclave memory across tests.

PRIDWEN is designed to be an easily-extensible universal
framework that respects the diversity of computing platforms.
PRIDWEN is publicly available as an open-source project 1,
allowing communities to test, use, and contribute. We envision
that the growing PRIDWEN framework should serve as a hub
for the SCA-resistant SGX ecosystem, and potentially other
mitigations as well.
Contributions. This paper makes the following contribu-
tions:

• The first platform-aware load-time synthesis frame-
work for SGX programs. To the best of our knowledge,
PRIDWEN is the first framework that dynamically syn-
thesizes and hardens SGX programs by applying optimal
hardware- and/or software-based mitigations according
to the target platform.

• Attestable in-enclave Wasm instrumentation and
compilation toolchain. A comprehensive instrumenta-
tion and compilation toolchain based on Wasm is im-
plemented inside the SGX enclave to enable dynamic
program synthesis with attestation. PRIDWEN can instru-
ment Wasm both at IR and native level.

• Extensive evaluation. We study the performance of
PRIDWEN extensively using benchmarks and real-world
applications. The results suggest that PRIDWEN only in-
troduces moderate runtime overhead while preserving
the execution semantics.

2 Background and Related Work

In this section, we present the background and related work.
Additional related work can be found at Appendix A.
Intel SGX. Intel SGX is a hardware-based Trusted Execution
Environment (TEE) that securely runs a userspace application
in an untrusted remote environment, such as the public cloud.
Through remote attestation [45], Intel SGX allows a user to

1https://github.com/sslab-gatech/Pridwen

456 2022 USENIX Annual Technical Conference USENIX Association

https://github.com/sslab-gatech/Pridwen

load his/her signed program into a remote environment, while
helping ensure that the program binary has never been altered.
To help secure the code and data of SGX programs, Intel SGX
provides an enclave to each program, which is a dedicated
secure region of the main memory. The enclave is isolated
from any other software including an OS. The code and data
stored in the enclave are always encrypted by the Memory
Encryption Engine (MEE), and decrypted only when they are
loaded into a CPU package (i.e., the cache), to help prevent
physical attacks such as a cold boot attack [46].
Exceptions in SGX. Conventionally, exceptions are deliv-
ered to system software such as OS for further investigation.
However, Intel SGX cannot adopt traditional exception han-
dling because system software is untrusted. Instead, Intel SGX
defines two mechanisms, Asynchronous Enclave Exit (AEX)
and Custom Exception Handler (CEH) [47, 48]. Whenever
an exception is generated during an enclave execution, the
CPU exits from the enclave asynchronously. During AEX,
the original exception number and register context are stored
into the State Save Area (SSA) inside the enclave and then
overwritten by synthetic data. Further, SGX allows devel-
opers to define CEHs to process exceptions inside an en-
clave; These CEHs can retrieve the SSA to check the stored
exception number (GPRSGX.EXITINFO.VECTOR) and registers
(GPRSGX.<registers>), and update them (e.g., GPRSGX.RIP)
to resume the execution.
SGX side channels. SCAs against SGX have been ac-
tively studied. Traditional cache SCAs work against Intel
SGX with different configurations [9–13, 49]. Recent studies
show that page access patterns [14–18], interrupt execution
time [50, 51], branch prediction behaviors [28, 52], specula-
tive execution [19,20] and Intel’s internal buffers [53–55] can
all be used to infer sensitive information inside enclaves. In
response, countermeasures that cope with the fundamental
characteristics of the SCAs have been proposed. T-SGX [24]
and Cloak [23] use Transactional Synchronization Extensions
(TSX) to accurately recognize page faults and cache evictions
inside an enclave, respectively. Varys [26] and Déjà Vu [27]
aim to detect frequent interrupts or AEXs. Also, since HT
enables concurrent SCAs without interrupts, Varys [26] and
HyperRace [25] try to prevent an SGX hyperthread from be-
ing co-located with other hyperthreads. Disabling HT and/or
flushing the L1 cache are also necessary to mitigate recent
speculative or transient SCAs [21, 22]. In addition, SGX-
LAPD [56] leverages a huge page to degrade the accuracy of
the page-level SCA. Lastly, oblivious code execution and data
access techniques for Intel SGX [18, 31, 57–60] have been
proposed as a general countermeasure against SCAs, but they
incur overly high performance overhead. The state-of-the-art
ORAM-based system Klotski [61] improves the performance
significantly. However, it only defeats controlled-channel at-
tacks [14, 18]. In contrast, PRIDWEN focuses on universally
hardening SGX applications by automatically and selectively
applying multiple defenses against different SCAs together.

WebAssembly (Wasm). The World Wide Web Consortium
(W3C) proposes Wasm [34] as a platform-independent compi-
lation target for various high-level languages (e.g., C/C++ and
Rust). A Wasm binary has language-like syntax and structure
that are suitable for compilation and instrumentation. The ba-
sic executable unit of code in Wasm is a module that consists
of multiple sections, where each section contains specific def-
initions of the module such as global variables, functions and
a sequence of instructions of each function. Wasm instruc-
tions execute on a stack machine, and Wasm supports only
the structured control flow such as if-else and loop without
goto statements, enabling single-pass fast compilation.
Memory safety in Wasm. Wasm maintains a linear memory
with a configurable size dedicated to all the memory accesses
except for local and global variables. The linear memory is
disjoint from other memory regions such as the code section
and the call stack. As a result, given a buggy Wasm program
(e.g., originating from a C program with a memory corruption
bug), an attacker can only interfere with the data in the linear
memory, but cannot tamper with its control flow.
PRIDWEN and Wasm. Because the Wasm binary is
well-structured and friendly for efficient Just-In-Time (JIT)
compilation, PRIDWEN adopts Wasm as IR for supporting
load-time synthesis. PRIDWEN also benefits from Wasm’s
memory-safety feature, mitigating code-reuse attacks against
SGX [62, 63]. Moreover, the minimal footprint of Wasm fits
PRIDWEN’s demand for a compact yet flexible instrumenta-
tion and compilation toolchain inside an enclave. Although
existing compilers (e.g., LLVM) can fit into enclaves with
extended size in new scalable CPUs [64], the TCB size will
largely increase, and the migration effort would be significant
as well.

3 Overview

Scenario. In this paper, we consider the widely-used
confidential-computing scenario on the cloud, where the user
wants to utilize the Intel SGX on the cloud to protect his/her
data and applications. In this scenario, there are two entities:
the cloud and the user. The user runs his/her applications
inside enclaves, and wants to protect his/her data against side-
channel attacks using PRIDWEN.
Threat model. Our threat model is similar to the threat mod-
els in other SGX-related studies [14,24,26]. Our TCB consists
of an SGX enclave provided by an Intel CPU and everything
inside the enclave, including PRIDWEN, a target Wasm binary
prepared by the user, and the PRIDWEN pass selection policy.
We assume that the user uses remote attestation to verify the
validity of the CPU and PRIDWEN, and establish a secure
channel with PRIDWEN to securely transmit his/her binaries.
We assume that adversaries have already compromised the
underlying privileged system software (e.g., OS) to attack
PRIDWEN and the target binary. Any threats due to poten-

USENIX Association 2022 USENIX Annual Technical Conference 457

Prober PassManager Synthesizer

Wasm
binary

Hardened
binary

❷
❸

❹

❶

✕

Feature Available?
TSX
HT

IBRS ⋯

⋯

✔

✔

TSGX

Priority Pass
1
2

ASLR

 QSPEC

 VARYS TSGX

 ASLR
⋯

PRIDWEN
Loader

Validator

❺

Report

Figure 1: Overview of PRIDWEN. 1 A user compiles a program
into a Wasm binary and transmits it to PRIDWEN via a secure chan-
nel. 2 PRIDWEN probes the hardware configurations. In this ex-
ample, the CPU enables TSX and IBRS while disabling HT. 3
PRIDWEN selects mitigation passes. Here, it chooses T-SGX and
ASLR because the CPU enables TSX (for mitigating page-fault at-
tacks) and IBRS (for mitigating Spectre variants). 4 PRIDWEN

synthesizes and hardens a native binary based on chosen passes. 5
PRIDWEN validates the final synthesized native binary. A report is
sent back to the user to attest the final binary.

tial vulnerabilities of the CPU and the code running insides
enclaves are out of scope.

Goals. PRIDWEN is designed to achieve the following goals:
1) Adaptivity. PRIDWEN selects mitigation techniques that
conform to the capabilities of the target execution platform
on demand. PRIDWEN needs to optimally combine multiple
mitigation techniques without causing conflicts or failures.

2) Attestability. The second goal of PRIDWEN is to support
the remote attestation of the dynamically generated binary in-
side SGX; Native SGX only supports attesting static binaries.
PRIDWEN should allow users to verify the integrity of the
final executable running inside an enclave, as well as obtain
the genuine information regarding whether the executable
is faithfully generated by PRIDWEN (e.g., the selection and
application of the mitigation schemes).

3) Extensibility. Another goal of PRIDWEN is to be extensi-
ble, so that it can support forthcoming mitigation techniques
against SCAs besides existing ones. Moreover, it should sup-
port multiple platforms due to the diversity of practical com-
puting platforms. The extensibility of PRIDWEN should also
allow for smooth integration of legacy mitigation techniques.

Architecture. Figure 1 shows an overview of PRIDWEN. The
core of PRIDWEN is an in-enclave loader that implements key
ideas with corresponding components: user-mode hardware
probing (Prober), optimal pass selection (PassManager), load-
time program synthesis (Synthesizer), and post-synthesis vali-
dation & final binary attestation (Validator). Given that each
countermeasure may depend on specific hardware features,
Prober interacts with the platform and dynamically determines
the availability of these features. Based on the probing results,
PassManager determines an optimal set of countermeasures
(i.e., instrumentation passes) and finalizes the order of apply-
ing them based on user policies. Next, PassManager informs
Synthesizer about the final selection. Synthesizer takes a Wasm
binary (provided by the user via a secure network channel) as
an input and compiles it into a native one. During the com-

1 #define UD 6 /* Invalid opcode exception */
2 bool tsx_support = false;
3 check_tsx_support:
4 _xbegin();
5 tsx_support = true;
6 _xend();
7 exception_handler:
8 if (SSA.GPRSGX.EXITINFO.VECTOR == UD &&
9 SSA.GPRSGX.RIP == check_tsx_support) {

10 GPRSGX.RIP = skip_tsx_check;
11 }

Figure 2: Exception-based probing code for TSX. If a CPU does
not support TSX, there will be a #UD exception that needs to be
handled by an in-enclave exception handler to proceed execution
(i.e., changing GPRSGX.RIP).

pilation, Synthesizer hardens the binary with the optimal pass
set provided by PassManager. Validator takes the synthesized
binary as an input, and verifies that 1) each countermeasure
is correctly enforced, and 2) no conflict exists among the
enforced countermeasures. Validator also provides the func-
tionality of attestation on the final binary.

4 PRIDWEN

4.1 Prober
The goal of Prober is to identify hardware capabilities of the
target execution platform, which is needed by PassManager
to determine the optimal set of mitigation schemes to en-
force. This hardware probing step typically requires interac-
tions with the system software, such as retrieving privileged
registers (i.e., Model-Specific Register (MSR) and control
registers) and executing the cpuid instruction. However, we
cannot rely on these approaches because the system software
is not trusted in our threat model. SGX provides an attribute
field called XSAVE-Feature Request Mask (XFRM) to de-
termine whether some hardware features are enabled at en-
clave creation, but it only covers a few instructions (e.g., AVX
and MPX [48]). To solve this, PRIDWEN leverages exception
handling and remote attestation to securely probe hardware
configurations while running inside an enclave.
Exception-based instruction probing. The instruction
probing identifies whether PRIDWEN can use hardware-
assisted mitigation techniques relying on specific instructions.
A CEH for SGX (§2) can be used to determine whether a
target system supports or enables the required instruction.
Specifically, the probing code executes the specific instruction
demanded (e.g., TSX) inside SGX, and then checks whether
it results in a #UD exception by inspecting the exception infor-
mation (Figure 2). If it does—i.e., the target platform does
not support the instruction, PRIDWEN adopts a software re-
placement of the hardware-assisted mitigation if available, or
omits it otherwise. The CEH then advances GPRSGX.RIP to
continue execution.

Attackers can disrupt this type of probing, but it only re-
sults in Denial-of-Service (DoS) that they can always trigger
without special attacks: 1) Attackers can simply resume the

458 2022 USENIX Annual Technical Conference USENIX Association

API Hooking point

onFunctionStart(CCTX *c) Beginning of a function
onFunctionEnd(CCTX *c) End of a function
onControlStart(CCTX *c) Beginning of a control statement
onControlEnd(CCTX *c) End of a control statement
onInstrStart(CCTX *c) Before a IR-level instruction
onInstrEnd(CCTX *c) After a IR-level instrcution
onMachineInstrStart(CCTX *c, MI *i) Before a native instruction
onMachineInstrEnd(CCTX *c, MI *i) After a native instrcution

Table 2: The APIs for the instrumentation. CCTX: CompilerContext.
MI: MachineInstr. MCTX: MachineContext. MB: MachineBasicBlock.

enclave execution right after the #UD exception without invok-
ing the CEH. However, GPRSGX.RIP still points to the invalid
instruction, and it is impossible to manipulate it or the excep-
tion number outside the enclave. Therefore, this only incurs
repeated #UD exceptions. 2) Attackers can selectively enable
a specific hardware instruction only during probing and dis-
able it during the actual execution. This trick can deceive the
probing, but it only introduces #UD exceptions during runtime,
resulting in another DoS.
Remote attestation for hardware configuration. The
remote attestation determines whether a target platform is
vulnerable to SCAs that utilize certain hardware features.
SGX remote attestation allows PRIDWEN to accurately de-
termine several hardware configurations, i.e., HT and Indirect
Branch Restricted Speculation (IBRS). If a remote device
turns on HT, an attestation verification report will contain
CONFIGURATION_NEEDED in the isvEnclaveQuoteStatus field
since API version 3 [65, 66]. PRIDWEN can leverage this
information to selectively adopt mitigations for preventing
hyperthread co-locations [25, 26]. Also, if a remote device
does not install the microcode update for indirect branch
control mechanisms, a remote attestation protocol will
indicate GROUP_OUT_OF_DATE [67]. If users still want to
securely run their code on such an outdated device, they can
adopt software-based approaches [30] against speculative
SCAs. Without learning such hardware information, unnec-
essary performance overhead might be paid for applying
redundant protections. It is worth mentioning that updating
microcode and changing HT configuration require system
reboot in general; As a result, malicious system software
cannot manipulate these hardware configurations during the
execution of hardened programs.

4.2 PassManager

PassManager is in charge of selecting and integrating multi-
ple mitigation schemes. PassManager provides a set of high-
level APIs that allows developers of side-channel mitiga-
tion schemes to implement their instrumentation passes and
plug them into the PRIDWEN loader. During the load time,
PassManager 1) maintains a list of plugged-in passes, 2) deter-
mines the optimal set of passes for Synthesizer to execute, and
3) resolves the correct application order of each selected pass
to avoid conflicts.

Pass APIs. Table 2 lists the high-level APIs for implement-
ing instrumentation passes. For instrumentation, we expose
all the hooks as APIs. To reflect the structure of a Wasm
module, we classify the IR-level hooks into the granularity of
functions, controls, and instructions. Each hook can obtain the
information about the hooking IR instruction and the current
states of compilation via the CompilerContext (CCTX) data
structure. For the native level, the hook should consult the in-
formation of the native instruction via the MachineInstr (MI)
data structure, as the CompilerContext data structure does
not track such information.
Pass selection and ordering. When being plugged into the
PRIDWEN loader, each pass is associated with a configuration
file that specifies the type of SCA to mitigate, hardware fea-
tures or other passes that it depends on, and a list of passes
incompatible with it. Each pass can also specify its weakly de-
pendent passes, which indicates that the pass depends on these
weakly-dependent passes only when they are available. Dur-
ing the initialization phase, PassManager adds all the plugged-
in passes into a pass queue. For better flexibility, PRIDWEN
also allows a user to customize the pass queue by providing
a pass selection policy (P), which contains descriptions of
all plugged-in passes and their dependencies. We detail our
implementation of a pass selection policy in §5.2.

To select the optimal set of passes, PassManager takes the
following steps: 1) It consults Prober about the current hard-
ware configuration. 2) It checks the dependency of each pass
in the queue, and drops a pass if the required hardware feature
is not available. 3) It checks the types of side channels that
each active pass mitigates; if PassManager identifies more than
one passes targeting the same SCA, it retains the one with the
highest priority value specified in P. If not specified, it will
first assign a priority value to each of them based on several
criteria including performance overhead. 4) To determine the
application procedure of active passes, PassManager builds a
dependency graph of all the passes given the dependencies
specified in P. Next, PassManager uses the topological order
of the graph as the application order. PassManager may drop
passes if their strong dependencies are not satisfied or incom-
patible passes are in the active pass set2. If all passes are
independent, PassManager uses the order in the pass queue as
the application order. Here we assume the graph contains no
circular dependencies; otherwise, PRIDWEN will terminate
the execution.

4.3 Synthesizer
Synthesizer uses load-time synthesis to dynamically generate
a final binary hardened with the optimal set of mitigation
passes (§4.2) for the current hardware configuration, and loads

2Note that we did not come across any SCA mitigations that are mutually
exclusive. If such cases emerge in the future, programmers can specify this
situation in the pass selection policy (P) and mark the involved mitigation
passes as mutually exclusive; the pass with higher priority will be applied by
default. Users may override the policy to choose a custom priority.

USENIX Association 2022 USENIX Annual Technical Conference 459

the binary into memory for execution. Synthesizer adopts a
Wasm binary as the input, and takes three steps, i.e., parsing,
compilation, and instrumentation, to achieve this goal. We
extend the compilation chain to support both IR- and native-
level instrumentation so that it is flexible enough to integrate
various types of SCA mitigation schemes with PRIDWEN.

Parsing. In the parsing step, Synthesizer performs standard
decoding on a Wasm binary and converts it into Wasm IR.
During decoding, Synthesizer also validates the format of the
binary with several checks (e.g., type checking of functions) to
guarantee that the binary follows the specification. Any modi-
fication to the binary before parsing can thus easily result in
an immediate rejection. For example, inserting an instruction
that causes the inconsistency on the stack machine renders
the binary invalid.

Compilation. To generate the native binary inside the en-
clave given Wasm IR, Synthesizer performs a single-pass com-
pilation over each function (similar to the baseline compila-
tion of SpiderMonkey [34] and V8 [68]). During the compila-
tion of a function, Synthesizer virtually executes each instruc-
tion based on the execution model of the Wasm stack machine
and generates the corresponding native code. Synthesizer also
keeps track of the metadata about each value (e.g., actual lo-
cation and data type) on the operand stack to help correctly
generate the native code and facilitate type-checking. In addi-
tion to the operand stack, Synthesizer maintains a control stack
that keeps track of the control flow of the function. Pushing
a value to the control stack indicates the function initiates a
new control statement (e.g., block, if, or loop instruction),
while popping a value from the control stack implies reaching
the end of the current statement (e.g., an end instruction). The
control stack provides sufficient information for Synthesizer to
resolve the target of a branch (e.g., a br instruction). After fin-
ishing the native code generation of all functions, Synthesizer
performs relocation. This process patches all the unresolved
address values in the native instructions, such as call and
those for memory accesses.

Instrumentation. To support flexible instrumentation, we
extend the design of the compilation to provide hooks at both
IR- and native-level. For IR-level hooks, we place them both
before and after the position that Synthesizer processes an IR
instruction to support code insertion, modification, and dele-
tion. For each hook, we provide sufficient information about
the corresponding instruction and the states of the compila-
tion at the given point, such as the operands and the control
stacks. Since Synthesizer may generate more than one native
instruction for a single IR instruction, we provide similar
hooks at the native level (i.e., surrounding the generation of
native instructions) to support mitigation schemes that require
the information about native instructions. To support the in-
sertion or the modification of native instructions that require
relocation, we provide the option to mark such instructions
with symbols. A symbol refers to a target location that allows

Synthesizer to recognize and resolve it during the relocation
phase.
Reproducible synthesis. Since both the compilation and
instrumentation are deterministic, Synthesizer has a nice prop-
erty: the synthesis process is reproducible. This property en-
sures that given the same Wasm code and hardware configura-
tion, the same version of PRIDWEN loader always generates
the same final binary.

4.4 Validator

The flexibility of instrumentation indicates that an instru-
mentation pass can arbitrarily modify the binary. Such mod-
ifications can potentially disturb the already applied instru-
mentation passes or break the binary itself. To avoid such
cases, Validator supports post-synthesis validation to validate
whether the synthesized executable is hardened as expected.
Also, since the runtime behavior of PRIDWEN cannot be deter-
mined beforehand, Validator provides final binary attestation
to allow users to remotely verify both the process of synthesis
and the hardened binary before execution. Both post-synthesis
validation and final binary attestation are necessary to ensure
the correctness of the final binary. In addition, they are con-
ducted only once before running the program, and thus will
not affect the runtime performance.
Post-synthesis validation. In post-synthesis validation,
Validator conducts static analysis over a synthesized binary.
Unlike typical binary analysis that assumes a stripped binary,
post-synthesis validation enables more sophisticated analyses
by taking advantage of the metadata (e.g., the control-flow
information) provided by Synthesizer. Post-synthesis valida-
tion takes in the form of validation passes coupled with each
instrumentation pass. Based on the control-flow information,
Validator executes validation passes at the basic-block level.
Validator iterates through all functions in the binary and in-
vokes a procedure implemented in each validation pass at
the beginning of each basic block, which performs a series
of checks based on the content of the basic block (i.e., raw
bytes). For example, a procedure can determine whether spe-
cific instrumentation is applied based on pattern matching. If
any of the validation passes fails, Validator rejects the binary.
Optionally, the procedure can utilize other metadata such as
the original IR instructions that map to the basic block to
facilitate the analysis beyond binary scanning.
Final binary attestation. In addition to using remote attesta-
tion for hardware probing (§4.1), PRIDWEN uses remote attes-
tation to attest the dynamically synthesized binary inside the
enclave. SGX does not natively support the attestation of dy-
namic enclave content; instead, traditional remote attestation
measures only the static code and data that are initially inside
an enclave, which is used as a piece of evidence throughout
the process of remote attestation. To attest dynamic content,
PRIDWEN incorporates a two-step scheme that extends the
attestation of static content.

460 2022 USENIX Annual Technical Conference USENIX Association

Attack surface SW-only Mitigation HW-assisted Mitigation

Cache timing Interrupt (Varys) Cache flushing (microcode)
Page fault Interrupt (Varys) T-SGX
HT Co-location (Varys) HT disabling (microcode)
Speculative execution QSpectre IBRS (microcode)

Static layout ASLR N/A

Table 3: Attack surfaces and software-only or hardware-assisted
mitigation schemes PRIDWEN implements. CPUs with recent mi-
crocode update do not have some of the attack surfaces.

In the first step, a user uses the SGX standard procedure
to attest the static part of PRIDWEN and establishes a
secure channel [45]. Then, the user sends a Wasm binary
p.wasm to PRIDWEN via the secure channel and PRIDWEN
starts to synthesize the final binary based on the hardware
configuration (hw_config) of the execution platform. In the
second step, PRIDWEN sends the user: 1) the measurement
of the synthesized binary p.code (i.e., the hash of native
code blocks hash(p.code)) and 2) the hw_config. The user
can then validate hash(p.code) thanks to a PRIDWEN’s
property: reproducible synthesis (§4.3). With the reproducible
synthesis, the user can validate the final binary based on both
p.wasm and hw_config.

5 Implementation

We implement a prototype of PRIDWEN with 25k lines of C
code on top of the Intel Linux SGX SDK 2.5.102. The size
of PRIDWEN in binary is only 1.26 MiB, maintaining a slim
footprint of trusted computing base (TCB). For native code
generation, we implement an x86 backend to support the full
Wasm instruction set.
Runtime support. Our prototype provides an Emscripten-
compatible runtime support that allows to run fairly large,
complex applications such as Lighttpd, as shown in §6. The
application is directly compiled from unmodified C source
code to a Wasm binary using the Emscripten compiler.
Attestation of synthesized binaries. Our prototype supports
final binary attestation mentioned in §4.4. Also, the proto-
type provides a tool that allows users to locally validate the
measurement of the synthesized binary.

5.1 Example Passes
To illustrate the capability and practicality of PRIDWEN, our
prototype implementation integrates four SCA mitigation
schemes (ASLR [43], Varys [26], T-SGX [24], and QSpec-
tre [30]) into PRIDWEN using provided APIs, and simultane-
ously cover five important SCA surfaces (cache timing, page
fault, HT, speculative execution, and static layout) (Table 3)
based on the probed hardware configuration (§4.1). Although
the four mitigation schemes were not originally introduced by
this work, they are selected to demonstrate how to integrate
existing mitigation techniques using PRIDWEN. Because the
control-flow information (including the definition of basic

blocks in the binary) is required by most of the passes, we im-
plement a control-flow analysis pass to share the information
with other passes, eliminating the overhead posed by repeti-
tive analyses. PRIDWEN helps to prioritize hardware-assisted
mitigations with lower overheads if the execution platform
supports them (e.g., TSX for T-SGX), and safely avoid re-
dundant countermeasures if the platform is free from the
corresponding SCAs thanks to recent microcode or hardware
updates [21, 22, 29, 69].

5.1.1 Example Pass #1: Fine-grained ASLR

Many SCAs rely on accurate memory layout information
to improve the granularity of leaked information. Thus,
PRIDWEN enables fine-grained ASLR by default, which ran-
domizes the location of every basic block, as a general miti-
gation scheme against SCAs.
Integration. We adopt the similar compiler-level scheme
from SGX-Shield [43] by inserting a jmp instruction at the end
of every basic block. First, the pass uses the onControlStart
and onControlEnd APIs (Table 2) to identify the structure
of a basic block. Next, the pass inserts a jmp with a sym-
bol that points to the succeeding basic block if it does not
end with a jmp. The pass also updates the targets of other
branches accordingly by using the onMachineInstrEnd API.
Later, Synthesizer shuffles the placement of each basic block
if the ASLR pass is enabled. During the relocation, the gen-
erated symbols allow Synthesizer to resolve the target of each
branch to a basic block at a randomized location.
Post-synthesis validation. We integrate a validation pass
that performs the following checks: 1) whether a basic block
terminates with a jmp and 2) whether each branch points to
the correct target based on the control-flow information.

5.1.2 Example Pass #2: T-SGX

SGX allows the OS to handle page faults. Page-fault
SCAs [14] exploit this design decision by intentionally mak-
ing enclave pages inaccessible and observing which pages
are accessed. To defeat this SCA, T-SGX [24] hides page
faults from the OS by running an enclave spitted as small
code blocks inside TSX transactions. As a result, all page
faults occurring during the execution are suppressed (i.e., not
delivered to the OS).
Integration. Our T-SGX pass has cache usage and ex-
ecution time analyzers for native instructions using the
onMachineInstrEnd API. Based on the analysis results, the
pass determines the scale of a code block. Next, the pass
replaces branch instructions at the end of the block with
the instructions redirecting to the springboard (i.e., a lea
for saving the address of the next code block and a jmp to
the springboard). Similar to the fine-grained ASLR pass, the
T-SGX pass identifies basic blocks in the binary by using
the onControlStart and onControlEnd APIs. To support the
springboard, the pass places the springboard code before

USENIX Association 2022 USENIX Annual Technical Conference 461

the entry function (e.g., main) of the binary by using the
onFunctionStart API.

Post-synthesis validation. The validation pass for T-SGX
checks 1) the presence of the springboard, 2) the presence of
the instructions to jump to the springboard at the end of every
code block, and 3) whether the target of the instructions in
step 2 correctly points to the springboard. Optionally, the pass
can re-analyze cache usage and execution time to ensure the
correctness of the code splitting.

5.1.3 Example Pass #3: Varys

SCAs usually require frequent interrupts or HT to accurately
identify the execution context (e.g., which pages are accessed)
or to attack in-core cache and speculation units. Varys [26] is
a software-based approach to detect such behaviors.

High-frequency AEX detection and cache eviction. Varys
identifies the occurrence and frequency of interrupts during
the enclave execution by analyzing AEXs. Specifically, when-
ever an AEX occurs, SGX updates the corresponding field in
the SSA. Thus, by counting the number of instructions exe-
cuted at every basic block and periodically polling the SSA,
Varys can estimate the frequency of AEXs. In addition, Varys
explicitly evicts cache lines upon detecting AEXs to mitigate
cache-based SCAs.

Co-location test. To prevent scheduling victim and attack
threads to the same HT core, Varys prepares a pair of SGX
threads and checks whether they are in the same core via an
L1-cache-based covert timing channel. Varys performs this
co-location test whenever it observes an AEX.

Integration. PRIDWEN’s Varys pass inserts the checking
code at the beginning of every basic block by using the
onControlStart and onControlEnd APIs. Unlike the original
Varys that counts the number the instructions at the LLVM IR
level, our pass counts the number of native instructions with
the help of the onMachineInstrEnd API. For the SSA polling
routine, the pass inserts the code before the entry function of
the binary via the onFunctionStart API. The pass also adds
the co-location test code to the SSA polling routine (i.e., after
detecting an AEX).

Post-synthesis validation. The validation pass verifies 1)
the presence of the checking code, 2) the correctness of the
instruction number added to the counter, 3) the presence of
the SSA polling code, and 4) whether the target of the call
in the checking code points to the SSA polling routine.

5.1.4 Example Pass #4: QSpectre

One software-based approach to mitigate the Spectre attack
is to use serializing instructions (e.g, lfence) to prevent the
CPU from speculatively executing instructions beyond the
intended placements. Following this idea, Microsoft Visual
Studio has adopted a compiler-based scheme, QSpectre [30],

1 [{ "name": "tsgx",
2 "sca": ["page"],
3 "dependency": { "hw": ["tsx"], "weak": ["aslr"] },
4 "priority": "high"
5 },
6 { "name": "cotest-tsgx",
7 "sca": ["ht"],
8 "dependency": { "hw": ["ht"], "strong": ["tsgx"] },
9 "priority": "high"

10 },
11 { "name": "qspectre",
12 "sca": ["spectre"],
13 "dependency": { "hw": ["!ibrs", "ht"] },
14 "priority": "high"
15 },
16 { "name": "varys",
17 "sca": ["cache", "page"],
18 "dependency": { "hw": ["!cache"] },
19 "priority": "medium"
20 },
21 { "name": "cotest-varys",
22 "sca": ["ht"],
23 "dependency": { "hw": ["ht"], "strong": ["varys"] },
24 "priority": "medium"
25 },
26 { "name": "aslr",
27 "priority": "high" }]

Figure 3: Example pass selection policy P (a .json file). name:
name of the current pass; sca: the SCAs to mitigate; dependency:
the required hardware (hw) and dependent passes (can be weak or
strong); priority: the priority of the current pass.

which finds potentially vulnerable code patterns and inserts
lfence instructions During compilation.
Integration. Instead of inserting lfence instructions based
on pattern matching, which can be bypassed [70], PRIDWEN’s
instrumentation pass for QSpectre adopts a simple, yet ef-
fective strategy: inserting lfence instructions to all if-else
structures. More concretely, the pass inserts an lfence in-
struction right after the conditional branch in the code of
an if-else structure. This pass uses the onMachineInstrEnd
API and determines if a conditional branch is in an if-else
structure by consulting the CompilerContext data structure.
Post-synthesis validation. The validation pass simply
checks the presence of the lfence instruction in every
if-else structure.

5.2 Pass Coordination
PassManager selects the optimal set of passes and resolves

potential conflicts following the steps mentioned in §4.2. To
incorporate the four passes into PRIDWEN, we specify the
pass selection policy P (shown in Figure 3). Note that the pol-
icy P is just an example; PRIDWEN can transparently support
any developer-provided policies by design.
Pass selection. First, PassManager selects all feasible passes
according to hardware dependencies. For example, it selects
the QSpectre pass if IBRS is disabled and HT is enabled (Line
13). Next, it prunes passes that target overlapping SCAs based
on the priority. We prioritize T-SGX (hardware-based) over
Varys (software-based) in P such that if PassManager has se-
lected the T-SGX pass because TSX is available, it will omit
the Varys pass. Then, PassManager checks the unprocessed

462 2022 USENIX Annual Technical Conference USENIX Association

passes in P and includes those whose dependencies are all
satisfied (e.g., co-location test for T-SGX cotest-tsgx), or
without any dependency (e.g., ASLR).
Pass ordering. Based on the dependencies specified in P,
PassManager also determines the order of applying passes
to resolve potential conflicts among them. For example, the
ASLR and T-SGX passes can compete with each other to
instrument branches at the end of basic blocks. To avoid such
conflicts, a weak dependency between the two passes is indi-
cated in P (Line 3). Accordingly, PRIDWEN serves the ASLR
pass first and then applies the T-SGX pass with slight mod-
ification (e.g., instrument jmps inserted by the ASLR pass
to make it point to the T-SGX springboard). Also, PRIDWEN
must apply the T-SGX co-location test pass cotest-tsgx after
the T-SGX pass itself to correctly insert the testing code at the
springboard, which is indicated in P as a strong dependency
(Line 8). As passes without dependencies (e.g., QSpectre) can
be applied at anytime, PRIDWEN simply applies them after
serving passes with dependencies.

6 Evaluation

We evaluate PRIDWEN on successful mitigation of individual
targeted SCAs (§6.1), the semantic correctness of the input
Wasm program (§6.2), the performance characteristics of the
PRIDWEN loader (§6.3), and the performance overhead of
PRIDWEN-synthesized binaries (§6.4).
Experiment setup. We ran all the experiments on a machine
with a 4-core Intel i7-6700K CPU (Skylake microarchitec-
ture) operating at 4 GHz with 32 KiB L1 and 256 KiB L2 pri-
vate caches, an 8 MiB L3 shared cache, and 64 GiB of RAM.
The machine was running Linux kernel 4.15. The PRIDWEN
loader is compiled with gcc 5.4.0 and executed on top of the
Intel Linux SGX SDK 2.5.102.
Applications and test suites. We use three real-world appli-
cations or libraries (Lighttpd 1.4.48 [71], libjpeg 9a [72], and
SQLite 3.21.0 [73]) as a macro-benchmark suite representing
large, complex applications, as well as a micro-benchmark
suite, PolyBenchC [74]. The benchmark suite consists of 23
small C programs with only numerical computations (i.e., no
syscall) that are used to evaluate the runtime performance
of just-in-time compiled Wasm binaries against native C bi-
naries [34]. We compile the original source code of each
micro- or macro-benchmark program into Wasm using Em-
scripten [42], an LLVM-based compiler. We also directly port
all of the programs using SGX SDK to serve as baseline ver-
sions. We use the official Wasm specification test suite [44]
to test the correctness of the synthesis of PRIDWEN (§6.2).
Methodology. For each run of experiments, we take the
compiled Wasm binaries as input to PRIDWEN. To evaluate
PRIDWEN-synthesized binaries with distinct sets of defense
schemes enforced, we manually configure PRIDWEN before
each run. We use BASE to represent the configuration of base-

line compilation (i.e., synthesis without instrumentation) and
the name of defense schemes to represent the configuration of
enforcing the corresponding schemes. For example, TSGX
indicates the configuration with T-SGX enforced. For the ease
of comparing Varys and T-SGX, the rest of the section uses
VARYS, to represent its original design with the co-location
test, respectively. QSpectre or QS represent QSpectre. To
measure the execution time of each application, we use the
rdtsc instruction via an OCall inside an enclave. The reported
results are averaged over 10 runs.

6.1 Security Analysis
In addition to statically checking the enforcement of each
mitigation scheme via validation passes, we also manually
verify whether the integrated versions of example passes are
effective and compatible by running simplified SCAs against
them and building a test suite (§6.2). After hardening a test
binary over the SCA surfaces with different combinations,
we introduce frequent page faults and interrupts, manipulate
processor affinity, and run a simple Spectre attack [19]. We
confirm that the T-SGX pass suppresses page faults during
runtime, the Varys pass detects frequent interrupts and thread
co-location (if HT is enabled), and the QSpectre pass disrupts
speculation (if IBRS is disabled). In addition, combining the
ASLR pass and frequent interrupt detection (the Varys pass)
can effectively mitigate or slow down an attacker’s attempts
to infer the fine-grained memory layout.

6.2 Correctness
To validate whether the synthesized program behaves as ex-
pected, we use the official Wasm specification test suite [44],
which provides comprehensive test cases for all Wasm instruc-
tions. The test suite consists of 73 programs. Each program
includes a set of functions and test cases that specify the ex-
pected outputs with given inputs. We ran the test suite on
PRIDWEN with all hardening configurations and reported the
results in terms of pass or fail on each program. In addition to
the test suite, we also record intermediate values of all bench-
mark programs (by manually inserting printf) for both base-
line and PRIDWEN-synthesized version and compare them.
Results. The results show that programs with all hardening
configurations successfully pass all the test cases, which in-
dicates that 1) the baseline compilation of PRIDWEN (BASE)
faithfully follows the specification of Wasm, and 2) the en-
forcement of schemes does not modify the behavior of the pro-
gram. Moreover, there is no difference when comparing inter-
mediate values between BASE and the synthesized binaries.

6.3 Performance of PRIDWEN

To show both runtime and memory overheads of the
PRIDWEN loader, we measured the execution time that
PRIDWEN takes to generate native C binaries and the ad-
ditional memory that it allocates during the entire process (by

USENIX Association 2022 USENIX Annual Technical Conference 463

0

20

40

60
small program

0
100
200
300
400
500 large program

0

1

2

3

BASE
QS TSGX

TSGX+QS

VARYS

VARYS+QS

0
5

10
15
20
25

BASE
QS TSGX

TSGX+QS

VARYS

VARYS+QS

E
xe

c.
tim

e
(m

s)

Init Syn w/ ASLR

M
em

.o
ve

rh
ea

ds
(M

B
)

Figure 4: The top and bottom figures show runtime overheads and
memory overheads, respectively, of PRIDWEN on program synthesis.

hooking malloc). To demonstrate the impact on the size of in-
put, we used one small (2mm, 52 kB) and one large (lighttpd,
462 kB) Wasm binaries as inputs. We also ran experiments
with different configurations of PRIDWEN to show the impact
of enforcing different mitigations. As the co-location test de-
pends on either T-SGX or Varys and requires only adding a
piece of code to each scheme, we do not include it the test in
the selected configurations. Note that the overhead only needs
to be paid once during the first initialization and synthesis.

The results are shown in Figure 4. We divide each bar into
three parts: the initialization stage (blue), the synthesis stage
(green), and additional overhead when the ASLR is enforced
on top of the corresponding configuration (red). The initial-
ization stage includes the time spent on hardware probing,
PassManager initialization, and Wasm parsing. The synthesis
stage represents the time spent on compilation and instrumen-
tation in Synthesizer.
Runtime performance. For the runtime overhead (Figure 4),
it is clear that given the same program, the execution time of
the initialization stage is fixed regardless of the configurations.
For the large program, PRIDWEN spends more time during
the initialization stage, which is mostly due to the process of
parsing the Wasm binary; however, the proportion of the exe-
cution time spent in the initialization stage decreases, which
indicates that PRIDWEN spends more time on the synthesis
stage for the large program. Also, enabling ASLR for the large
program incurs higher overhead since it has more basic blocks.
In addition, enforcing more schemes incurs higher overheads
as expected. Overall, the one-time overhead of PRIDWEN is
acceptable (less than 500 ms for the large program).
Memory overhead. For the memory overhead (Figure 4),
the results show that PRIDWEN requires a fixed amount of
memory during the initialization stage for the same program.
PRIDWEN requires more memory for the large program, since
the majority of the required memory is used to store the IR
of the input program during the parsing process. We also
observe similar memory requirements for PRIDWEN with the
BASE configuration in the synthesis stage, since it needs more
memory to maintain the metadata during compilation for the
large program. Also, enabling ASLR on top of BASE incurs

0

0.4

0.8

1.2

2mm
3mm

adi
bicg

cholesky

correlation

covariance

doitgen

durbin
fdtd-2d

gemm
gemver

gesummv

gramschmidt

ludcmp

lu mvt
seidel-2d

symm
syr2k

syrk
trisolv

trmmR
un

tim
e

ov
er

he
ad

ra
tio

Figure 5: The runtime performance of PRIDWEN-synthesized Wasm
programs compared to native C binaries.

the highest overhead. The reason is that the instrumentation
passes of each scheme all depend on the pass that manages the
control-flow graph (CFG) information. As the ASLR pass can
share the CFG information with other passes and can directly
reuse such information during runtime, enabling ASLR on
top of them incurs less overhead; when enabling just ASLR
in BASE, it needs to generate the CFG information itself,
resulting in a large memory overhead. Note that the memory
overhead is only imposed once before the execution of the
synthesized binary; thus it does not affect the memory usage
of the binary in run-time.

6.4 Performance of Synthesized Binaries

We measure the runtime and memory overheads of PRIDWEN-
synthesized binaries. We compare the results with those of
native C binaries ported directly into SGX enclaves. In addi-
tion, we measure the performance overhead of the PRIDWEN-
synthesized version of the defense schemes by comparing
the results with those of the BASE configuration, and match
it to that of the original implementations (i.e., the overhead
indicated in the original papers). We confirm that the over-
heads are mainly inherited from the original design of the
countermeasures; PRIDWEN only imposes minimal amount
of overheads in the binaries.

Runtime performance. Figure 5 shows the results of run-
ning the PolybenchC with the BASE configuration, which are
normalized to the execution time of the native C programs.
Our results indicate that PRIDWEN-synthesized binaries have
negligible slowdown or are even faster than the native C bi-
naries, without any mitigation schemes enforced. The execu-
tion time of PRIDWEN-synthesized binaries are 0.7×–1.0× of
that of the native C binaries. Likewise, the very initial evalua-
tion [34] of the in-browser Wasm compiler reports similar exe-
cution overhead results on PolybenchC programs (0.5×–1.4×
of that of native C). The runtime performance of PRIDWEN-
synthesized Wasm programs is comparable to or even better
than that of C programs. This might be due to the small
size of PolybenchC programs, with only numerical computa-
tions. Therefore, the synthesized Wasm programs are fairly
compact and similar to native binaries. Furthermore, the dif-
ference between compilers (i.e., Emscripten and GCC) may
also contribute to the results. When programs get more com-
plex, performance overhead increases as their Wasm forms

464 2022 USENIX Annual Technical Conference USENIX Association

0

0.5

1

1.5

2

0
0.2
0.4
0.6
0.8

1
1.2

2mm
3mm

adi
bicg

cholesky

correlation

covariance

doitgen

durbin
fdtd-2d

gemm
gemver

gesummv

gramschmidt

ludcmp

lu mvt
seidel-2d

symm
syr2k

syrk
trisolv

trmm

R
un

tim
e

ov
er

he
ad

ra
tio

ASLR QSpectre TSGX VARYS
M

em
or

y
ov

er
he

ad
ra

tio

Figure 6: The top and bottom figures show the runtime performance and memory overheads, respectively, of PRIDWEN-synthesized programs
secured with different mitigation schemes, compared to BASE.

no longer maintain the similarity to native binaries (e.g., the
number of instructions with one-to-many mappings grows).

Figure 6 demonstrates the results of running PolybenchC
with defense schemes enforced. The bar on the figure repre-
sents the relative execution time of the program to the BASE
configuration. ASLR incurs various overheads due to dif-
ferent numbers of randomized basic blocks being executed,
which is not cache-friendly. Similarly, QSpectre also incurs
various but smaller overheads, which result from the number
of lfence instructions being executed.

Regarding T-SGX and VARYS, TSGX incurs less over-
head than VARYS does. Especially, VARYS suffers from
high overhead when it needs to check AEXs inside a loop
structure (see an example in Appendix B). VARYS cannot
avoid this issue without compromising its security guarantees.
In contrast, TSGX supports loop optimization, which puts an
entire loop into single transaction when possible.

Memory overhead. Figure 6 shows how much memory each
mitigation demands on top of the binaries with BASE. On
average, the memory overheads of the synthesized binaries
are about 1.2× compared to the baseline binaries, which is
moderate.

Real-world applications. We use three real-world applica-
tions as case studies to show that PRIDWEN provides suffi-
cient support for large, complex programs. In addition to the
Lighttpd (a web server), the other two applications are based
on libjpeg and SQLite libraries. The libjpeg application sup-
ports both compressing and decompressing a jpeg image and
the SQLite application supports basic database operations,
including insert, select, update, and delete. We use the
HTTP benchmarking tool, wrk, for evaluating the throughputs
of the Lighttpd. For the other two applications, we measure
the execution time of each supported operation and report the
average values over 10 runs.

Figure 7 shows the results of Lighttpd. The slowdown of
BASE is 1.5× to the native version. TSGX incurs less over-

0
1
2
3
4
5

0 5 10 15 20 25 30 35

L
at

en
cy

(m
s)

Throughputs (k req/s)

SGX-native
BASE
TSGX

TSGX+ASLR
VARYS

VARYS+QS+ASLR

Figure 7: The performance of Lighttpd; QS: QSpectre.

0
1
2
3
4
5

Comp. Decomp. Insert Select Update Delete

Libjpeg SQLite

R
un

tim
e

ov
er

he
ad

ra
tio

ASLR
TSGX

BASE
QSpectre

VARYS

Figure 8: The performance of synthesized libjpeg and SQLite; each
left bar illustrates hardware-assisted passes, while each right bar
illustrates software-only passes.

heads compared to VARYS (1.9× versus 2.6×), demonstrat-
ing the advantage of hardware-assisted mitigation schemes
over software-only ones. ASLR incurs significant overhead
because Lighttpd has a large number of small-sized basic
blocks; This shortens the gap between TSGX and VARYS
when they are enforced with ASLR. When enforcing multiple
mitigation schemes, the slowdown of Lighttpd is up to 4.6×
compared to the native binary.

Figure 8 presents the performance of libjpeg and SQLite
applications. We use stacked bars to represent the incurred
overheads when applying the optimal set of mitigations on
top of a viable hardware configuration. The runtime overhead
of BASE is 1.2×–1.7× compared to the native versions. The
overheads of individual mitigation schemes are similar to the
results of PolyBenchC presented in Figure 6 (e.g., TSGX in-

USENIX Association 2022 USENIX Annual Technical Conference 465

curs less overheads than VARYS). The average slowdown of
hardware-assisted mitigation schemes is 1.9× while that of
software-only mitigation schemes is 3.4×. Depending on hard-
ware configurations, hardware-assisted mitigation schemes
are 2.1×–5.4× faster than software-only ones.

Again, as PRIDWEN only aims to integrate multiple mit-
igation techniques, most of the performance overheads are
inherited from the original design of the countermeasures,
while PRIDWEN itself does not impose significant overheads.

7 Discussion

Adding new defenses to PRIDWEN. PRIDWEN is designed
with future scenarios in mind. Thanks to the high-level in-
strumentation APIs provided by PRIDWEN (Table 2), new
instrumentation-based defense techniques can be easily added
to PRIDWEN as a pass. PRIDWEN pass APIs offer different
instrumentation granularity with sufficient information about
the corresponding instruction on both IR- and native-level,
which should meet all instrumentation needs. We recommend
to develop new defenses directly with PRIDWEN to save the
hassle of replacing heterogeneous instrumentation APIs with
PRIDWEN versions during integration. The developer will
also need to provide the type of side-channel attack targeted
by the new defense, and the possible dependency on specific
hardware features or existing techniques in the pass selection
policy. This allows Prober and PassManager to resolve poten-
tial incompatibility issues and conflicts, and correctly enforce
the new defense. Compared to the effort needed to write a new
pass, writing a pass selection policy should be much simpler.
Upgrade PRIDWEN. Modern hardware is evolving quickly
with updated features useful for security purposes and
PRIDWEN is designed to keep up with the hardware evolution.
It is necessary for PRIDWEN to allow probing of new hard-
ware features for defense techniques built with such features.
The probing logic for the specific hardware feature will need
to be added by PRIDWEN developers using either exception-
based instruction probing or trusted remote attestation (§4.1)
to bypass untrusted privileged software. Novel and secure
techniques are also welcomed to probe the hardware capa-
bility of the platform. We hope that PRIDWEN can motivate
hardware manufacturers to provide official secure probing
helpers for hardware features. Upgrade of PRIDWEN is the
effort of both the hardware and the software communities.
The power of PRIDWEN is truly unleashed when equipped
with the most updated inclusion of hardware features and
mitigation schemes.
The recent SmashEx attack [75]. A recent paper presents
the SmashEx attack targeting the SGX SDKs; the targeted
SDKs do not properly handle re-entrancy in their asyn-
chronous exception handling logic, which allows the attacker
to compromise the integrity of the SSA region and modify
GPRSGX.RIP. PRIDWEN is built on top of the trusted Intel

SGX SDK. The vulnerability of asynchronous exception han-
dling in SGX (SmashEx) is rooted in the SGX SDK, and it
was already mitigated by recent patches [76, 77]. That is, the
enclave-specific SSA that hosts the GPRSGX.RIP cannot be
compromised with the attack in the latest SDK. PRIDWEN
should work with the latest SGX SDK because it does not
heavily rely on or modify a certain SDK version.
Program synthesis on the cloud side vs. the user side.
PRIDWEN makes the design decision of conducting program
synthesis on the cloud side to minimize the extra effort re-
quired for preparation on the user side. An alternative solution
would be deploying a dedicated program on the cloud to re-
port the hardware configuration back to the user, then the
user in return synthesizes and caches the hardened binary
themselves and sends the binary to the cloud for deployment.
Synthesizing and caching the binaries of different configura-
tions at the user side can save compilation cost on the cloud
side; however, this puts more burden on the user. In addition,
it would be difficult to update the binaries on the cloud side
when the configuration changes, since the server has to wait
for the user to compile and transmit the updated version. In
contrast, when the configuration on the server is changed (e.g.,
after reboot), PRIDWEN automatically re-synthesizes the ap-
plication and applies the change upon restarting. It is also
possible to optimize PRIDWEN in a similar way by caching
the synthesized programs of different configurations on the
cloud side to reduce the compilation overhead.

8 Conclusion

PRIDWEN is a framework to dynamically synthesize a se-
cure SGX program that is optimally hardened against various
SCAs simultaneously, while preventing any deployability,
redundancy, or incompatibility problem. To overcome the re-
strictions of the static deployment model of SGX, PRIDWEN
adopts Wasm as the IR, and supports smooth integrations of in-
strumentation passes for both hardware-assisted and software-
only mitigations. PRIDWEN selects an optimal set of miti-
gations to be applied at runtime according to the hardware
configurations of the target platform, and provides means for
the user to validate and attest the final synthesized binary. We
implement a prototype of PRIDWEN, which integrates four
SCA defenses. Through extensive evaluation, we show that
PRIDWEN efficiently hardens SGX programs with chosen
defenses, while incurring moderate performance overhead.

9 Acknowledgment

We would like to thank the anonymous reviewers and our
shepherd for their helpful feedback. We also would like to
thank Scott Constable and Yuan Xiao from Intel for construc-
tive discussions. This research was funded by Intel and the
NSF award NSF-1563848.

466 2022 USENIX Annual Technical Conference USENIX Association

References

[1] J. Mangalindan, “Is User Data Safe in the
Cloud?” http://tech.fortune.cnn.com/2010/09/24/
is-user-data-safe-in-the-cloud, September 2010.

[2] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage,
“Hey, you, get off of my cloud: Exploring information
leakage in third-party compute clouds,” in Proceedings
of the 16th ACM Conference on Computer and Commu-
nications Security (CCS), Chicago, IL, Nov. 2009.

[3] M. Hoekstra, R. Lal, P. Pappachan, V. Phegade, and
J. Del Cuvillo, “Using Innovative Instructions to Cre-
ate Trustworthy Software Solutions,” in Proceedings
of the 2nd International Workshop on Hardware and
Architectural Support for Security and Privacy (HASP),
Tel-Aviv, Israel, 2013, pp. 1–8.

[4] Intel, “SGX Tutorial, ISCA 2015,” http://sgxisca.weebly.
com/, Jun. 2015.

[5] N. Porter, “Introducing Asylo: an open-source
framework for confidential computing,” 2018,
https://cloud.google.com/blog/products/gcp/

introducing-asylo-an-open-source-framework-for-

confidential-computing.

[6] Microsoft, “Open Enclave SDK,” 2019,
https://openenclave.io/sdk/.

[7] Microsoft Azure, “Azure Confidential Computing,”
2019, https://azure.microsoft.com/en-us/solutions/
confidential-compute/.

[8] S. Johnson, “Intel SGX and Side-Channels,”
https://software.intel.com/en-us/articles/
intel-sgx-and-side-channels.

[9] F. Brasser, U. Müller, A. Dmitrienko, K. Kostiainen,
S. Capkun, and A. Sadeghi, “Software Grand Exposure:
SGX Cache Attacks Are Practical,” in Proceedings of
the 11th USENIX Workshop on Offensive Technologies
(WOOT), Vancouver, BC, Canada, Aug. 2017.

[10] M. Hähnel, W. Cui, and M. Peinado, “High-Resolution
Side Channels for Untrusted Operating Systems,” in Pro-
ceedings of the 2017 USENIX Annual Technical Confer-
ence (ATC), Santa Clara, CA, Jul. 2017.

[11] F. Dall, G. D. Micheli, T. Eisenbarth, D. Genkin,
N. Heninger, A. Moghimi, and Y. Yarom, “CacheQuote:
Efficiently Recovering Long-term Secrets of SGX EPID
via Cache Attacks,” in Proceedings of the Conference
on Cryptographic Hardware and Embedded Systems
(CHES), 2018.

[12] A. Moghimi, T. Eisenbarth, and B. Sunar, “MemJam:
A false dependency attack against constant-time crypto
implementations in SGX,” in Cryptographers’ Track at
the RSA Conference. Springer, 2018.

[13] W. Wang, G. Chen, X. Pan, Y. Zhang, X. Wang, V. Bind-
schaedler, H. Tang, and C. A. Gunter, “Leaky cauldron
on the dark land: Understanding memory side-channel
hazards in SGX,” in Proceedings of the 24th ACM Con-
ference on Computer and Communications Security
(CCS), Vienna, Austria, Oct.–Nov. 2016.

[14] Y. Xu, W. Cui, and M. Peinado, “Controlled-Channel
Attacks: Deterministic Side Channels for Untrusted Op-
erating Systems,” in Proceedings of the 36th IEEE Sym-
posium on Security and Privacy (Oakland), San Jose,
CA, May 2015.

[15] J. Van Bulck, N. Weichbrodt, R. Kapitza, F. Piessens,
and R. Strackx, “Telling your secrets without page faults:
Stealthy page table-based attacks on enclaved execution,”
in Proceedings of the 26th USENIX Security Symposium
(Security), Vancouver, Canada, Aug. 2017.

[16] S. Weiser, R. Spreitzer, and L. Bodner, “Single Trace
Attack Against RSA Key Generation in Intel SGX SSL,”
in Proceedings of the 13th ACM Symposium on Infor-
mation, Computer and Communications Security (ASI-
ACCS), Seoul, South Korea, Jun. 2018.

[17] J. Gyselinck, J. Van Bulck, F. Piessens, and R. Strackx,
“Off-Limits: Abusing Legacy x86 Memory Segmenta-
tion to Spy on Enclaved Execution,” in International
Symposium on Engineering Secure Software and Sys-
tems. Springer, 2018, pp. 44–60.

[18] S. Shinde, Z. L. Chua, V. Narayanan, and P. Saxena, “Pre-
venting Your Faults From Telling Your Secrets,” in Pro-
ceedings of the 11th ACM Symposium on Information,
Computer and Communications Security (ASIACCS),
Xi’an, China, May–Jun. 2016.

[19] G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H.
Lai, “SgxPectre: Stealing Intel Secrets from SGX En-
claves Via Speculative Execution,” in 2019 IEEE Euro-
pean Symposium on Security and Privacy (EuroS&P).
IEEE, 2019, pp. 142–157.

[20] E. M. Koruyeh, K. N. Khasawneh, C. Song, and N. Abu-
Ghazaleh, “Spectre returns! speculation attacks using
the return stack buffer,” in Proceedings of the 12th
USENIX Workshop on Offensive Technologies (WOOT),
Baltimore, MD, Aug. 2018.

[21] Intel, “Q3 2018 Speculative Execution Side Channel
Update,” 2018, https://www.intel.com/content/www/us/
en/security-center/advisory/intel-sa-00161.html.

USENIX Association 2022 USENIX Annual Technical Conference 467

http://tech.fortune.cnn.com/2010/09/24/is-user-data-safe-in-the-cloud
http://tech.fortune.cnn.com/2010/09/24/is-user-data-safe-in-the-cloud
http://sgxisca.weebly.com/
http://sgxisca.weebly.com/
https://openenclave.io/sdk/
https://azure.microsoft.com/en-us/solutions/confidential-compute/
https://azure.microsoft.com/en-us/solutions/confidential-compute/
https://software.intel.com/en-us/articles/intel-sgx-and-side-channels
https://software.intel.com/en-us/articles/intel-sgx-and-side-channels
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00161.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00161.html

[22] ——, “Intel Side Channel Vulnerability MDS,”
2019, https://www.intel.com/content/www/us/en/
architecture-and-technology/mds.html.

[23] D. Gruss, J. Lettner, F. Schuster, O. Ohrimenko, I. Haller,
and M. Costa, “Strong and Efficient Cache Side-Channel
Protection using Hardware Transactional Memory,” in
Proceedings of the 26th USENIX Security Symposium
(Security), Vancouver, Canada, Aug. 2017.

[24] M.-W. Shih, S. Lee, T. Kim, and M. Peinado, “T-SGX:
Eradicating Controlled-Channel Attacks Against En-
clave Programs,” in Proceedings of the 2017 Annual
Network and Distributed System Security Symposium
(NDSS), San Diego, CA, Feb.–Mar. 2017.

[25] G. Chen, W. Wang, T. Chen, S. Chen, Y. Zhang, X. Wang,
T.-H. Lai, and D. Lin, “Racing in hyperspace: Closing
hyper-threading side channels on SGX with contrived
data races,” in Proceedings of the 39th IEEE Symposium
on Security and Privacy (Oakland), San Francisco, CA,
May 2018.

[26] O. Oleksenko, B. Trach, R. Krahn, M. Silberstein, and
C. Fetzer, “Varys: Protecting SGX Enclaves from Prac-
tical Side-Channel Attacks,” in Proceedings of the 2018
USENIX Annual Technical Conference (ATC), Boston,
MA, Jul. 2018.

[27] S. Chen, X. Zhang, M. K. Reiter, and Y. Zhang, “Detect-
ing privileged side-channel attacks in shielded execution
with Déjá Vu,” in Proceedings of the 12th ACM Sympo-
sium on Information, Computer and Communications
Security (ASIACCS), Abu Dhabi, UAE, Apr. 2017.

[28] S. Lee, M.-W. Shih, P. Gera, T. Kim, H. Kim, and
M. Peinado, “Inferring Fine-grained Control Flow Inside
SGX Enclaves with Branch Shadowing,” in Proceedings
of the 26th USENIX Security Symposium (Security), Van-
couver, Canada, Aug. 2017.

[29] Intel, “Branch Target Injection / CVE-2017-5715
/ INTEL-SA-00088,” 2018, https://software.intel.
com/security-software-guidance/software-guidance/
branch-target-injection.

[30] A. Pardoe, “Spectre mitigations in MSVC,”
2018, https://devblogs.microsoft.com/cppblog/
spectre-mitigations-in-msvc/.

[31] A. Ahmad, B. Joe, Y. Xiao, Y. Zhang, I. Shin, and B. Lee,
“Obfuscuro: A Commodity Obfuscation Engine on Intel
SGX,” in Proceedings of the 2019 Annual Network and
Distributed System Security Symposium (NDSS), San
Diego, CA, Feb. 2019.

[32] F. Brasser, S. Capkun, A. Dmitrienko, T. Frassetto,
K. Kostiainen, and A.-R. Sadeghi, “DR.SGX: Auto-
mated and Adjustable Side-Channel Protection for SGX
using Data Location Randomization,” in Proceedings of
the Annual Computer Security Applications Conference
(ACSAC), 2019.

[33] GCC team, “Using the GNU Compiler Collection
(GCC): x86 Built-in Functions,” 2019, https://gcc.gnu.
org/onlinedocs/gcc/x86-Built-in-Functions.html.

[34] A. Haas, A. Rossberg, D. L. Schuff, B. L. Titzer, M. Hol-
man, D. Gohman, L. Wagner, A. Zakai, and J. Bastien,
“Bringing the Web up to Speed with WebAssembly,” in
Proceedings of the 2017 ACM SIGPLAN Conference
on Programming Language Design and Implementation
(PLDI), Barcelona, Spain, Jun. 2017.

[35] WebAssembly Community Group, “WebAssembly
Specification: Release 1.0,” Tech. Rep., May 2019.

[36] H. Wang, P. Wang, Y. Ding, M. Sun, Y. Jing, R. Duan,
L. Li, Y. Zhang, T. Wei, and Z. Lin, “Towards Memory
Safe Enclave Programming with Rust-SGX,” in Pro-
ceedings of the 26th ACM Conference on Computer
and Communications Security (CCS), London, UK, Nov.
2019.

[37] W. Qiang, Z. Dong, and H. Jin, “Se-Lambda: Secur-
ing Privacy-Sensitive Serverless Applications Using
SGX Enclave,” in International Conference on Security
and Privacy in Communication Systems (SecureComm),
2018.

[38] Red Hat, “Enarx,” 2019, https://enarx.io.

[39] Intel, “WebAssembly Micro Runtime,” 2019, https://
github.com/bytecodealliance/wasm-micro-runtime.

[40] W. Wang, B. Ferrell, X. Xu, K. W. Hamlen, and S. Hao,
“SEISMIC: SEcure in-lined script monitors for interrupt-
ing cryptojacks,” in European Symposium on Research
in Computer Security. Springer, 2018, pp. 122–142.

[41] D. Lehmann and M. Pradel, “Wasabi: A Framework for
Dynamically Analyzing WebAssembly,” in Proceedings
of the 24th ACM International Conference on Architec-
tural Support for Programming Languages and Operat-
ing Systems (ASPLOS), Providence, RI, Apr. 2019.

[42] “emscripten,” 2015, https://emscripten.org/.

[43] J. Seo, B. Lee, S. Kim, M.-W. Shih, I. Shin, D. Han, and
T. Kim, “SGX-Shield: Enabling Address Space Layout
Randomization for SGX Programs,” in Proceedings of
the 2017 Annual Network and Distributed System Se-
curity Symposium (NDSS), San Diego, CA, Feb.–Mar.
2017.

468 2022 USENIX Annual Technical Conference USENIX Association

https://www.intel.com/content/www/us/en/architecture-and-technology/mds.html
https://www.intel.com/content/www/us/en/architecture-and-technology/mds.html
https://software.intel.com/security-software-guidance/software-guidance/branch-target-injection
https://software.intel.com/security-software-guidance/software-guidance/branch-target-injection
https://software.intel.com/security-software-guidance/software-guidance/branch-target-injection
https://devblogs.microsoft.com/cppblog/spectre-mitigations-in-msvc/
https://devblogs.microsoft.com/cppblog/spectre-mitigations-in-msvc/
https://gcc.gnu.org/onlinedocs/gcc/x86-Built-in-Functions.html
https://gcc.gnu.org/onlinedocs/gcc/x86-Built-in-Functions.html
https://enarx.io
https://github.com/bytecodealliance/wasm-micro-runtime
https://github.com/bytecodealliance/wasm-micro-runtime
https://emscripten.org/

[44] “Mirror of the spec testsuite,” 2019, https://github.com/
WebAssembly/testsuite.

[45] Intel, “Code Sample: Intel Software Guard Exten-
sions Remote Attestation End-to-End Example,” 2018,
https://software.intel.com/en-us/articles/code-

sample-intel-software-guard-extensions-remote-

attestation-end-to-end-example.

[46] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clark-
son, W. Paul, J. A. Calandrino, A. J. Feldman, J. Appel-
baum, and E. W. Felten, “Lest we remember: cold-boot
attacks on encryption keys,” Communications of the
ACM, vol. 52, no. 5, pp. 91–98, 2009.

[47] Intel, “Exception Handling in Intel Software Guard Ex-
tensions (Intel SGX) Applications,” 2019.

[48] ——, “Intel 64 and IA-32 Architectures Software De-
veloper’s Manual Combined Volumes: 1, 2A, 2B, 2C,
2D, 3A, 3B, 3C, 3D and 4,” May 2019.

[49] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin,
B. Kasikci, F. Piessens, M. Silberstein, T. F. Wenisch,
Y. Yarom, and R. Strackx, “Foreshadow: Extracting the
Keys to the Intel SGX Kingdom with Transient Out-of-
Order Execution,” in Proceedings of the 27th USENIX
Security Symposium (Security), Baltimore, MD, Aug.
2018.

[50] J. Van Bulck, F. Piessens, and R. Strackx, “Nemesis:
Studying Microarchitectural Timing Leaks in Rudimen-
tary CPU Interrupt Logic,” in Proceedings of the 25th
ACM Conference on Computer and Communications
Security (CCS), Toronto, Canada, Oct. 2018.

[51] W. He, W. Zhang, S. Das, and Y. Liu, “Sgxlinger: A new
side-channel attack vector based on interrupt latency
against enclave execution,” in 2018 IEEE 36th Interna-
tional Conference on Computer Design (ICCD). IEEE,
2018, pp. 108–114.

[52] D. Evtyushkin, R. Riley, N. Abu-Ghazaleh, and D. Pono-
marev, “BranchScope: A New Side-Channel Attack on
Directional Branch Predictor,” in Proceedings of the
23st ACM International Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS), Williamsburg, VA, Mar. 2018.

[53] S. van Schaik, A. Milburn, S. Österlund, P. Frigo,
G. Maisuradze, K. Razavi, H. Bos, and C. Giuffrida,
“RIDL: Rogue in-flight data load,” in Proceedings of the
40th IEEE Symposium on Security and Privacy (Oak-
land), San Jose, CA, May 2019.

[54] M. Schwarz, M. Lipp, D. Moghimi, J. V. Bulck, J. Steck-
lina, T. Prescher, and D. Gruss, “ZombieLoad: Cross-
Privilege-Boundary Data Sampling,” in Proceedings of

the 26th ACM Conference on Computer and Communi-
cations Security (CCS), London, UK, Nov. 2019.

[55] C. Canella, D. Genkin, L. Giner, D. Gruss, M. Lipp,
M. Minkin, D. Moghimi, F. Piessens, M. Schwarz,
B. Sunar, J. V. Bulck, and Y. Yarom, “Fallout: Leak-
ing Data on Meltdown-resistant CPUs,” in Proceedings
of the 26th ACM Conference on Computer and Commu-
nications Security (CCS), London, UK, Nov. 2019.

[56] Y. Fu, E. Bauman, R. Quinonez, and Z. Lin, “SGX-
LAPD: Thwarting Controlled Side Channel Attacks via
Enclave Verifiable Page Faults,” in International Sympo-
sium on Research in Attacks, Intrusions, and Defenses,
2017.

[57] O. Ohrimenko, F. Schuster, C. Fournet, A. Mehta,
S. Nowozin, K. Vaswani, and M. Costa, “Oblivious
Multi-Party Machine Learning on Trusted Processors,”
in Proceedings of the 25th USENIX Security Symposium
(Security), Austin, TX, Aug. 2016.

[58] O. Ohrimenko, C. F. Manuel Costa, S. Nowozin,
A. Mehta, F. Schuster, and K. Vaswani, “SGX-Enabled
Oblivious Machine Learning,” in Proceedings of the
25th USENIX Security Symposium (Security), Austin,
TX, Aug. 2016.

[59] S. Sasy, S. Gorbunov, and C. W. Fletcher, “ZeroTrace:
Oblivious Memory Primitives from Intel SGX,” in Pro-
ceedings of the 2018 Annual Network and Distributed
System Security Symposium (NDSS), San Diego, CA,
Feb. 2018.

[60] A. Ahmad, K. Kim, M. I. Sarfaraz, and B. Lee, “Oblivi-
ate: A Data Oblivious File System for Intel SGX,”
in Proceedings of the 2018 Annual Network and Dis-
tributed System Security Symposium (NDSS), San Diego,
CA, Feb. 2018.

[61] P. Zhang, C. Song, H. Yin, D. Zou, E. Shi, and
H. Jin, “Klotski: Efficient Obfuscated Execution against
Controlled-Channel Attacks,” in Proceedings of the 25th
ACM International Conference on Architectural Support
for Programming Languages and Operating Systems
(ASPLOS), Lausanne, Switzerland, Apr. 2020.

[62] J. Lee, J. Jang, Y. Jang, N. Kwak, Y. Choi, C. Choi,
T. Kim, M. Peinado, and B. B. Kang, “Hacking in Dark-
ness: Return-oriented Programming against Secure En-
claves,” in Proceedings of the 26th USENIX Security
Symposium (Security), Vancouver, Canada, Aug. 2017.

[63] A. Biondo, M. Conti, L. Davi, T. Frassetto, and A.-R.
Sadeghi, “The Guard’s Dilemma: Efficient Code-Reuse
Attacks against Intel SGX,” in Proceedings of the 27th
USENIX Security Symposium (Security), Baltimore, MD,
Aug. 2018.

USENIX Association 2022 USENIX Annual Technical Conference 469

https://github.com/WebAssembly/testsuite
https://github.com/WebAssembly/testsuite

[64] Intel, “3rd Gen Intel Xeon Scalable processors,”
https://www.connection.com/~/media/pdfs/brands/i/
intel/intel-icelake-ds.pdf?la=en.

[65] ——, “Attestation Service for Intel Software Guard Ex-
tensions (Intel SGX): API Documentation (Revision:
4.1),” 2018.

[66] Greg, “SGX Attestation results in CONFIGURATION_-
NEEDED,” 2018, https://software.intel.com/en-us/
forums/intel-software-guard-extensions-intel-sgx/
topic/798777.

[67] ——, “GROUP_OUT_OF_DATE - what
is the most recent microcode version?”
2018, https://software.intel.com/en-us/forums/
intel-software-guard-extensions-intel-sgx/topic/
755769.

[68] Clemens Hammacher, “Liftoff: a new baseline com-
piler for webassembly in v8,” 2018, https://v8.dev/blog/
liftoff.

[69] A. Shilov, “Intel’s New Core and Xeon W-3175X Pro-
cessors: Spectre and Meltdown Security Update,” 2018,
https://www.anandtech.com/show/13450/intels-

new-core-and-xeon-w-processors-fixes-for-

spectre-meltdown.

[70] P. Kocher, “Spectre Mitigations in Microsoft’s C/C++
Compiler,” 2018, https://www.paulkocher.com/doc/
MicrosoftCompilerSpectreMitigation.html.

[71] “Lighttpd,” 2003, https://www.lighttpd.net/.

[72] “libjpeg,” 1991, https://libjpeg.sourceforge.net/.

[73] “SQLite,” 2000, https://www.sqlite.org/index.html.

[74] “PolyBench,” 2015, http://web.cse.ohio-state.edu/
~pouchet.2/software/polybench/.

[75] J. Cui, J. Z. Yu, S. Shinde, P. Saxena, and Z. Cai,
“Smashex: Smashing sgx enclaves using exceptions,” in
Proceedings of the 28th ACM Conference on Computer
and Communications Security (CCS), Virtual Event, Re-
public of Korea, Nov. 2021.

[76] Intel, “The latest security information on Intel prod-
ucts,” 2021, https://www.intel.com/content/www/us/en/
security-center/advisory/intel-sa-00548.html.

[77] Open Enclave, “Open Enclave SDK El-
evation of Privilege Vulnerability,” 2021,
https://github.com/openenclave/openenclave/security/
advisories/GHSA-mj87-466f-jq42.

[78] F. Schuster, M. Costa, C. Fournet, C. Gkantsidis,
M. Peinado, G. Mainar-Ruiz, and M. Russinovich,
“VC3: Trustworthy data analytics in the cloud using
SGX,” in Proceedings of the 36th IEEE Symposium on
Security and Privacy (Oakland), San Jose, CA, May
2015.

[79] E. Bauman, H. Wang, M. Zhang, and Z. Lin, “SGXElide:
Enabling Enclave Code Secrecy via Self-modification,”
in Proceedings of the 2018 International Symposium
on Code Generation and Optimization (CGO), Vienna,
Austria, Feb. 2018.

[80] T. Hunt, Z. Zhu, Y. Xu, S. Peter, and E. Witchel, “Ryoan:
A distributed sandbox for untrusted computation on se-
cret data,” in Proceedings of the 12th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI), Savannah, GA, Nov. 2016.

[81] A. Baumann, M. Peinado, and G. Hunt, “Shielding ap-
plications from an untrusted cloud with Haven,” in Pro-
ceedings of the 11th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), Broom-
field, Colorado, Oct. 2014.

[82] C.-C. Tsai, D. E. Porter, and M. Vij, “Graphene-SGX:
A practical library OS for unmodified applications on
SGX,” in Proceedings of the 2017 USENIX Annual Tech-
nical Conference (ATC), Santa Clara, CA, Jul. 2017.

[83] C. Priebe, D. Muthukumaran, J. Lind, H. Zhu, S. Cui,
V. A. Sartakov, and P. R. Pietzuch, “SGX-LKL:
Securing the Host OS Interface for Trusted Execution,”
CoRR, vol. abs/1908.11143, 2020. [Online]. Available:
http://arxiv.org/abs/1908.11143

[84] S. Arnautox, B. Tarch, F. Gregor, T. Knauth, A. Martin,
C. Priebe, J. Lind, D. Muthukumaran, D. O’Keeffe, M. L.
Stillwell, D. Goltzsche, D. Eyers, R. Kapitza, P. Pietzuch,
and C. Fetzer, “SCONE: Secure Linux containers with
Intel SGX,” in Proceedings of the 12th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI), Savannah, GA, Nov. 2016.

[85] S. Shinde, D. L. Tien, S. Tople, and P. Saxena, “Panoply:
Low-TCB Linux applications with SGX enclaves,” in
Proceedings of the 2017 Annual Network and Dis-
tributed System Security Symposium (NDSS), San Diego,
CA, Feb.–Mar. 2017.

A Additional Related Work

In-enclave loader. Researchers study in-enclave loaders to
enhance the security and deployability of Intel SGX. For
the security, several loaders leverage randomization and en-
cryption. SGX-Shield [43] loads SGX applications while

470 2022 USENIX Annual Technical Conference USENIX Association

https://www.connection.com/~/media/pdfs/brands/i/intel/intel-icelake-ds.pdf?la=en
https://www.connection.com/~/media/pdfs/brands/i/intel/intel-icelake-ds.pdf?la=en
https://software.intel.com/en-us/forums/intel-software-guard-extensions-intel-sgx/topic/798777
https://software.intel.com/en-us/forums/intel-software-guard-extensions-intel-sgx/topic/798777
https://software.intel.com/en-us/forums/intel-software-guard-extensions-intel-sgx/topic/798777
https://software.intel.com/en-us/forums/intel-software-guard-extensions-intel-sgx/topic/755769
https://software.intel.com/en-us/forums/intel-software-guard-extensions-intel-sgx/topic/755769
https://software.intel.com/en-us/forums/intel-software-guard-extensions-intel-sgx/topic/755769
https://v8.dev/blog/liftoff
https://v8.dev/blog/liftoff
https://www.paulkocher.com/doc/MicrosoftCompilerSpectreMitigation.html
https://www.paulkocher.com/doc/MicrosoftCompilerSpectreMitigation.html
https://www.lighttpd.net/
https://libjpeg.sourceforge.net/
https://www.sqlite.org/index.html
http://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
http://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00548.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00548.html
https://github.com/openenclave/openenclave/security/advisories/GHSA-mj87-466f-jq42
https://github.com/openenclave/openenclave/security/advisories/GHSA-mj87-466f-jq42
http://arxiv.org/abs/1908.11143

1 # Varys
2 BB:
3 ...
4 jmp loop.header
5 loop.body:
6 call varys_check
7 ...
8 incq %rcx
9 loop.header:

10 call varys_check
11 ...
12 cmpq $100, %rcx
13 jbe loop.body
14 loop.end:
15 call varys_check
16 ...

1 # T-SGX
2 BB:
3 ...
4 leaq loop.header(%rip), %r15
5 jmp springboard.next
6 loop.body:
7 ...
8 incq %rcx
9 loop.header:

10 ...
11 cmpq $100, %rcx
12 jbe loop.body
13 leaq loop.end(%rip), %r15
14 jmp springboard.next
15 loop.end:
16 ...

Figure 9: The comparison of Varys and T-SGX on a loop structure.

enforcing fine-grained ASLR. VC3 [78] and SGXElide [79]
deploy encrypted SGX code while decrypting it within an
enclave. Obfuscuro [31] obfuscates SGX code with Oblivi-
ous RAM. For the deployability, some loaders abstract the
interface between SGX code and the outside. Ryoan [80]
implements a two-way sandbox to securely execute untrusted
code inside an enclave. Haven [81], Graphene-SGX [82], and
SGX-LKL [83] run a library OS inside an enclave to exe-
cuted unmodified programs. Similarly, SCONE [84] abstracts
system call interfaces and Panoply [85] abstracts POSIX in-
terfaces to run unmodified programs with SGX. Unlike these
approaches, PRIDWEN focuses on how to instrument SGX
applications according to the hardware features to improve
their security.
SGX and Wasm. To the best of our knowledge, there are
a few initial efforts to execute Wasm interpreters inside an
enclave. Rust-SGX [36] can be configured to use Wasm as
a backend. Se-Lambda [37] executes serverless functions
written in Wasm inside an enclave. Also, Intel and Red Hat
are developing Wasm runtime for SGX [38, 39]. However,
unlike PRIDWEN, these approaches only run existing Wasm
interpreters without improving their functionalities.
Wasm instrumentation. Other studies also instrument
Wasm binaries to detect security attacks. SEISMIC [40] instru-
ments Wasm binaries to inject an inline monitor for detecting
cryptojacking. Wasabi [41] is a Dynamic Binary Instrumen-
tation (DBI) tool that statically instruments Wasm binaries
to inject hooks and dynamically runs JavaScript-based anal-
ysis code on them to find potential bugs. However, unlike
PRIDWEN, they do not consider instrumenting native binaries
compiled from Wasm binaries, which is necessary to adopt
low-level security mitigations sensitive to machine code.

B Loop Comparison: Varys vs. T-SGX

The comparison of Varys and T-SGX on a loop structure is
shown in Figure 9.

USENIX Association 2022 USENIX Annual Technical Conference 471

	Introduction
	Background and Related Work
	Overview
	Pridwen
	Prober
	PassManager
	Synthesizer
	Validator

	Implementation
	Example Passes
	Example Pass #1: Fine-grained ASLR
	Example Pass #2: T-SGX
	Example Pass #3: Varys
	Example Pass #4: QSpectre

	Pass Coordination

	Evaluation
	Security Analysis
	Correctness
	Performance of Pridwen
	Performance of Synthesized Binaries

	Discussion
	Conclusion
	Acknowledgment
	Additional Related Work
	Loop Comparison: Varys vs. T-SGX

